
Title: A Java Commodity Grid Kit
Authors: Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane

Address: Argonne National Laboratory, Argonne, IL 60439, U.S.A.

e-mail: gregor@mcs.anl.gov

date: November, 2000

version: Final v0.5

Contents
1 Introduction 1

2 Grids and Grid Technologies 3

3 A Motivating Example for CoG Kits: Science Portals 4
3.1 Science Portal Scenario . 4
3.2 Science Portal Requirements . 5

4 Commodity Grid Toolkits 6

5 Java CoG Kit 7

6 Java CoG Kit Implementation 8
6.1 Low-Level Grid Mappings . 10
6.2 Low-Level Utilities . 11
6.3 Low-Level GUI Components . 12
6.4 High-Level Graphical Application . 13

7 Installation and Upgrading 13

8 Future Applications 15

9 Summary 16

A Figures 20

B END 30

A Java Commodity Grid Kit
GREGOR VON LASZEWSKI, IAN FOSTER, JAREK GAWOR, AND PETER LANE

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

SUMMARY

Developing advanced applications for the emerging national-scale "Computa-
tional Grid" infrastructures is still a difficult task. Though Grid services are available
that assist the application developers in authentication, remote access to computers,
resource management, and infrastructure discovery, they provide a challenge because
these services may not be compatible with the commodity distributed-computing tech-
nologies and frameworks used previously.
The Commodity Grid project is working to overcome this difficulty by creating

what we call Commodity Grid Toolkits (CoG Kits) that define mappings and inter-
faces between Grid and particular commodity frameworks. In this paper, we explain
why CoG Kits are important, describe the design and implementation of a Java CoG
Kit, and use examples to illustrate how CoGKits can enable new approaches to appli-
cation development based on the integrated use of commodity and Grid technologies.

1 Introduction
The explosive growth of the Internet and of distributed computing in general has led to
rapid technology development in several domains. In the world of commodity comput-
ing, a broad spectrum of distributed computing technologies (i.e., Web protocols [19], Java
[17], Jini [3], CORBA [8], DCOM [23], etc.) has emerged with revolutionary effects on
how we access and process information. Simultaneously, the high-performance computing
community has taken big steps toward the creation of so-called Grids [10], advanced in-
frastructures designed to enable the coordinated use of distributed high-end resources for
scientific problem solving.

These two worlds of what we will call “commodity” and “Grid” computing have
evolved in parallel, with different goals leading to different emphases and technology solu-
tions. For example, commodity technologies tend to focus on issues of scalability, compo-
nent composition, and desktop presentation, while Grid developers emphasize end-to-end
performance, advanced network services, and support for unique resources such as super-
computers. The results of this parallel evolution are multiple technology sets with some
overlaps, much complementarity, and some obvious gaps.

In this context, we believe that it is timely to investigate how the worlds of commodity
and Grid computing can be combined. Hence, we have established the Commodity Grid
(CoG) project, with the twin goals of (a) enabling developers of Grid applications to ex-
ploit commodity technologies wherever possible and (b) exporting Grid technologies to
commodity computing (or, equivalently, identifying modifications or extensions to com-
modity technologies that can render them more useful for Grid applications).

A first activity being undertaken within the CoG project is the design and development
of a set of Commodity Grid Toolkits (CoG Kits)[29], which we define as follows:

Definition: A Commodity Grid Toolkit (CoG Kit) defines and implements a set of general
components that map Grid functionality into a commodity environment/framework.

Hence, we can imagine a Web/CGI CoG Kit, a Java CoG Kit, a CORBA CoG Kit, a DCOM
CoG Kit, and so on. In each case, the benefit of the CoG Kit is that it enables application
developers to exploit advanced Grid services (resource management, security, resource dis-
covery) while developing higher-level components in terms of the familiar and powerful
application development frameworks provided by commodity technologies. In each case,
we also face the challenge of developing appropriate interfaces between Grid and commod-
ity concepts and technologies—and, if similar Grid and commodity services are provided,
reconciling competing approaches.

The initial focus of our work in this area is on a Java CoG Kit. Often the question
arises, Why use Java for Grid computing? Considering Java for Grid programming has
several compelling advantages. We summarize here ten principal answers to this question.

1. The Language: Java as a programming language offers some features that are benefi-
cial for large-scale software engineering projects such as packages, object-oriented
approach, single inheritance, garbage collection, and unified data formats. Since
threads and concurrency control mechanisms are part of the language, a possibility
exists to express parallelism directly on the lowest user level in Java.

2. The Class Library: Java provides a wide variety of additional class libraries including
essential functions, such as the availability to perform socket communication and
access SSL, as needed for Grid computation.

3. The Components: A component architecture is provided through JavaBeans and En-
terprise JavaBeans to enable component based program development.

4. The Deployment: Java’s bytecode allows for easy deployment of the software through
Web browsers and automatic installation facilities.

5. The Portability: Besides the unified data format Java’s bytecode guarantees portability
known under the term "write-once-run-anywhere."

6. The Maintenance: Java contains an integrated documentation facility. Components
that are written as JavaBeans can be integrated within commercially available IDEs
(Interface Development Environments).

7. The Performance: Well respected vendors have demonstrated that the performance of
many Java applications can currently come close to that of C or FORTRAN.

8. The Gadgets: Java-based smart cards, PDAs, and smart devices will expand the work-
ing environment for scientists using the Grid.

9. The Industry: Scientific projects are sometimes required to evaluate the longevity of a
technology before it can be used. Strong vendor support helps make Java worthy of
consideration for Grid applications.

