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SUMMARY

New approaches are developed that use measured data to adjust the analytical mass and sti!ness matrices
of a system so that the agreement between the analytical modes of vibration and the modal survey is
improved. By adding known masses to the structure of interest, measuring the modes of vibration
of this mass-modi"ed system, and "nally using this set of new data in conjunction with the initial
modal survey, the analytical mass matrix of the structure can be corrected, after which the analytical
sti!ness matrix can be readily updated. By manipulating the correction matrices into vector forms, the
connectivity information can be enforced, thereby preserving the physical con"guration of the system and
reducing the sizes of the least-squares problems that need to be solved. Solution techniques for updating
the system matrices are introduced, and the numerical issues associated with solving overdetermined
and underdetermined least squares problems are investigated. The e!ects of round-o! errors are also
studied, and heuristic criteria are given for determining the minimum number of modes that need to
be measured in order to ensure su#ciently accurate updated mass and sti!ness matrices. Numerical
experiments are presented to validate the proposed model-updating techniques, to illustrate the e!ects
of the number of measured modes on the quality of the updated model, to show how the magnitudes
and locations of the added masses in$uence the updated matrices, and to highlight the numerical issues
discussed in this paper. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Highly accurate and detailed analytical models are required to analyse and predict the
dynamical behaviour of complex structures during analysis and design. With the proliferation
of digital computers, new methods of analysis have been developed, in particular through the
method of "nite elements. Once a "nite element model of a physical system is constructed, its
accuracy is often tested by comparing its analytical modes of vibration (or natural frequencies
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and mode shapes) with those obtained from the physical system during a modal survey. If
the agreement between the two is good, then more credence is given to the analytical model,
and it can be used with con"dence for future analysis. If the correlation between the two
is poor, then assuming that the experimental measurements are correct, the analytical model
must be adjusted so that the agreement between predictions and test results is improved. The
updated model may then be considered to be a better dynamical representation of the structure
than the initial analytical model. The updated model can subsequently be used with reason-
able accuracy to assess the stability and control characteristics and to predict the dynamical
responses of the structure. The above process of correcting the system matrices is known as
model updating.
In recent years various methods have been developed to improve the quality of the analyt-

ical "nite element models using test data. A detailed discussion of every approach is beyond
the scope of this paper, and interested readers are referred to the recent survey paper by Mot-
tershead and Friswell [1]. In the following paragraphs, some commonly used model updating
techniques will be brie$y reviewed.
Berman [2] proposed an updating scheme based on the Lagrange multipliers formalism that

uses measured mode shapes to correct the mass matrix of a structure. This updating algorithm
identi"es a set of minimum changes in the analytical mass matrix so that the measured modes
are orthogonal to the updated mass matrix of the system. Using essentially the method "rst
introduced by Baruch and Bar Itzhack [3], Wei [4] developed an optimal method to update
the sti!ness matrix of a structure. He also employed the Lagrange multipliers approach to
adjust the sti!ness matrix, subjected to the constraints of satisfying the generalized eigenvalue
problem, the orthogonality condition of the measured mode shapes, and the symmetry property
of the sti!ness matrix.
The Lagrange multipliers approaches to update the system matrices return fully populated

(or dense) mass and sti!ness matrices that may not bear any resemblance to the physical
system being analysed. To preserve the physical load paths of the original analytical model,
Kabe [5] assumed the analytical mass matrix to be correct and incorporated the readily avail-
able structural connectivity information in addition to the test data to optimally adjust the
sti!ness matrix. The adjustments he performed ensure that zero and nonzero elements of the
analytical model are preserved, and the adjusted model exactly reproduces the modes used
in the identi"cation. He also used a Lagrange multipliers technique, so that the percentage
of change to each sti!ness element is minimized. While Kabe’s approach to updating the
sti!ness matrix is straightforward, the assumption that the actual mass matrix is identical to
the analytical mass matrix remains debatable [6].
Using an approach based on matrix perturbation theory, Chen et al. [7] found the correction

mass and sti!ness matrices by enforcing the orthogonality conditions of the measured mode
shapes with respect to the system matrices. Like the schemes proposed by Berman and Wei,
however, the updating algorithms also return fully populated mass and sti!ness matrices, thus
failing to preserve the physical connectivity of the system. In addition, because the approach
outlined in Reference [7] is based on perturbation theory, the updating algorithm can be applied
only when the deviations of the actual parameters from the analytical values are small. Finally,
the derivation carried out by Chen, Kuo, and Garba requires that the measured modal matrix,
[X ], be properly normalized with respect with the actual mass and sti!ness matrices, [M ] and
[K], of the system, such that it satis"es [X ]T[M ][X ]= [I ] and [X ]T[K][X ]= [%]. Because the
objective of model updating is to correct the system matrices, [M ] and [K] are not known
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a priori. Thus, the orthogonality constraints cannot be enforced, and their updating algorithm
cannot be applied in practice.
In this paper, new model-updating schemes are introduced that adjust the system mass and

sti!ness matrices from an incomplete set of measured modes. The underlying principle of the
proposed scheme is to add known masses to the physical structure, measure the modes of
vibration of the new system, and then use the new set of measurements in conjunction with
the original set of experimental data to correct the mass and sti!ness matrices of the actual
structure.

2. PROPOSED MODEL-UPDATING ALGORITHM

Consider the analytical model of a given structure, with N degrees of freedom, whose modes
of vibration are given by the solutions of the following generalized eigenvalue problem:

[K0][X0]= [M0][X0][%0] (1)

where [M0] and [K0] are the symmetric analytical mass and sti!ness matrices of the system,
[X0] is the N ×N modal matrix (whose columns correspond to the eigenvectors or mode
shapes) of the analytical model, and [%0] is an N ×N diagonal matrix whose elements cor-
respond to the eigenvalues (or the square of the natural frequencies) of the analytical model.
A mode of vibration constitutes a given natural frequency and its corresponding mode shape
(or the square root of an eigenvalue and its corresponding eigenvector).
Experimentally, it is often di#cult if not impossible to measure the same number of modes

as the number of degrees of freedom of the analytical model. Thus, the measured data are
said to be incomplete. A problem unrelated to that previously described, but also commonly
referred to as ‘incomplete’, occurs when the measured eigenvector contains fewer co-ordinates
than are available from the analytical model. In common with other model-updating techniques,
the measured eigenvectors must "rst be expanded before the proposed algorithms can be
applied. Various mode expansion techniques can be found in References [8; 9]. In this paper,
we will assume that all the co-ordinates of the eigenvectors can be measured. This assumption
allows us to focus our attention on the quality of the proposed updating algorithm, and not
confound the resulting updates with errors introduced by mode shape expansion. Therefore, we
will reserve the word ‘incomplete’ to mean that the test measurements contain fewer modes
than those of the analytical model.
Regardless of whether the measured modes are complete or incomplete, the modes of

vibration of the actual system must satisfy the following generalized eigenvalue problem:

[K][X ]= [M ][X ][%] (2)

where [M ] and [K] are the actual N ×N symmetric mass and sti!ness matrices of the phys-
ical system, [X ] is the measured N ×Ne modal matrix (Ne denotes the number of measured
modes; Ne6N ), and [%] is an Ne×Ne diagonal matrix whose elements correspond to the
measured eigenvalues of the system. Knowing [M0]; [K0]; [X ], and [%], we seek, through
model updating, to correct [M0] and [K0] so that the new analytical system matrices yield
modes of vibration that are closer to the measured data than they were initially.
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2.1. Mass updating

To update the mass matrix of the analytical model, we add a known mass matrix, [Ma], to
the physical structure, at locations coincident with the nodes of the "nite element model in
order to preserve the size of the initial analytical model. The resulting system satis"es

[K][Xa]= ([M ] + [Ma])[Xa][%a] (3)

where [Xa] corresponds to the N ×Ne measured modal matrix of the new system, and [%a]
is an Ne×Ne diagonal matrix, whose elements are the measured eigenvalues of this mass-
modi"ed system. It is assumed that the added masses do not alter the sti!nesses of the system
signi"cantly. Taking the transpose of Equation (2) and postmultiplying the resulting matrix
equation by [Xa], we get

[X ]T[K][Xa]= [%][X ]T[M ][Xa] (4)

Premultiplying Equation (3) by [X ]T, we have

[X ]T[K][Xa]= [X ]T ([M ] + [Ma]) [Xa][%a] (5)

Subtracting Equation (5) from (4), we obtain

[%][X ]T[M ][Xa]− [X ]T[M ][Xa][%a]= [Q] (6)

where

[Q]= [X ]T[Ma][Xa][%a] (7)

Let

[P]= [X ]T[M ][Xa] (8)

Then Equation (6) simpli"es to

[%][P]− [P][%a]= [Q] (9)

Because both [%] and [%a] are diagonal matrices, Equation (9) can be easily expanded so
that its (i; j)th element yields

(!i − !aj)Pij=Qij (10)

where !aj is the jth measured eigenvalue of the mass-modi"ed system and i; j=1; : : : ; Ne.
Assuming the Ne measured eigenvalues of the original and the mass-modi"ed systems do not
coincide, we can solve for all of the unknowns Pij and then construct matrix [P]. If any
two measured eigenvalues of the original and the mass-modi"ed systems coincide, we simply
change the added masses or their locations to make the eigenvalues distinct. See Section 4.4
for further discussion on the selection of the number, placement, and magnitude of the added
masses.
The actual and the analytical mass matrices of the system are related as follows:

[M ]= [M0] + ["M ] (11)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2547–2571



MODEL UPDATING BY ADDING KNOWN MASSES 2551

where ["M ] represents the correction to the analytical mass matrix. Rewriting Equation (8),
we obtain

[X ]T["M ][Xa]= [P]− [X ]T[M0][Xa] (12)

Because [X ] and [Xa] are both rectangular matrices (assuming Ne¡N ), they have no inverses.
However, Equation (12) can be rewritten so that ["M ] appears as an unknown column vector
"m as follows:

[A ] "m= r (13)

where

"m=["m11 · · · "m1N | "m21 · · · "m2N | · · · | "mN1 · · · "mNN ]T (14)

and

r=[r11 · · · r1Ne | r21 · · · r2Ne | · · · | rNe1 · · · rNeNe ]T (15)

In Equation (14), "mij corresponds to the (i; j)th element of ["M ]. Matrix [A] is of size
N 2e ×N 2, whose elements can be determined by expanding the left-hand side of Equation
(12); vector r is of length N 2e , whose components can be obtained by expanding the right-
hand side of Equation (12). The technique to solve Equation (13) will be discussed in Section
2.3. We now turn our attention to updating the sti!ness matrix of the system.

2.2. Sti!ness updating

From Equations (4) and (5), we get

[%]−1[X ]T[K][Xa]= [X ]T[M ][Xa] (16)

and

[X ]T[K][Xa][%a]−1 = [X ]T([M ] + [Ma])[Xa] (17)

Subtracting Equation (16) from Equation (17), we have

[X ]T[K][Xa][%a]−1 − [%]−1[X ]T[K][Xa]= [S] (18)

where

[S]= [X ]T[Ma][Xa] (19)

We de"ne

[U ]= [X ]T[K][Xa] (20)

Then Equation (18) simpli"es to

[U ][%a]−1 − [%]−1[U ]= [S] (21)

Because both [%] and [%a] are diagonal, Equation (21) can be easily expanded so that its
(i; j)th element yields

(

1
!aj

− 1
!i

)

Uij= Sij (22)
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where i; j=1; : : : ; Ne. Assuming that the Ne measured eigenvalues of the original and the
mass-modi"ed structures are distinct, the unknowns Uij can be computed and matrix [U ] can
be assembled.
As in the case of the mass matrix, the actual and the analytical sti!ness matrices are related

by

[K]= [K0] + ["K] (23)

where ["K] represents the matrix of sti!ness o!sets. In order to "nd ["K], we "rst rewrite
Equation (20) as

[X ]T["K][Xa]= [U ]− [X ]T[K0][Xa] (24)

As before, Equation (24) can be manipulated into the following form:

[B ] "k= h (25)

where

"k=["k11 · · · "k1N | "k21 · · · "k2N | · · · | "kN1 · · · "kNN ]T (26)

and

h=[h11 · · · h1Ne | h21 · · · h2Ne | · · · | hNe1 · · · hNeNe ]T (27)

In Equation (26), "kij represents the (i; j)th element of ["K]. Matrix [B] is of size N 2e ×N 2
and vector h is of length N 2e . The components of [B] and h can be obtained by expanding
the left- and right-hand sides of Equation (24), respectively.

2.3. Solution technique

Equations (13) and (25) are of the general form

[G ] y= z (28)

where matrix [G ] and vector z are both known and of size N 2e ×N 2 and length N 2e , respec-
tively. Because the modal matrices [X ] and [Xa] are always of full rank, matrix [G] will also
be of full rank (see the appendix for a detailed proof). When Ne =N , Equation (28) can be
solved exactly by using simple Gaussian elimination. When Ne¡N , Equation (28) yields an
underdetermined problem (that is, the number of equations is less than the number of un-
knowns), which, because the system has full rank, will have an in"nite number of solutions.
To render the solution unique, we may choose a solution vector y such that the Euclidean
norm of vector y is minimized. The resulting solution is referred to as the minimum norm
least-squares solution to Equation (28). Because the analytical and the actual system matrices
are presumed to be close, it is reasonable to use the unique minimum norm solutions to update
the analytical mass and sti!ness matrices, respectively.
Initially, it may appear that one must solve two underdetermined least-squares problems of

size N 2e ×N 2 (assuming Ne¡N ) in order to update the system matrices [see Equations (13)
and (25)]. However, the optimal matrix storage scheme commonly used in "nite elements
[10] can be applied to pass along the available sparsity information of the analytical system
and to impose the condition that all zero elements in the analytical system matrices remain
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zeros in the adjusted system matrices. Mathematically, this can be achieved by eliminating all
of the known zero elements from y and by deleting all the corresponding columns in [G ].
This dramatically reduces the size of the problem to be solved.
To see how the connectivity information can be used to reduce the size of the least squares

problem, consider a system whose analytical mass matrix is diagonal. Then "mij=0 for i $= j,
and Equation (13) reduces to