10. The Community: Universities all over the world are teaching Java to their students.

In the rest of this article, we first review briefly some Grid technologies, then use an exam-
ple to illustrate what capabilities we wish the Java CoG Kit to provide, and finally present
technical details on the Java CoG Kit design.

Applications

Application
Toolkits

Grid Services
(Middleware)

Grid Fabric
(Resources)

Data
Grid

Remote
Computation

Remote
Vizualization Collaboratories Portals

Remote
Sensors

Protocols, Authentication, Policy, Instrumentation,
Resource Management, Discovery, Events, etc.

Storage Networks, Computers, Display Devices, etc.
and their associated local services

Cosmology Chemical
Engeneering

Climate
Research

High
Energy
Physics

AstrophysicsCombustion ...

...

Figure 1: The integrated Grid architecture has four main categories.

2 Grids and Grid Technologies
The scientific problem-solving infrastructure of the next century will support the coor-
dinated use of numerous distributed heterogeneous components, including advanced net-
works, computers, storage devices, display devices, and scientific instruments. The term
“The Grid” is often used to refer to this emerging infrastructure [10]. NASA’s Information
Power Grid and the NCSA Alliance’s National Technology Grid are two contemporary
projects prototyping Grid systems; both build on a range of technologies, including many
provided by the Globus project in which we are involved.

Future applications that will use Grid infrastructures will range from tomorrow’s equiv-
alent of today’s “secure shell” and Web browsers to more sophisticated collaborative tele-
immersive engineering, distributed petabyte data analysis, and real-time instrument control
systems. These various applications will share a common need to couple devices that have
not traditionally been thought of as part of the network. This need is motivating the devel-
opment of a broad set of new services beyond those provided by today’s Internet. These
Grid services will provide the security, resource management, data access, instrumenta-
tion, policy, accounting, and other services required for applications, users, and resource
providers to operate effectively in a Grid environment.

Figure 1 illustrates the structure of what we term the Integrated Grid Architecture [9],
which comprises four general types of components. The Grid Fabric provides resource-
specific implementations of basic mechanisms required for Grid operation, for example, ad-
vance reservation mechanisms in a supercomputer scheduler or storage system, or quality-
of-service mechanisms in a network router.

These Grid Fabric capabilities enable the construction of resource-independent and
application-independentGrid Services. One example is an information service, which pro-
vides uniform access to information about the structure and state of Grid resources; another
example is an authentication and authorization service, which provides mechanisms for es-
tablishing identity, creating delegatable credentials, and so forth. These Grid Services are
often termed “middleware”: they typically involve distributed state and can be viewed as a
natural evolution of the services provided by today’s Internet.

Grid Fabric capabilities and Grid Services in turn enable the creation of more
application-specific services and toolkits: for example, distributed data management ca-
pabilities to support the creation of data-intensive applications, or flow management ca-
pabilities to support the creation of collaborative work environments. These services and
toolkits are then used to implement applications.

The significance of Grid infrastructures for application developers is that they greatly
enhance the capabilities that can be taken for granted when developing applications. For

example, a Grid-wide information service means that resource discovery and characteriza-
tion become possible; hence, applications can reliably expect to discover required resources
at runtime, rather than requiring resource choices to be fixed or provided by the user. Sim-
ilarly, remote computation control interfaces provided in the Grid Fabric mean that, having
discovered a suitable remote computer, a user can schedule, monitor, and control a compu-
tation without needing to know the idiosyncratic details of local mechanisms.

3 A Motivating Example for CoG Kits: Science Portals
We use an example to illustrate the role that we expect CoG Kit capabilities to play in
future Grid/commodity architectures and the technology developments required to realize
this promise. The example is an instantiation of what some call a “science portal”: an
access point (e.g., desktop, browser, palm device) designed to facilitate scientific research
in a particular discipline by providing seamless access to a wide range of information and
computational resources.

3.1 Science Portal Scenario
We consider a “Midwest Climate Change Portal” that provides access to computational and
data resources relating to regional impacts of global climate change. Such a portal serves
a variety of users with different needs and interests, for example, climate researchers,
weather forecasters, students, traffic control agencies and services, and farmers. We
consider two usage scenarios.

Researcher: A researcher interested in impacts of climate change on cranberry bog
yields in Wisconsin uses the portal to discover relevant datasets and models. He quickly
puts together a description of his required data, using a graphical editor. This description
is transformed automatically in a sequence of computations and lookups in order to obtain
the desired data. Existing software infrastructure must be seamlessly integrated into the
set of tools used by the researcher to derive results. The results of such an interaction can
be viewed using browsers while preparing and invoking further analysis on the data. The
results are discussed and interpreted with the help of colleagues during interactive sessions
and then are posted to an electronic notebook and are prepared for the use of other interested
parties.
Farmer: A farmer uses the portal when planning which crop he should grow on his

fields. His questions focus on whether, when, and how to use his land in order to achieve
a maximum benefit over years. Naturally, he needs to obtain a seasonal forecast allowing
him to determine the best time for planting the crop. Electronic microsensors distributed in
his ground help to steer the use of fertilizers during the growth period. Sensor data is fed
into a database accessible by scientists, allowing for feedback to check for model accuracy.
Access points to the portal include computer terminals in electronically enhanced farm
buildings and also specialized input and output devices that allow for the installation in, for
example, a lightweight wireless device to access a useful subset of the information in the
field. The farmer’s portal also provides access to other services and information sources,
for example, financial market monitoring services that observe the fluctuation of the value
of the crops and give advice that may result in greater profits (Figure 2).