[A′ ] "m′= r (29)

where [A′ ] is obtained from [A ] by deleting all the columns that multiply by "mij for i $= j,
and

"m′=["m11 "m22 · · · "mNN ]T (30)

Thus, the initial problem of size N 2e ×N 2 is reduced to one of size N 2e ×N . The resulting
least-squares problem will be either overdetermined (that is, the number of equations is greater
than or equal to the number of unknowns) or underdetermined, depending on whether N 2e¿N
or N 2e¡N , respectively.
Similarly, the connectivity information of the analytical sti!ness matrix can also be enforced

to reduce the size of the least-squares problem to be solved. For instance, if the analytical
sti!ness matrix is tridiagonal, then "kij=0 for |i − j|¿ 1, and Equation (25) reduces to

[B′ ] "k′= h (31)

where [B′ ] is obtained from [B ] by deleting all the columns that multiply by "kij for |i−j|¿ 1,
and

"k′=["k11 "k12 | "k21 "k22 "k23 | · · · | "kNN−1 "kNN ]T (32)

Thus, the initial problem of size N 2e ×N 2 is reduced to one of size N 2e × (3N − 2).
The proposed updating algorithms rely on the correctness of the connectivity information.

Because the basis of model updating is the analytical model, the analytical model must cap-
ture certain physical attributes of the actual system. Here, we assume that the connectivity
information in the analytical model is correct, and the proposed updating algorithms maintain
that physical sparsity pattern in the mass and sti!ness matrices. It will be shown that the
proposed updating schemes are very forgiving when the mass and sti!ness parameters vary
substantially between the analytical and the actual systems.

3. NUMERICAL ISSUES

The numerical issues encountered when solving a least-squares problem di!er in nature
depending on whether the problem is overdetermined or underdetermined. Because matrix
[G] of Equation (28) is of full rank, a least-squares solution to Equation (28) always exists.
However, since the reduced systems of Equations (29) and (31) were obtained by deleting
certain columns of [G] to enforce the sparsity information, matrix [G] may su!er rank de"-
ciency. While there exist techniques for determining the numerical rank of such systems and
subsequently "nding the unique minimum norm solution, numerical perturbations in the data,
in the form of either measurement or round-o! errors, can still give rise to computationally
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induced inaccuracies. It is therefore necessary to understand how y is a!ected by perturbations
in [G] and z.
To this end, let us examine the least-squares solution of a general m× n linear system

[A]x= b (33)

Let x̂ represent the least-squares solution of the m× n perturbed system

[Ã]x̂= b̃ (34)

where

[Ã]= [A] + ["A] (35)

and

b̃= b+ "b (36)

The perturbations ["A] and "b can re$ect either numerical inaccuracies in the $oating-point
representations of [A] and b or measurement errors during testing.
A problem is said to be numerically ill conditioned when small errors in data lead to a

relatively large error in the solution, regardless of how stable the algorithm is for solving
the problem. The condition number of a linear system reveals the accuracy or inaccuracy of
the computed result due to small perturbations. For the linear system of Equation (33), its
condition number is given by

cond([A])= ‖[A]‖ ·‖ [A]†‖ (37)

where ‖[A]‖ denotes the Euclidean norm of [A] and ‖[A]†‖ is the Euclidean norm of the
pseudoinverse of [A], de"ned as

[A]†=

{

(

[A]T[A]
)−1 [A]T for m¿n

[A]T
(

[A][A]T
)−1 for m¡n

3.1. Overdetermined systems

If a general m× n linear system of Equation (33) is overdetermined (m¿n) and full rank, the
least-squares solution to the system is unique. Premultiplying Equation (33) by [A]T yields

[A]T[A]x=[A]Tb (38)

Because [A] is full rank and m¿n, ([A]T[A])−1 exists. Thus, the unique least-squares solution
of Equation (33) is given by

x=
(

[A]T[A]
)−1 [A]Tb (39)

where x is the best solution in the sense of minimizing ‖[A]x − b‖.
The e!ects of perturbing [A] and b separately on the solution of Equation (33) have been

well studied and are detailed in Reference [11]. The results become more complicated when
[A] and b are perturbed simultaneously. Golub and van Loan [12] provide the following
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theorem that can be used to analyse the condition of the system when both [A] and b undergo
perturbations. If we de"ne

#=max
{

‖["A]‖
‖[A]‖ ;

‖"b‖
‖b‖

}

(40)

and let $ be such that (for ‖b‖ $= 0)

sin($)=
‖[A]x − b‖

‖b‖ $= 1 (41)

then the upper bound on the relative solution error is given by

‖x̂ − x‖
‖x‖ 6#

(

2 cond([A])
cos($)

+ tan($)(cond([A]))2
)

+ O(#2) (42)

where

tan($)=
‖[A]x − b‖

√

‖b‖2 − ‖[A]x − b‖2
(43)

Thus, if the residual norm ‖[A]x − b‖ is non-zero, it is the square of the cond([A]) that
measures the sensitivity of the least-squares solution to numerical perturbations.
The normal equations method and QR factorization algorithms are commonly used to solve

an overdetermined least-squares problem (for example, see Reference [11]). Of the QR meth-
ods, Householder transformations, Givens rotations, or modi"ed Gram–Schmidt orthogonal-
izations can be implemented. QR factorizations tend to be more numerically reliable but
are more expensive, in terms of total $oating-point operations, by at least a factor of two.
According to Golub and van Loan [12], the normal equations solution method produces an x̂
whose relative error always depends on the square of cond([A]), whereas the QR approaches
produce solutions that depend on both cond([A]) and the product ‖[A]x−b‖(cond[A])2. Thus,
if the norm of the residual ‖[A]x − b‖ is small, QR has a distinct advantage over normal
equations. However, if ‖[A]x − b‖ is large and the problem is ill conditioned, both methods
will produce inaccurate results. Finally, because the extra computational expense necessary
for implementing the QR solution method is a relatively small price to pay for increased
numerical stability, a QR approach is used in this paper to solve overdetermined systems.

3.2. Underdetermined systems

The fundamental di!erence between the solution of an overdetermined and an underdetermined
least-squares problem of the form of Equation (33) of full rank is that while there is a unique
least-squares solution to the overdetermined system (m¿n), there are an in"nite number of
solutions to the underdetermined system (m¡n).
This can be understood when we consider that if [A]x= b is an underdetermined system

of equations, then every least-squares solution x can be represented as

x=xp + xN (44)

where xp is any solution satisfying [A]xp= b, and xN is in the null space of [A]. That is

[A]xN = 0 (45)
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The complete solution set is given by

x=[A]†b+
(

[I ]− [A]†[A]
)

y (46)

where y is an arbitrary n-vector. Recall that sincem¡n; [A]† is de"ned by [A]†=[A]T
(

[A][A]T
)−1.

Comparing Equations (39) and (46), we note the absence of the arbitrary vector, y, in Equation
(39).
When there are an in"nite number of solutions, it is commonly the minimum norm solution

that is sought and then used to correct the system matrices. Additionally, perturbation analysis
has been done mainly for the minimum norm case. Golub and van Loan [12] show that for
an underdetermined system of full rank, an upper bound on the relative error in the minimum
norm solution is given by

‖x̂ − x‖
‖x‖ 6cond([A])

(

‖["A]‖
‖[A]‖ min (2; n−m+ 1) +

‖"b‖
‖b‖

)

+ O(#2) (47)

Equation (47) shows that the sensitivity of an underdetermined system now depends on
cond([A]), as opposed to the overdetermined case in which the sensitivity depends on (cond[A])2
(see Equation (42)). Because cond([A])¿1 for any matrix [A], the error bound for the overde-
termined case can become fairly large unless the norm of the residual is su#ciently small.
However, in the underdetermined case, the error bound does not depend explicitly on the
norm of the residual, but only on the perturbations in [A] and b.
Algorithms for "nding the least-squares solution of an underdetermined system include the

normal equations method and the QR factorization algorithms. A solution approach may either
"nd some nonunique least-squares solution to [A]x= b or "nd the unique solution x such that
the Euclidean norm of x, ‖x‖, is minimized. The latter, which is the minimum norm solution,
is given explicitly by

x=[A]†b (48)

Of course, it is entirely possible that another solution besides the one with minimum norm
may yield a more accurate updated model. However, as discussed previously, because ["M ]
and ["K] are assumed to be relatively small, it is reasonable to use the unique minimum norm
solution in this case to correct the initial analytical matrices.

3.3. Relating accuracy to Ne and N

For systems in which there is no special sparsity pattern to be maintained, the least-squares
system will always have dimension N 2e ×N 2 [see Equations (13) and (25)]. If the measured
modes are incomplete (for Ne¡N ), the problem will always be underdetermined.
As stated previously, an overdetermined system of full rank has a unique least-squares solu-

tion, whereas an underdetermined system of full rank admits a unique solution only when the
additional minimum norm constraint is imposed. Often the physical structure will possess a
special sparsity pattern in the analytical system that we will have to maintain. Our numerical
experiments indicate that in certain cases, when the sparsity pattern of a physical structure
is imposed, more accurate solutions are achieved when the least-squares system is overdeter-
mined as opposed to underdetermined, even if the systems are rank de"cient. This may be
surprising in light of the fact that our error bounds (42) and (47) seem to indicate that there
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is more room for error in the overdetermined case. However, these are upper bounds and not
exact error measurements. Additionally, if the norm of the residual vector is small compared
with the perturbations in [A] and b, the error bound for the overdetermined system could,
in fact, be smaller than that of the underdetermined system. Also, these experimental results
make some intuitive sense: the more information we can gather about the physical system,
the better our updated model becomes. Thus, to improve the accuracy of the updated model,
solving an overdetermined system for this particular application is preferred.
The above discussion has direct implications about the minimum number of experimentally

determined modes, Ne, that should be measured before implementing the proposed model-
updating algorithm. For example, if "Mij=0 for i $= j (that is, [M ] is a diagonal matrix),
then the least-squares system has dimension N 2e ×N . In this case, to induce an overdetermined
system requires a minimum of

Ne¿
√
N (49)

measured modes. Similarly, in the case of the sti!ness matrix, if the condition that [K] is a
tridiagonal matrix is imposed, at least

Ne¿
√
3N − 2 (50)

experimental modes are needed to achieve an overdetermined least-squares system. The above
results will be validated the following sections.

4. NUMERICAL EXPERIMENTS

To update the analytical mass and sti!ness matrices using the proposed routines requires the
solution of least-squares problems, which can be either overdetermined or underdetermined,
depending on the number of measured modes, Ne, used to perform the update. For solving a
least squares problem, we used the CMLIB [13] routine sglss, which is specialized to handle
both underdetermined and overdetermined systems of the form [A]x= b, where [A] is an
m× n matrix and b is a vector of length m. When the system is overdetermined (m¿n),
the least-squares solution is computed by decomposing the matrix [A] into the product of
an orthogonal matrix [Q] and an upper triangular matrix [R] (QR factorization). When the
system is underdetermined (m¡n), the minimum norm solution is computed by factoring the
matrix [A] into the product of a lower triangular matrix [L] and an orthogonal matrix [Q]
(LQ factorization). If matrix [A] is determined to be rank de"cient, that is, if the rank of [A]
is less than min(m,n), then again the minimum norm least squares solution is computed.

4.1. Model updating based on a complete set of measured modes

Consider the system of Figure 1 with N =25. We "rst examine the e!ectiveness of our model
updating techniques for the case where the number of measured modes, Ne, is equal to the
total degrees of freedom of the system, N (that is, the set of measured modes is complete).
The analytical masses and sti!nesses are given by m0 = 2:00 kg and k0 = 5:00 N=m. The actual
masses and sti!nesses are listed in Tables I and II, respectively.
For the system of Figure 1, because the mass matrix [M ] is diagonal, updating the mass

matrix requires "nding the solution of an N 2e ×N least-squares problem. Because the sti!ness
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Figure 1. Simple chain of coupled oscillators.

Table I. The actual and the updated masses (in kg), for
Ne =N =25. The analytical masses are m0 = 2:000 kg.

mactual mupdate mactual mupdate

m1 = 1:2942 1.2942 m14 = 2:6722 2.6722
m2 = 2:1831 2.1831 m15 = 1:3355 1.3355
m3 = 1:3117 1.3117 m16 = 2:6680 2.6680
m4 = 2:6581 2.6581 m17 = 1:3899 1.3899
m5 = 2:4371 2.4371 m18 = 1:8632 1.8632
m6 = 1:7651 1.7651 m19 = 1:6231 1.6231
m7 = 2:8502 2.8502 m20 = 1:1578 1.1578
m8 = 1:7984 1.7984 m21 = 1:1439 1.1439
m9 = 1:7793 1.7792 m22 = 1:8189 1.8189
m10 = 2:7588 2.7588 m23 = 1:2320 1.2320
m11 = 2:1221 2.1221 m24 = 1:6389 1.6389
m12 = 1:1613 1.1613 m25 = 2:2254 2.2254
m13 = 2:0234 2.0234 — —

Table II. The actual and the updated sti!nesses (in N=m),
for Ne =N =25. The analytical masses are k0 = 5:000 N=m.