Research
Portal

Farmer
Portal

Financial
Market
Portal

User customized
Portal

Figure 2: Multiple portals provide access to overlapping functionality, with a particular
portal specialized to the requirements of its user.

3.2 Science Portal Requirements
The creation of science portals such as those just described requires the integration of many
technologies from different fields. We will typically provide access to a wide variety of
data; hence, we must be able to access and communicate with a wide range of information
sources. The complex calculations performed on this data require the ability to access
compute resources with significant computational capabilities. We may also require access
to proprietary software loaded on remote machines. Thus, the ability to incorporate remote
computational resources is required. Interactive use can require that computational and
data resources be accessed via high-performance networks. Thus, it is benificial to be able
to enforce performance guarantees for data transfers and computations in order to support
increased performance demands during interactive sessions.

The success of a science portal is also measured by its usability and acceptance in the
community. Hence, we require environments that allow rapid prototyping of both complete
applications and new components that can be shared with other users. The ability to rapidly
create portable user interfaces is particularly critical. These requirements overlap strongly
with two types of technology:

Commodity technologies that emphasize ease of use and code reuse in local (es-
pecially desktop) environments: GUI components, component libraries, scripting
languages, industry-accepted distributed computing frameworks, industrial-strength
database servers, object-oriented programming languages and frameworks, and the
like.

Grid technologies that emphasize effective operation in large-scale, multi-
institutional, wide area environments: access to remote computation, information

services, high-speed data transfers, special protocols (e.g., multicast), and gateways
to local authentication schemes.

These considerations lead to the question that has motivated the research reported in this
paper: How can commodity and Grid technologies interface and integrate so as to adhere to
interoperability — and, ideally, to enhance the capabilities of both? For example, we might
decide to use CORBA for application development but also want to use Grid services for
scheduling and managing computations on a supercomputer. Or, if we are using Java, then
Jini might appear to be a good mechanism for resource discovery: but then we face the
problem of accessing data stored in the extensive (currently LDAP-based) Grid information
service. The interactions can be complex and require significant thought and effort to
include them into a Grid-based information service. Yet the technology base that exists in
each case is sufficiently large and robust that exploiting these existing mechanisms leads to
a significant enhancement of both Grid and commodity-based technologies.

4 Commodity Grid Toolkits
The combination of commodity and Grid technologies can, in principle, enable exciting
new applications that tie advanced network-accessible resources into the commodity desk-
top. Our goal in the Commodity Grid project is to enable these opportunities to be realized
in practice. Our research approach involves an iterative process of definition, development,
and application of Commodity Grid Toolkits (CoG Kits): sets of general components that
map Grid functionality into specific commodity environments or frameworks. The word
map is important: the integration of Grid and commodity technologies is not simply an in-
terface definition problem but rather is concerned with how Grid concepts and services are
best expressed in terms of the concepts and services of a particular commodity framework.
To take a simple example, in the Globus Grid toolkit on which we are building our proto-
types, remote computation management is handled via a procedural API and callbacks; in
the Java CoG Kit, the same functionality is provided via a Job object and Java events.

The requirements of the science portals and other applications have motivated us to
explore mappings to several languages. In particular, we are exploring Perl and Python, in
order to support easy prototyping and Web-based programming based on CGI scripts and
Java, in order to support graphical user interface development, ease of programming, and
the ability to run many Grid services through Java-enabled Web browsers.

We also need to address the issue of accessing Grid services through high-level dis-
tributed computing frameworks defined by industry, so as to allow integration of common
off-the-shelf tools and development environments. Hence, we consider the Common Ob-
ject Request Broker Architecture (CORBA), and the Distributed Component Object Model
(DCOM).

We must also consider the environments and platforms for which the application is
targeted. This might include low cost devices such as PDAs and PDA-enhanced com-
munication devices, to provide cheap input devices and monitoring tools, as well as spe-
cialized visualization environments such as CAVE. Support for operating systems such as
MSWindows is essential to address the large market surrounding Microsoft infrastructure,
as is support for UNIX/Linux to address the server side and the large amount of free and
commercial-grade scientific code available for workstations and supercomputers.

Languages EnvironmentsFrameworks

Science Portals

Java CorbaJini DCOMPerl

CoG Kits

Common Grid Fabric and Services

Security
Services

...

Resource
Management
Services

Data
Management
Services

Monitoring
Services

Event
Services

Collaborative
Services

Integrated
Event Service

Uniform
Access Service

Datamining
Service ...

Figure 3: CoG Kits provide a mapping between computer languages, frameworks, and
environments, and Grid Services/Fabric. Together, services, languages, frameworks, and
environments build a powerful development tool for building Grid-enhanced applications.

5 Java CoG Kit
In the rest of this paper we focus our attention on our Java CoG Kit prototype and explain
how it enables us to access Grid services provided by the Globus toolkit. Because of the
large number of packages and classes required to expose the necessary functionality of the
Globus toolkit, we focus in this paper on a subset of all available classes that we deem
most useful for the development of Java-based Grid applications. We intend to facilitate
the development of future components as a community project with the Java CoG Kit. To
support an iterative process of definition, development, and application of a Java CoG Kit
in collaboration with other teams, we classify components as depicted in Figure 4. This
categorization provides the necessary subdivision in order to coordinate such a challenging
open community software engineering task. This categorization is based on an increased
functionality of the components. Each subsequent category reuses the lower-level compo-
nents.