kactual kupdate kactual kupdate

k1 = 4:1400 4.1398 k14 = 5:9877 5.9877
k2 = 6:8802 6.8804 k15 = 5:4973 5.4973
k3 = 5:6052 5.6056 k16 = 5:9483 5.9483
k4 = 6:5108 6.5109 k17 = 5:0320 5.0320
k5 = 2:9343 2.9343 k18 = 6:3608 6.3608
k6 = 7:1326 7.1326 k19 = 6:2726 6.2726
k7 = 3:3072 3.3072 k20 = 7:0572 7.0572
k8 = 3:2986 3.2986 k21 = 6:6026 6.6026
k9 = 6:2021 6.2020 k22 = 4:9326 4.9326
k10 = 6:6399 6.6398 k23 = 6:3932 6.3932
k11 = 5:9489 5.9488 k24 = 5:8004 5.8003
k12 = 6:3203 6.3202 k25 = 6:5935 6.5935
k13 = 3:3357 3.3356 — —
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matrix is tridiagonal, updating the sti!ness matrix requires "nding the solution of an N 2e × (3N−
2) least-squares problem. In general, these systems may be overdetermined or underdeter-
mined, depending on whether N 2e is greater than or less than N in the case of mass updating,
and on whether N 2e is greater than or less than (3N − 2) in the case of sti!ness updating. For
this set of experiments, because Ne =N , both the mass update system and the sti!ness update
system will be overdetermined.
In Table I we compare the actual and the updated masses for the system of Figure 1. For

the purpose of numerical simulations, the ith actual mass, mi, and the analytical mass, m0,
are related as follows:

mi=m0(1 +&mi) (51)

where &mi represents the percentage of deviation of the ith actual mass from its nominal
analytical value. The &mi’s are randomly chosen (with uniform distribution), and they have a
mean and standard deviation of −0:06 and 0.28, respectively. To perform the mass updating
algorithm, we add lumped masses of magnitude 0.2 kg to masses (or nodes) 5, 10, 15, 20,
and 25. The added masses are all an order of magnitude smaller than the nominal analytical
masses. Note how well the updated masses correspond to the actual values, despite the large
deviations of the actual masses from the analytical values.
Table II shows the actual and the updated sti!nesses for the system of Figure 1. As in

the case of the masses, the numerical choice for the actual sti!nesses, ki, and the analytic
sti!nesses, k0, are chosen to have the following relationship:

ki= k0(1 +&ki) (52)

where &ki represents the percentage of deviation of the ith actual sti!ness from its nominal
analytical value. The &ki’s are randomly chosen (with uniform distribution), and they have
a mean and standard deviation of 0.13 and 0.25, respectively. In this case, too, the updated
sti!ness values track the actual sti!nesses very closely, even though the deviations between
the actual and the analytical sti!nesses are large.
In Table III, we compare the analytical eigenvalues for the system of Figure 1 with those

of the actual and the updated systems. The analytical eigenvalues of the system are found
by solving Equation (1), the actual eigenvalues are obtained from a modal survey, and the
updated eigenvalues are calculated by solving

[Kupdate]xupdate = !update[Mupdate]xupdate (53)

where [Mupdate] and [Kupdate] are the updated mass and sti!ness matrices (see Tables I and
II for the updated system parameters), and (!update;xupdate) are the updated eigenvalues and
eigenvectors. From Table III, note the excellent agreement between the updated and the actual
(or the measured) eigenvalues of the system, despite the large di!erences between the actual
and the initial analytical eigenvalues. For i=1; : : : ; N , (!actual − !update)i is consistently two to
four orders of magnitude smaller than the corresponding (!actual − !analytical)i, which clearly
indicates the dramatic improvement in the eigenvalues of the updated model over the initial
analytical system.
When the set of measured modes of vibration is complete, that is, when Ne =N , the updating

algorithms can be used to accurately correct the analytical mass and sti!ness matrices. Because
the proposed updating algorithms allow the well known and readily available connectivity
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Table III. The analytical, actual, and updated eigenvalues (in 1=s2), for the analytical,
actual, and updated system parameters of Tables I and II.

!analytical !actual !update !analytical !actual !update

!1 = 0:0095 0.0105 0.0105 !14 = 5:4613 6.6635 6.6635
!2 = 0:0851 0.0954 0.0954 !15 = 6:0697 7.7364 7.7365
!3 = 0:2353 0.2580 0.2580 !16 = 6:6618 8.8005 8.8005
!4 = 0:4577 0.4674 0.4674 !17 = 7:2287 9.8139 9.8139
!5 = 0:7489 0.8441 0.8441 !18 = 7:7618 9.9112 9.9112
!6 = 1:1046 1.1282 1.1282 !19 = 8:2531 10.7379 10.7378
!7 = 1:5193 1.7577 1.7577 !20 = 8:6950 11.3051 11.3051
!8 = 1:9868 2.1220 2.1220 !21 = 9:0810 12.2057 12.2056
!9 = 2:5000 2.7864 2.7864 !22 = 9:4051 12.9773 12.9774
!10 = 3:0511 3.2055 3.2056 !23 = 9:6624 13.2552 13.2555
!11 = 3:6317 3.5768 3.5768 !24 = 9:8490 14.8620 14.8619
!12 = 4:2330 4.9515 4.9515 !25 = 9:9621 18.8955 18.8955
!13 = 4:8460 5.4920 5.4920 — — —

information to be enforced, our mass and sti!ness updating schemes generate matrices that
not only produce excellent numerical agreement between the physical and the updated system,
but also preserve the physical con"guration of the structure exactly.
Finally, while "ve lumped masses were used to generate the results of Tables I and II,

fewer lumped masses can also be used to execute the updating algorithms. For example,
when only two lumped masses of magnitude 0.2 kg are added at nodes 1 and 25, the resulting
updated masses are found to be nearly as accurate as those of Table I. However, the proposed
sti!ness updating algorithm returns sti!nesses that are not nearly as accurate as those of Table
II. Nevertheless, the resulting updated sti!nesses are still much closer to the actual values than
the initial analytical ones. Clearly the number, placement, and magnitude of the added lumped
masses a!ect the quality of the updates. Their in$uences on the proposed updating algorithms
will be detailed in Section 4.4.

4.2. Model updating based on an incomplete set of measured modes

The results of Section 4.1 were obtained for the ideal case when the set of measured modes
is complete. Note, however, that because of physical limitations or time and cost constraints,
the set of measured modes is often incomplete. Thus in practice, Ne is almost always less
than N . Of considerable interest, then, is the e!ect of the number of measured modes, Ne, on
the quality of the updated system matrices.
Theoretically, Ne can include any modes of vibration of the system. However, because

the lower modes are typically easier to measure experimentally than the higher modes, the
parameter Ne will be used in the subsequent analysis to represent the lowest Ne measured
modes of the structure. Thus, when Ne = 5, the "rst "ve measured modes will be used to
perform the update.
To quantify the accuracy of the mass updating algorithm, we measure the relative error in

the updated masses with the following relation:

#m=
|mupdate −mactual|

|mactual|
(54)
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where mupdate and mactual are vectors of length N whose elements are the updated and the
actual lumped masses, respectively, and |a| represents the Euclidean norm of the vector a.
To illustrate the improvement of the updated masses over their initial analytical values, we
introduce the following relative error parameter for the analytical masses:

(#m)0 =
|manalytical −mactual|

|mactual|
(55)

Similar expressions can be de"ned for the sti!ness and the eigenvalue error parameters,
denoted by #k and #!, respectively.
An error parameter can also be de"ned for the modal matrix of the system. It is common

practice to check for the correctness of the modal matrix by resorting to the orthogonality
characteristics of the normal modes. If the actual modal matrix, [X ], is properly normalized,
then it is orthogonal with respect to the actual mass matrix, [M ], such that

[X ]T[M ][X ]= [I ] (56)

where [I ] is the identity. Because the updated modal matrix is approximate, replacing the
actual modal matrix, [X ], by the updated modal matrix, [Xupdate], in Equation (56) yields

[Xupdate]T[M ][Xupdate]= [Iupdate] (57)

where [Xupdate] is normalized so that the diagonal elements of [Iupdate] are identically one. In
general, [Iupdate] is a full matrix, but if the update is good, all the o! diagonal terms will be
small. The following can be used to describe the accuracy of the modal matrix quantitatively:

#X = ||[I ]− [Iupdate]|| (58)

As before, to gauge the improvement of the updated modal matrix over the initial analytical
modal matrix, we introduce the following error parameter for the analytical modal matrix:

(#X )0 = ||[I ]− [Xanalytic]T[M ][Xanalytic]|| (59)

where [Xanalytic] represents the normalized analytical modal matrix of the system.
For an updated model to be judged better than the initial analytical model, we must have

#m¡(#m)0, #k¡(#k)0, #!¡(#!)0, and #X¡(#X )0. For an updated model to be considered accu-
rate, #m, #k , #!, and #X must be su#ciently small. Finally, the smaller the error parameters,
the better the updated model.
Figure 2 shows the variations of #m and #k for the system parameters of Tables I and II as

a function of Ne. Also shown are the corresponding (#m)0 and (#k)0, which are independent
of Ne and are given by the horizontal lines. Note the improvement in the updated parameters
as Ne increases. The experimental results are consistent with physical intuition: the larger the
knowledge space or the more information we can gather about the physical system, the better
our updated model becomes.
The curves of Figures 2 reveal the fewest Ne needed in order to achieve a certain level

of accuracy. Therefore, these curves can be used to determine the smallest Ne that should be
obtained for performing the update. Interestingly, each curve reaches a saturation point beyond
which additional information does not lead to signi"cant improvement in the corrected model.
The results clearly indicate that there is a minimum Ne that needs to be obtained in order to
ensure su#cient accuracy in the adjusted model.
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Figure 2. The mass and sti!ness error parameters, #m and #k , as a function of Ne, for the system parameters
of Tables I and II. Lumped elements are added to masses 5, 10, 15, 20, and 25. The horizontal lines

represent the mass and sti!ness error parameters of the analytical model, (#m)0 and (#k)0.

Figure 3 shows the resulting error parameters for the updated eigenvalues and modal
matrix, #! and #X , as a function of Ne. Note how well the modes of vibration of the up-
dated system track the actual system, especially as Ne becomes large. Thus, the proposed
updating algorithms return system matrices that yield modes of vibration that are much closer
to the measured data than those of the initial analytical model.

4.3. Minimum Ne needed to ensure su#cient accuracy

An overdetermined system of full rank has a unique least-squares solution. An underdeter-
mined system of full rank will admit a unique least-squares solution only when an additional
constraint is imposed, such as the minimum norm constraint. In our application, when the
sparsity information of the mass or sti!ness matrix is enforced, the system may become rank
de"cient. From numerical experiments, we observed that more accurate solutions are obtained
when the least-squares system is overdetermined as opposed to underdetermined, even if the
systems are rank de"cient. The numerical results from Section 4.2 have direct implications
about the minimum number of experimentally determined modes one should measure in order
to ensure su#cient accuracy of the updated solution.
For instance, to update a diagonal mass matrix so that the resulting least-squares problem

becomes overdetermined, we would need at least Ne¿
√
N measured modes. Similarly, to

update a tridiagonal sti!ness matrix so that the resulting least-squares problem is overdeter-
mined, we would need at least Ne¿

√
3N − 2 measured modes.

The above criteria regarding the fewest number of measured modes needed to perform the
update are supported by various numerical experiments. For N =25, our heuristic indicates
that at least "ve measured modes are required to su#ciently update the mass matrix and at
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Figure 3. The eigenvalue and modal matrix error parameters, #! and #X , as a function of Ne, for the system
parameters of Tables I and II. Lumped elements are added to masses 5, 10, 15, 20 and 25. The horizontal

lines represent the mass and sti!ness error parameters of the analytical model, (#!)0 and (#X )0.

least nine measured modes are needed to correct the sti!ness matrix. Naturally, because the
number of measured modes used to perform the update directly a!ects the errors, #m and
#k , the minimum number of measured modes that we should use to perform the update also
depends on the size of error that we are willing to tolerate. In the case of the experiments of
Section 4.2, the minimum number of measured modes suggested by the heuristics for the mass
update (Ne = 5) leads to #m ≈ 0:11 (see Figure 2), and for the sti!ness update (Ne = 9) results
in #k ≈ 0:07 (see Figure 2), both of which are substantially lower than their corresponding
analytical error parameters.
We emphasize that the criteria regarding the fewest Ne needed to perform the update are

formulated empirically. Thus, depending on the system parameters and, as mentioned previ-
ously, required error tolerances, sometimes more and other times fewer measured modes are
required to ensure accuracy of the updated model. For example, for the mass parameters of
Figure 2, seven measured modes are su#cient to correct the mass matrix to achieve an error
of less than 0:025 (#m¡0:025). For the sti!ness values of Figure 2, 13 measured modes are
su#cient to update the sti!ness matrix to achieve an error of less than 0:025 (#k¡0:025).

4.4. E!ects of locations, magnitudes, and the number of added elements

From numerical experiments, we observed that the location, magnitude, and number of added
lumped masses may a!ect the numerical stability of the updating algorithms. In the following
discussion, we will formulate an expression that can be used as a measure for determining
whether the resulting mass-modi"ed system allows for a numerically stable updated solution.
Additionally, we will develop an expression that will provide some guidance in choosing the
required magnitude, placement, and number of added lumped masses in order to execute the
updating algorithms.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2547–2571



2564 P. D. CHA AND L. G. DE PILLIS

A frequently encountered scenario in structural dynamics is determining the changes in the
eigensolution of a system after certain modi"cations are introduced. If the changes made are
small, then the initial modal characteristics can be used as a basis from which to extract
the new eigensolution of the modi"ed system without performing a new and possibly costly
analysis. Using perturbation theory for the eigenvalues and assuming the unperturbed eigen-
values to be distinct, one can show (see References [14; 15]) that the jth "rst-order perturbed
eigenvalue of a slightly modi"ed structural system is given by