Low-Level Grid Interface Components provide mappings to commonly used Grid ser-
vices. This includes for example, the access to services using the the Grid Se-
curity Infrastructure (GSI), which delivers a secure method of accessing remote
resources[6]. Other examples are the Grid information service (the Globus Meta-
computing Directory Service, MDS) [27], which provides Lightweight Directory
Access Protocol (LDAP) [18] access to information about the structure and state of
Grid resources and services; resource management services, which support the allo-
cation and management of computational and other resources (via the Globus GRAM
services [15]); and data access services (for example, via the Globus GASS service
[4] and GSI enabled FTP). No graphical components are available in these low-level
components.

Low-Level Utility Components are utility functions designed to increase the function-
ality beyond those provided by the C implementation of the Globus toolkit. This

Application Level Utilities and GUI components

Low-Level GUI Components

Grid Desktop MDS browser

Low-Level Utility Components

Job & JobSets MDS CoordinateServer

Low-Level Grid Interface Components

RSL GRAM GARA GASS GSI-FTP

Grid Middleware & Fabric

...

RSL GRAM GARA GASS GSI-FTP ...

...

...MDS searchtable

Figure 4: Applications and more complex components can be built with the help of the
CoG Kit. Components are classified here based on their role.

functionality is exposed through services and classes that can be reused by many
users. Examples are components that use the MDS to find all compute resources that
a user can submit to that prepare and validate a job specification while using the ex-
tended markup language (XML) [14] or the Globus job submission language (RSL)
that locate the geographical coordinates of a compute resource or that test whether
a machine is alive. No graphical components are available in these low-level utility
components.

Common Low-Level GUI Components provide a set of low-level GUI components that
can be reused by application developers. Examples for such components are LDAP
Attribute Editors, RSL editors, LDAP browsers, and search components.

Application-specific GUI Components simplify the bridge between applications and the
basic CoG Kit components. Examples are a stockmarket monitor, a graphical climate
data display component, or a specialized search engine for climate data.

For each of the above classes we will provide in this paper exemplary Java CoG Kit com-
ponents and code fragments.

6 Java CoG Kit Implementation
Figure 5 shows how our Java CoG Kit is used in practice. This Java program skeleton,
which forms part of a climate portal demonstrates how simple it is to build portal-specific
services when accessing a variety of basic Grid services through the Java CoG Kit. In
this example, an appropriate machine is selected for execution, data for an instantiation
of the climate model is located and downloaded to the machine, and the climate model is
executed on that machine. The program generates an output file in GrADS [13] format,
a well-known format for storing three-dimensional climate-related data. Throughout the
remainder of the paper we will expand this example as we introduce various Java CoG Kit
components.

// Step 0. Initialization
String mdsServer = "mds.globus.org";
MDS mds=new MDS(mdsServer,"389");

// JOB SUBMISSION
//Step 1. Search for an available machine

result = mds.search ("o=Grid",
"&((object-

class=GridComputeResource)(freenodes=64))",
"contact");

// Step 1.a) Select a machine
machineContact = <select the machine with minimal execution time from

the contacts that are returned in result>
// Step 2. Prepare the data for the experiment
// Step 2.a) Search for the climate data and return
// the attributes: server,port,directory,file

dn = mds.search
("(objectclass=ClimateData)(year=2000)

(region=midwest)",
"dn", MDS.SubtreeScope);

result = mds.lookup (dn, "server port directory file");
// Step 2.b) download the data to the machine
filename = result.get("filename");
sourceURL = result.get("server")+":"

+ result.get("port")+"/"
+ result.get("directory")+"/"
+ filename;

destinationURL = "gsi-ftp://"
+ "machineContact" // destination
+ "~/" // directory
+ filename; // filename

UrlCopy.copy (sourceURL, destinationURL);
// Step 3. Prepare a description for running the model

RSL rsl = new RSL("(executable=climateModel)(processors=64)"
+ "(arguments=-grads)(arguments=-

out map.grads)"
+ "(arguments=-in " + filename +")");

// Step 4. Submit the program
GramJob job = new GramJob(rsl.toString());

job.addJobListener(new GramJobListener() {
public void stateChanged(GramJob job) {

// react to job state changes
}

});
try{

job.request(machineContact);
} catch (GramException e) {

// problem submitting the job
}

Figure 5: This sample script demonstrates how we access basic Grid services with the help
of the Java CoG Kit. Here data for a climate model is located, an appropriate machine is
selected, and the climate model is executed on that machine.

6.1 Low-Level Grid Mappings
In this section we enumerate a subset of packages that provide the interface to the low-level
Grid services and application interfaces. These packages are used by many users to develop
Java-based programs in the Grid. We will describe only the general functionality of these
packages, as it is beyond the scope of this paper to explain every class and method. For a
complete list of the classes and methods we refer to the distribution [30].

RSL. The package org.globus.rsl provides methods for creating, manipulating, and
checking the validity of the RSL expressions used in Globus [15] to express resource re-
quirements. As shown in Step 3 of Figure 5, the arguments to a new call include parameters
that specify both characteristics of the required resources and properties of the computation.

GRAM. The package org.globus.gram provides a mapping to the Globus GRAM ser-
vices [15], which allow users to schedule and manage remote computations. These classes
and methods allow users to submit jobs, bind to already submitted jobs, and cancel jobs on
remote computers. Other methods allow users to determine whether they can submit jobs
to a specific resource (through a Globus gatekeeper) and to monitor the job status (pending,
active, failed, done, and suspended).

As shown in Step 4 of Figure 5 the class Gram is used to create a job with an RSL
string describing the job and a machine contact that determines on which machine the job
is requested for execution. Our Java mapping differs from that provided in Globus for C
through the introduction of a formal job object.

Moreover, our implementation utilizes the sophisticated event model in Java and trans-
fers the C callbacks into equivalent Java events. In Java one can now use threads in order to
“listen” to a particular event that can trigger further actions. A Java interface GramJob-
Listener that contains the method stateChanged(GramJob job) can be used to
define customized job listeners that can be added with the GramJob method addLis-
tener(GramJobListener listener).

Previous efforts to integrate Globus job management into Java have mostly been based
on submission of commands through the runtime method in Java.

The result hass been lees portable code. However, although this approach provides an
easy way of abstraction, it significantly restricts the capabilities of the Globus middleware
because it does not allow one to utilize the enhanced features of Globus GRAM (see, e.g.
projects such as Gateway[16], Webflow [1]). Furthermore, portals require that client soft-
ware be written in pure Java, without the execution of native programs, so as not to violate
the Java security model (see, e.g. projects such as CCAT [5] and Cactus).

MDS. The package org.globus.mds simplifies the access to the MDS [27], which is an
important part of the Globus information service. Its functions include (a) establishing a
connection to an MDS server, (b) querying MDS contents, (c) printing, and (d) disconnect-
ing from the MDS server. The package provides an intermediate application layer that can
be easily adapted to different LDAP [18] client libraries, including JNDI [21], Netscape
SDK [20], and Microsoft SDK [24].

As shown in Step 0 of Figure 5, the parameters to initialize the MDS class are the DNS
name of the MDS server and the port number for the connection A search is performed in
Step 2.a; the first parameter specifies the top level of the tree in which the search is per-
formed, the second parameter specifies the LDAP query, and the third parameter specifies

the scope, that is, for how many levels in the tree the search should continue (in our case
only the next level). Search results can also be stored in a NamingEnumeration provided
by JNDI.

Other services the MDS includes are able to transfom the information into an
XML based format called MDSML. This format is currently developed as part of the
Gridforum[31] and provides a convenient way to exchange data between different services.

GASS. The Global Access to Secondary Storage (GASS) service [4] simplifies the port-
ing and running of applications that use file I/O, eliminating the need to manually log
onto sites and ftp files or to install a distributed file system. The package org.globus.gass
provides an essential subset of GASS services to support the copying of files between com-
puters on which the Grid Services are installed. The method copy(String fromUrl, String
toUrl) copies a file from one file server to another. Hence, it can be used to stage data to a
remote machine prior to job execution (Figure 5).

GSI. The Grid Security Infrastructure (GSI), which delivers a secure method of ac-
cessing remote resources[6]. It enables a secure, single sign-on capability, while preserv-
ing site control over access control policies and local security infrastructure. The packge
org.globus.security caintains a set of classes for developing client and server side applica-
tions requireing access to GSI enabled resources.

GSI-FTP. The GSI-FTP service provides a secure way to transfer files in a Grid envi-
ronment. It extends the standard FTP protocol and the supports third party control of data
transfer which allows files to be moved directly between servers while the user controls
the transfer from a third machine. The package org.globus.io.ftp provides all necessary
functions such as putting and getting files, listing directories, and more.

GARA. The Globus Architecture for Reservation and Allocation (GARA) provides ad-
vanced reservations and end-to-end management for quality of service on different types
of resources, including networks, CPUs, and disks[11]. The package org.globus.gara im-
plements an elementary client side interface to GARA. Thus it enables to develop services
that need quality of service.

6.2 Low-Level Utilities
The low-level utility classes currently defined in the CoG Kit provide an abstract datatype
representing acyclic graphs and basic XML parsing routines. The graph class is used, for
example, to access dependencies between jobs, a major requirement for science portal ap-
plications. The XML classes are used to provide transformations between different data
formats. Using XML has the advantage that a Document Type Definition (DTD) that is de-
fined for these data formats can be used to verify whether a record to be transmitted is well
formed before it is sent to a server. Thus the load on servers can be dramatically reduced.
The availability of a dependency between jobs is a significant extension to the existing
Globus low-level application interface. In addition, we have defined a general concept of
a machine and job broker interface. This enables a programmer to define a customized
selection of machines and jobs dependent on his demand. We have used this technology as
part of a high-throughput broker that is implemented in Java but can also exposed through

Figure 6: The MDS search table can be used to display selected MDS information in a
tabular form. The search string can be specified, and attributes can be selected easily to
customize the table.

// Step 0: Initialize the table
MDSsearchTable table = new MDSsearchTable (mds);

// Step 1: perform a search in the MDS to request data to be displayed
table.search ("(objectclass=GridComputeResources)",

"hn gramversion contact");
// Step 2: display and update the table

table.show();
// Step 3: return the selection

String machineContact = table.getSelection("contact");

Figure 7: The program shows the ease of use of the Graphical User Interface for selecting
a Grid contact string (compare Figure 6).

CORBA objects. The GECCO application introduced in Section 6.4 utilizes the Java-based
machine and job brokers.

6.3 Low-Level GUI Components
The Java CoG Kit low-level GUI components provide basic graphical components that can
be used to build more advanced GUI-based applications. These components include text
panels that format RSL strings, tables that display results of MDS search queries (Figures
6 and 7), trees that display the directory information tree of the MDS, and tables to display
network performance data. Each component can be customized and is available as a Jav-
aBean. In future releases of the Java CoG Kit it will be possible to integrate the bean in a
Java-based GUI composition tool such as JBuilder or VisualCafe.