%j=%0j + yT0j(["K]− %0j["M])y0j (60)

where %j represents the jth eigenvalue of the perturbed system, %oj is the jth unperturbed
eigenvalue, y0j is the jth unperturbed eigenvector, and ["M] and ["K] are the "rst-order
perturbation mass and sti!ness matrices, respectively.
Consider now the case of correcting or updating the mass matrix of the system using

the mass updating algorithm developed in Section 2.1 to solve solve Equation (13). This
method requires a modal survey of the mass-modi"ed system to be performed. If one assumes
that the added masses are small compared to the analytical masses of the system, then the
unperturbed and the perturbed systems correspond to the actual and the mass-modi"ed systems,
respectively. Using the nomenclature introduced earlier, we have for this case ["M]= [Ma]
(matrix of added masses), ["K]= [0], %0j= !j (the jth measured eigenvalue of the actual
system) and y0j=xj (the jth measured eigenvector of the actual system). Then Equation (60)
can be rewritten as

!aj= !j − !jxTj [Ma]xj (61)

where !aj denotes the jth eigenvalue of the perturbed or the mass-modi"ed system. Equation
(10) shows that the mass updating algorithm is stable as long as

!i − !aj $=0 for i; j=1; : : : ; Ne (62)

That is, we require all the measured eigenvalues for the mass-modi"ed system to be distinct
from those of the initial structure. Using Equation (62), each time we add a di!erent set of
masses to the structure, we have to remeasure eigenvalues of the new system in order to
check our stability criterion. We therefore look for an equivalent equation that directly relates
the actual elements of the added mass system to the stability of the numerical solution.
Substituting Equation (61) into Equation (62), we have

!i − !j + !jxTj [Ma]xj $=0 for i; j=1; : : : ; Ne (63)

Rearranging Equation (63), we have

xTj [Ma]xj $=1−
!i
!j

for i; j=1; : : : ; Ne (64)

Expanding the left-hand side of Equation (64) yields
N
∑

r=1

N
∑

s=1
(Ma)rs(xj)r(xj)s $=1−

!i
!j

for i; j=1; : : : ; Ne (65)

where (Ma)rs represents the (r; s)th element of the added mass matrix [Ma], and (xj)r denotes
the rth element of eigenvector xj (the jth measured eigenvector of the actual system). When
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the left- and right-hand sides of Eq. (65) are nearly identical, the mass-updating algorithm
becomes unstable. To ensure numerical stability, the location, magnitude, and number of added
masses must be chosen so that the inequality of Equation (65) is maintained. Thus, Equation
(65) allows one to select the size, location, and number of added masses that should be
employed.
If we assume [Ma] to be diagonal, Equation (65) simpli"es to

N
∑

r=1
(Ma)rr(xj)2r $=1−

!i
!j

for i; j=1; : : : ; Ne (66)

Equation (66) can be used to make an a priori determination of the number, placement, and
size of the added masses. To do so, we recast Equation (66) as a least-squares problem of
the form [A]x= b, where [A] and b are knowns and of dimension N 2e ×N and length N 2e ,
respectively, and vector x is the unknown, consisting of [(Ma)rr]r=1;:::;N . Computation of the
solution of the resulting least-squares problem may be very expensive, however, especially
for large N and Ne. For our purposes, because Equation (62) is much easier to check once
all the eigenvalue measurements have been taken, we use it as an a posteriori measure of
the goodness of the number, placement, and size of the added masses. Our experiments are
intended to highlight the fact that mass placement, number, and size do indeed a!ect the
accuracy of our solution. In all cases considered, we have ensured that Equation (62) is
satis"ed.
In applying the mass-updating scheme, the mechanism that leads to instability will be

more complicated and more di#cult to show analytically because the perturbed eigenvalues
of the mass-modi"ed system include higher-order terms. Nevertheless, the above perturbation
analysis readily reveals that the magnitude, location, and number of added masses do in fact
a!ect the stability of the updating algorithm.
To see how the added lumped masses a!ect the quality of the update, consider the actual

system whose masses and sti!nesses are given by those of Tables I and II. Instead of adding
"ve lumped masses to execute the updating algorithms as we did to obtain the results of
Figure 2, consider adding only two masses of magnitude 0.2 kg each at nodes 3 and 21.
Figure 4 shows the variations of the resulting relative mass error parameter, #m, and the
resulting relative sti!ness error parameter, #k , as a function of Ne. Note that #m decreases
initially with increasing Ne until Ne = 4, but increases to above (#m)0 suddenly for Ne = 5 and 6.
For Ne¿7, #m becomes nearly zero. Similarly, note that #k decreases with increasing Ne until
Ne = 9, increases slightly for Ne equal to 10 and 11, and then drops quickly down to nearly
zero for larger values of Ne. Because the relative solution error for the least-squares problem
depends on the condition number of the linear system (recall the discussions on overdetermined
and underdetermined systems in Sections 3.1 and 3.2), we speculate that the regions in which
#m and #k are above (#m)0 and (#k)0 correspond to those in which the condition number
of the least-squares matrix, cond([A]), becomes large. The sensitivity of an underdetermined
system depends on cond([A]), and the sensitivity of an overdetermined system is generally
dominated by (cond([A]))2, so we introduce an instability measure that equals the logarithm
of cond([A]) if the system is underdetermined and equals the logarithm of cond([A]2) if
the system is overdetermined. Figure 5 shows the variation of the instability number as a
function of Ne. When N =25, the mass-updating algorithm is underdetermined for Ne¡5 and
overdetermined for Ne¿5; similarly, the sti!ness-updating algorithm is underdetermined for
Ne¡9, and overdetermined for Ne¿9. We point out that a large condition number implies
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Figure 4. The mass and sti!ness error parameters, #m and #k , as a function of Ne, for the system
parameters of Tables I and II. Lumped elements are added to masses 3 and 21. The horizontal

lines represent the mass and sti!ness error parameters of the analytical model, (#m)0 and (#k)0.

Figure 5. The instability measures for the mass and sti!ness updates as a function of Ne, for the system
parameters of Tables I and II. Lumped elements are added to masses 3 and 21.
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Figure 6. The eigenvalue and modal matrix error parameters, #! and #X , as a function of Ne, for the
system parameters of Tables I and II. Lumped elements are added to masses 3 and 21. The horizontal

lines represent the mass and sti!ness error parameters of the analytical model, (#!)0 and (#X )0.

that the upper bound on the numerical error may be large, but does not necessarily imply that
the error itself is large. On the other hand, a very small condition number does imply that the
numerical error itself will also be small. The variation in the instability number as a function
of Ne shown in Figure 5 does, in fact, track fairly well the accuracy of the computed solutions
shown in Figure 4, in the sense of the upper bound. For this set of system parameters, a matrix
with the logarithm of the condition number close to 1010 or higher has the potential to give
rise to numerical errors.
Figure 6 shows the variations of the eigenvalue and modal matrix error parameters, #! and