6.4 High-Level Graphical Application
High-level graphical applications combine a variety of CoG Kit components to deliver a
single application or applet. Naturally, these applications can be combined in order to pro-
vide even greater functionality. The user should select the tools that seem appropriate for
the task. As an example we will describe one of the many possible high-level components.

GECCO. The Graph Enabled Console COmponent (GECCO) is a graphical tool for
specifying and monitoring the execution of sets of tasks with dependencies between them
[28][26]. Specifically it allows one to

1. specify the jobs and their dependencies graphically or with the help of an XML-based
configuration file,

2. debug the specification in order to find erroneous specification strings before the job
is submitted, and

3. execute and monitor the job graphically and with the help of a log file.

As shown in Figure 8, each job is represented as a node in the graph. A job is executed as
soon as its predecessors are reported as having successfully completed. The state of a job
is animated with colors. It is possible to modify the specification of the job while clicking
on the node: a specification window pops up allowing the user to edit the RSL, the label,
and other parameters. Editing can also be performed during runtime (job execution), hence
providing for simple computational steering.

Grid Desktop. The Grid Desktop component is intended to showcase the powerful
graphics functions a user can utilize while using the Java CoG Kit. It is a graphical tool
that mimics the familiar desktop environments of Windows. Here users can place icons
that represent compute resources and job specifications. Dragging a job icon onto a ma-
chine icon will start the job on that machine by executing the corresponding RSL string.
Thus, job submission on the Grid Desktop is as easy as generating new job icons and drag-
ging them onto the desired machine icon. Furthermore, we have augmented the machine
icons with a history function that lets users list information about previously started jobs.
Clicking on the standard output field of this machine history table will fetch the output file
automatically to the local client and display it in a separate window. Figure 9 shows the
execution of a job listing the home directory on a remote machine called pitcairn. This
component is able to interact with some other advanced components such as a component
that is used to browse the contents of the MDS. Dragging a Globus resource manager list-
ing from the LDAP browser to the Grid Desktop will automatically create a new icon for
this new resource. Using the drag-and-drop feature of Java will allow us to integrate many
graphical components independently developed by grid component developers. The ex-
hange between components is done while providing a commonly defined interface format
that is preferebly formulated in XML.

7 Installation and Upgrading
An important function that must be available as part of the Java CoG Kit is the ability to
install and upgrade the software that accesses the various services. Using Java will provide

Figure 8: The Grid Enabled Console COmponent (GECCO) allows the user to specify
dependencies between tasks that are to be executed in the Grid environment. Here we
show a graph created for a crystallography application Shake ’n Bake.

Figure 9: The Grid Desktop allows users to specify their own view of the Grid while placing
icon representations of remote machines and jobs on a desktop. Dragging job icons onto
machine icons will start the execution.

Renderer Display

XML

Java CoG Kit

X11PalmOs
Renderer

Portal

Palm CoG Kit

Java CoG KitPalm CoG Kit

local install local install

Pages

Figure 10: The installation of the CoG Kit onto a client can be done prior to the start
of the application as a stand-alone application or the installation of a library or during an
on-demand execution.

us with several options for deploying client software. In addition to traditional methods of
delivering client software to be installed and configured prior to its use, we can develop
thin-client software, which can be dynamically installed or updated as well as loaded at
time of use.

Preinstallation of the software in the form of a stand-alone application or a library is
convenient for applications that would take too long to be installed via a network connection
(Figure 10). This strategy is today used by many commercial portals as part of their access
software, enabled with the help of browser plug-ins. Nevertheless, we recognize the fact
that it is sometimes not possible to install any software on the client computer because the
user does not have sufficient access to it. This requires, at the cost of additional download
time, downloading the appropriate jar files from a well-defined URL. In both cases it will
be possible to augment the jar files with authentication measures in the form of certificates.
These will allow clients to identify the source of the code upon downloading our software
and to verify that it can be trusted for use on their systems.

8 Future Applications
The availability of the Java CoG Kit has several advantages for developing future Grid-
based applications. The assumed platform independence of Java and its increased popular-
ity provide the basis of a promising platform in the near future. Furthermore, since Java
is well established on the Windows operating system, it seems an obvious candidate for
delivering a Globus server-side implementation, hence allowing jobs to be submitted to
any NT machine as long as it is integrated in the Grid. More straightforward is the devel-
opment of a Globus thin-client, which consists only of the necessary security routines and
the communication routines to communicate with a Globus server. All previous releases of
CoG components used a pull model to inquire about the state of a submitted job. Since we
have changed the model to use listeners, it is now easier to write threaded Grid-based Java

applications based on a push model. Projects that will benefit from this approach are, for
example, Gateway [16], Webflow [1], CCAT[5], and Cactus[2].

Since the latest Java CoG components can be integrated with Java applets or applica-
tions running directly from the Web browser, it is possible to develop thin clients acessing
the Grid. Projects such as WebSubmit [22] and Hotpage [25] will profit from this change.
Making some components available as JavaBeans and integrating them into common off-
the-shelf Java GUI building tools will provide a Grid development environment that allows
Grid programming with ease. As a result of the availability of the Java CoG Kit, recent
efforts to standardize the Globus delegation model in cooperation with the development of
the Java CoG Kit will allow a much easier integration with existing commodity technolo-
gies.