#X , as a function of Ne, for the case of adding two lumped masses at nodes 3 and 21. We
note that both the eigenvalue and modal matrix error parameters increase approximately where
the mass matrix itself su!ers from error. In this set of experiments, sti!ness errors were not
su#ciently pronounced to be evidenced in these plots.
For the set of system parameters of Tables I and II, we have seen that as few as two added

lumped masses can be used to execute the update, provided the masses are strategically placed.
However, even when the updating schemes are numerically stable for two added masses, the
updated mass and sti!ness parameters are not as accurate as those obtained when "ve added
masses are used to perform the update. Thus, there appears to be a trade-o! between numerical
accuracy and experimental e!ort. When more lumped masses are attached, more work and
longer down-time will result; however, the resulting updated model will be more accurate.
Conversely, when fewer lumped masses are added, less work will be required but at the
expense of less accuracy. To validate the above conjecture, we added lumped masses (of
magnitude 0.2 kg) to every node. Figures 7 and 8 show the resulting variations of #m, #k ,
#!, and #X as a function of Ne. Note that for the case of 25 added lumped masses, the error
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Figure 7. The mass and sti!ness error parameters, #m and #k , as a function of Ne, for the system
parameters of Tables I and II. Lumped elements are added to every mass of the system. The horizontal

lines represent the mass and sti!ness error parameters of the analytical model, (#m)0 and (#k)0.

Figure 8. The eigenvalue and modal matrix error parameters, #! and #X , as a function of Ne, for the system
parameters of Tables I and II. Lumped elements are added to every mass of the system. The horizontal

lines represent the mass and sti!ness error parameters of the analytical model, (#!)0 and (#X )0.
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parameters #m, #k , #!, and #X decrease at a faster rate compared with those of Figures 2 and 3,
implying that the updated system parameters converge to the actual values more rapidly. Thus,
the above trade-o! hypothesis is validated.
The results of Figures 2, 4, and 7 indicate that for the system of Figure 1, fewer modes are

required to update the mass matrix than the sti!ness matrix. This can be explained by noting
that to render the least-squares problem overdetermined for the mass matrix, at least

√
N

measured modes are required, while to render the problem overdetermined for the sti!ness
matrix, at least

√
3N − 2 measured modes are needed.

5. CONCLUSION

New mass and sti!ness updating algorithms are developed. Using the original test data and
the newly acquired mass-modi"ed modes of vibration, the mass and sti!ness matrices of the
analytical model can be accurately corrected. By manipulating the matrix equations in such
a way that the unknown correction mass and sti!ness matrices appear as column vectors, the
connectivity information can be easily implemented, thus preserving the physical con"gura-
tion of the system and reducing the amount of computational e!ort required to correct the
analytical model. In addition, the structure of the least-squares problems reveals the minimum
number of modes one would need to measure in order to ensure a su#ciently accurate updated
model.
When the set of measured modes is complete, the updating routines return updated mass

and sti!ness matrices that are nearly identical to those of the actual system. While the level
of accuracy diminishes as the number of measured modes is decreased, the resulting updated
model that is obtained is still more accurate than the initial analytical model, even for a limited
number of measured modes. To ensure the numerical stability of the updating schemes, any
masses can be added to the actual system as long as the measured eigenvalues of the actual
system and the mass-modi"ed systems are distinct. This implies that the magnitude of the
added masses can be small, and the number of added masses can be few. The proposed mass
and sti!ness updating algorithms do require additional work and cause down-time, because the
modes of vibration for the mass-modi"ed system need to be measured. The additional e!ort,
however, is a relatively small price to pay for the ability to correct the analytical model
accurately.

APPENDIX

Because the modal matrices [X ] and [Xa] are always of full rank, we claim that matrix [G]
will also be of full rank. Consider the following triple product that has the same form as the
left-hand sides of Equations (12) and (24):

[X ]T["Y ][W ] (A1)

The known matrices [X ] and [W ] are of dimension N ×Ne, and the unknown matrix ["Y ] is
of dimension N ×N . Let the (i; j)th element of [X ]; [W ] and ["Y ] be represented by xij; wij,
and "yij, respectively. Let the jth column vector of [X ] and [W ] be denoted by xj and wj
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( j=1; : : : ; Ne), respectively. Expanding and manipulating Equation (A1) so that the elements
of the unknown matrix appear as an unknown vector, we get

[G] "y (A2)

where "y, of length N 2, is given by

"y=["y11 · · · "y1N | "y21 · · · "y2N | · · · | "yN1 · · · "yNN ]T (A3)

Element-by-element calculations reveal that matrix [G] is of the form

[G]=

















[G1]
...
[Gi]
...

[GNe ]

















(A4)

where each block [Gi], of dimension Ne×N 2, is given by

[Gi]=

















x1iwT1 x2iwT1 x3iwT1 · · · xNiwT1
x1iwT2 x2iwT2 x3iwT2 · · · xNiwT2
...

...
...

...

x1iwTNe x2iwTNe x3iwTNe · · · xNiwTNe

















(A5)

We claim that [G] has full rank, and we formalize this in the following theorem.

Theorem A. Given N ×Ne real matrices [X ] and [W ] of full rank; if matrix [G]; of di-
mension N 2e ×N 2; is constructed from [X ] and [W ] as in Equations (A4) and (A5); then [G]
also has full rank.

Proof. Because [W ] has full rank, the set of vectors wj ( j=1; 2; : : : ; Ne) is linearly
independent, and therefore block [Gk] (which contains rows (k − 1)Ne + 1 through kNe)
is also linearly independent, for k=1; : : : ; Ne. We must next examine the possibility of lin-
ear dependence among rows in di!erent blocks and, in particular, among rows numbered
k; k + Ne; k + 2Ne; : : : ; k + (Ne − 1)Ne, for k=1; : : : ; Ne.
Without loss of generality, assume that there is linear dependence to be found for k=1,

which would imply that there exist scalars &j (for j=1; : : : ; Ne−1) so that we can write row 1
of block 1 as a linear combination of the "rst rows from subsequent blocks as follows:

[x11wT1 x21w
T
1 x31w

T
1 : : : xN1w

T
1 ] = &1[x12wT1 x22w

T
1 x32w

T
1 : : : xN2w

T
1 ]

+ &2[x13wT1 x23w
T
1 x33w

T
1 : : : xN3w

T
1 ]

+ · · ·

+ &Ne−1[x1New
T
1 x2New

T
1 x3New

T
1 : : : xNNew

T
1 ] (A6)
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This is equivalent to writing

x11wT1 = (&1x12 + &2x13 + · · ·+ &Ne−1x1Ne )w
T
1

x21wT1 = (&1x22 + &2x23 + · · ·+ &Ne−1x2Ne )w
T
1

...

xN1wT1 = (&1xN2 + &2xN3 + · · ·+ &Ne−1xNNe )w
T
1 (A7)

This implies that

x1 = &1x2 + &2x3 + · · ·+ &Ne−1xNe (A8)

Equation (A8) says that the "rst column of [X ] can be expressed as a linear combination of
the last Ne − 1 columns of [X ]. This is clearly a contradiction, because [X ] is given to have
full rank. Therefore, our initial supposition that linear dependence can be found among the
rows of [G] is shown to be impossible, and it follows that [G] must have full rank.
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