9 Summary
Commodity distributed-computing technologies enable the rapid construction of sophisti-
cated client-server applications. Grid technologies provide advanced network services for
large-scale, wide area, multi-institutional environments and for applications that require the
coordinated use of multiple resources. In the Commodity Grid project, we seek to bridge
these two worlds so as to enable advanced applications that can benefit from both Grid
services and sophisticated commodity development environments.

The Java Commodity Grid Toolkit (CoG Kit) described in this paper represents a first
attempt at creating of such a bridge. Building on experience gained over the past three
years with the use of Java in Grid environments, we have defined a rich set of classes that
provide the Java programmer with access to basic Grid services, enhanced services suitable
for the definition of desktop problem solving environments, and a range of GUI elements.
Initial experiences with these components have been positive. It has proved possible to
recast major Grid services in Java terms without compromising on functionality. Some
substantial Java CoG Kit applications have been developed, and reactions from users have
been positive.

Our future work will involve the integration of more advanced services into the Java
CoG Kit and the creation of other CoG Kits, with CORBA, DCOM, and Python being early
priorities. We also hope to gain a better understanding of where changes to commodity or
Grid technologies can facilitate interoperability and of where commodity technologies can
be exploited in Grid environments.

Availability
The Java Cog Kit is available in beta release from the CoG Kit Web pages [30]. The release
of the components is done gradually to assure the necessary quality control of the delivered
packages, classes, and methods. At present, the main distribution contains the low-level
components. Besides the components described in this paper, we have an implementation
of network based quality-of-service methods. For more release notes, we refer to the Web
page http://www.globus.org/cog.

Acknowledgments
Many technologies and research projects are related to and important for the development
of the CoG Kits. Some of them can be found in [7]. We are grateful to members of the
NCSA Alliance for enlightening discussions on these topics; in particular, we thank War-
ren Smith, Jay Alameda, Dennis Gannon, Geoffrey C. Fox [12], and Mary Pietrowicz. This
work was supported in part by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, U.S. De-
partment of Energy, under Contract W-31-109-Eng-38; by the Defense Advanced Research
Projects Agency under contract N66001-96-C-8523; by the National Science Foundation;
and by the NASA Information Power Grid program.

References
[1] E. Akarsu, G. C. Fox, W. Furmanski, and T. Haupt. WebFlow - High-Level Program-

ming Environment and Visual Authoring Toolkit for High Performance Distributed
Computing. In Supercomputing’98, Orlando, FL, Nov. 1998.

[2] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfermann, A. Merzky, T. Radke,
and E. Seidel. The Cactus Code: A Problem Solving Environment for the Grid. In
Proc. 9th IEEE International Symposium on High Performance Distributed Comput-
ing, pages 253–260, Pittsburg, Aug. 2000.

[3] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini Speci-
fication. The Java Technology Series. Addison-Wesley, June 1999.

[4] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A data movement
and access service for wide area computing systems. In In Proceedings of the Sixth
Workshop on Input/Output in Parallel and Distributed Systems, pages 78–88, Atlanta,
GA, May 1999. ACM Press.

[5] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govindaraju, N. Mukhi, B. Temko,
and M. Yechuri. A Component Based Services Architecture for Building Distributed
Applications. In Proc. 9th IEEE International Symposium on High Performance Dis-
tributed Computing, Pittsburgh, PA, Aug. 2000.

[6] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. De-
sign and Deployment of a National-Scale Authentication Infrastructure. IEEE Com-
puter, 33(12):60–66, 2000.

[7] Computing Portals: Project Catalog. http://www.computingportals.org/projects,
1999.

[8] CORBA 2.0/IIOP Specification. http://www.omg.org/corba/c2indx.htm.

[9] I. Foster. Building the Grid: An Integrated Services and
Toolkit Architecture for Next Generation Networked Applications.
http://www.gridforum.org/building_the_grid.htm, July 1999.

[10] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan-Kaufmann, 1999.

[11] I. Foster, A. Roy, and V. Sander. A quality of service architecture that combines re-
source reservation and application adaptation. In Proceedings of the 8th International
Workshop on Quality of Service (IWQOS), pages 181–188, Pittsburgh, PA, June 2000.

[12] G. C. Fox and W. Furmanski. HPcc as High Performance Commodity Computing.
http://www.npac.syr.edu/users/gcf/HPcc/HPcc.html, Dec. 1997.

[13] GrADS: Grid Analysis and Display System. http://grads.iges.org/grads/.

[14] I. S. Graham and L. Quin. XML Specificaton Guide. Wiley, 1999.

[15] Globus Resource Management. http://www.globus.org/toolkit/resource-
management.html.

[16] T. Haupt, E. Akarsu, G. Fox, and C.-H. Youn. The Gateway System: Uniform
Web Based Access to Remote Resources. Concurrency: Practice and Experience,
12(8):629–642, Aug. 2000.

[17] C. S. Horstmann and G. Cornell. Core Java 2, volume 1 and 2. Prentice Hall, 4th
edition, Dec. 1999.

[18] T. Howes and M. Smith. LDAP : Programming Directory-Enabled Applications With
Lightweight Directory Access Protocol. Technology Series. Macmillan Technical
Publishing, 1997.

[19] HTTP Hypertext Transfer Protocol. http://www.w3.org/Protocols/.

[20] Netscape Directory and LDAP Developer Central.
http://developer.netscape.com/tech/directory/index.html.

[21] R. Lee and S. Seligman. JNDI API Tutorial and Reference: Building Directory-
Enabled Java Applications. The Java Series. Addison-Wesley, May 2000.

[22] R. McCormack, J. Koontz, and J. Devaney. ESeamless Computing with WebSubmit.
Concurrency, Practice, and Experience, 11(15):949–963, 1999.

[23] D. Rogerson. Inside COM - Microsoft’s Component Object Model. Microsoft Press,
1997.

[24] R. Schwartz. Windows 2000 Active Directory Survival Guide: Planning and Imple-
mentation. John Wiley and Sons, 1999.

[25] M. Thomas. The Hotpage Web Page. http://hotpage.npaci.edu.

[26] G. von Laszewski. A Loosely Coupled Metacomputer: Cooperating Job Submis-
sions across Multiple Supercomputing Sites. Concurency, Experience, and Practice,
11(15):933–948, 1999.

[27] G. von Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith, and S. Tuecke. A
Directory Service for Configuring High-Performance Distributed Computations. In
Proc. 6th IEEE Symp. on High-Performance Distributed Computing, pages 365–375,
1997.

[28] G. von Laszewski and I. Foster. Grid Infrastructure to Support Science Portals for
Large Scale Instruments. In Proc. Workshop on Distributed Computing on the Web
(DCW), pages 1–16. University of Rostock, Germany, June 1999.

[29] G. von Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. CoG Kits: A Bridge
between Commodity Distributed Computing and High-Performance Grids. In ACM
2000 Java Grande Conference, pages 97–106, San Francisco, CA, June 2000.

[30] G. von Laszewski, J. Gawor, and P. Lane. Java CoG Distribution.
http://www.globus.org/cog, Dec. 2000.

[31] G. von Laszewski and P. Lane. MDSML: An XML Binding for the Grid Object
Specification. Gridforum Working Group Document GIS-WG 2, Argonne National
Laboratory and Pacific Northwest Laboratory, June 2000. http://www.gridforum.org.

A Figures
For convenience of the reproduction, some figures are included in this appendix in a larger
format.

A
pp

lic
at

io
ns

A
pp

lic
at

io
n

To
ol

ki
ts

G
rid

 S
er

vi
ce

s
(M

id
dl

ew
ar

e)

G
rid

 F
ab

ric
(R

es
ou

rc
es

)

D
at

a
G

rid
Re

m
ot

e
Co

m
pu

ta
tio

n
Re

m
ot

e
V

iz
ua

liz
at

io
n

Co
lla

bo
ra

to
rie

s
Po

rta
ls

Re
m

ot
e

Se
ns

or
s

Pr
ot

oc
ol

s,
A

ut
he

nt
ic

at
io

n,
 P

ol
ic

y,
 In

str
um

en
ta

tio
n,

Re

so
ur

ce
 M

an
ag

em
en

t,
D

isc
ov

er
y,

 E
ve

nt
s,

et
c.

St
or

ag
e

N
et

w
or

ks
, C

om
pu

te
rs

, D
isp

la
y

D
ev

ic
es

, e
tc

.
an

d
th

ei
r a

ss
oc

ia
te

d
lo

ca
l s

er
vi

ce
s

C
os

m
ol
og

y
C

h
em

ic
al

E
n

ge
n

ee
ri

n
g

C
li

m
at

e
R

es
ea

rc
h

H
ig

h

E
n

er
gy

P
h

ys
ic

s
A

st
ro

ph
ys

ic
s

C
om

bu
st

io
n

...

...

Research
Portal

Farmer
Portal

Financial
Market
Portal

User customized
Portal

La
ng

ua
ge

s
En

vi
ro

nm
en

ts
Fr

am
ew

or
ks

Sc
ie

nc
e

Po
rta

ls

Ja
va

Co
rb

a
Jin

i
D

CO
M

Pe
rl

Co
G

 K
its

Co
m

m
on

 G
rid

 F
ab

ric
 a

nd
 S

er
vi

ce
s

Se
cu

rit
y

Se
rv

ic
es

...

Re
so

ur
ce

M
an

ag
em

en
t

Se
rv

ic
es

D
at

a
M

an
ag

em
en

t
Se

rv
ic

es

M
on

ito
rin

g
Se

rv
ic

es
Ev

en
t

Se
rv

ic
es

Co
lla

bo
ra

tiv
e

Se
rv

ic
es

In
te

gr
at

ed
Ev

en
t S

er
vi

ce
U

ni
fo

rm
A

cc
es

s S
er

vi
ce

D
at

am
in

in
g

Se
rv

ic
e

...

A
pp

lic
at

io
n

Le
ve

l U
til

iti
es

 a
nd

 G
U

I c
om

po
ne

nt
s

Lo
w

-L
ev

el
 G

U
I C

om
po

ne
nt

s

G
rid

 D
es

kt
op

M
D

S
br

ow
se

r

Lo
w

-L
ev

el
 U

til
ity

 C
om

po
ne

nt
s

Jo
b

&
 Jo

bS
et

s
M

D
S

Co
or

di
na

te
Se

rv
er

Lo
w

-L
ev

el
 G

rid
 In

te
rfa

ce
 C

om
po

ne
nt

s

RS
L

G
RA

M
G

A
RA

G
A

SS
G

SI
-F

TP

G
rid

 M
id

dl
ew

ar
e

&
 F

ab
ric

...

RS
L

G
RA

M
G

A
RA

G
A

SS
G

SI
-F

TP
...

...

...
M

D
S

se
ar

ch
ta

bl
e

B END

