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Abstract: A modification of the iterative matrix diagonalization method of Davidson is

presented that is applicable to the symmetric eigenvalue problem.  This method is based

on subspace projections of a sequence of one or more approximate matrices.  The

purpose of these approximate matrices is to improve the efficiency of the solution of the

desired eigenpairs by reducing the number of matrix-vector products that must be

computed with the exact matrix.  Several applications are presented.  These are chosen to

show the range of applicability of the method, the convergence behavior for a wide range

of matrix types, and also the wide range of approaches that may be employed to generate

approximate matrices.
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1. Introduction

The symmetric eigenvalue problem

( H – λj )vj = 0 1.1

is familiar in many application areas[1].  In some of these, the computation of the entire

spectrum of eigenvalues and associated eigenvectors is necessary, and in others, only

selected eigenpairs are desired.  In the former case, particularly with dense unstructured

matrices, the overall computational effort scales as O(N3) where N is the dimension of the

matrix; these are called direct or dense methods.  When only a few vectors are required,

they may sometimes be determined using iterative methods, and the overall effort may be

much less, particularly if some structure of the matrix (e.g. banded, blocked, sparse,

outer-product, tensor-product, etc.) may be exploited.  The largest eigenvalue problems

correspond to N as large as 108 or 109; for these situations, dense methods cannot even be

considered, and iterative methods are the only practical choice.

The method that will be described in this work is a modification of the Davidson

iterative method[2,3,4,5,6].  The Davidson method has the following features, all of

which are shared by the method described in this work.

1) Only matrix-vector products (or linear transformations) of the matrix with

arbitrary trial vectors are needed.  For structured or sparse matrices, this allows the

products to be computed efficiently, with less computational effort, fewer floating point

operations, and/or less I/O than the usual matrix-vector product.  The matrix is not

modified during the procedure, so sparse fill-in does not occur.  Furthermore, it is not

necessary to actually compute and store the matrix elements explicitly.  There are many

examples of applications for which it is more efficient to either recompute the elements

“on-the-fly” as needed (either from formal expressions for the individual matrix elements

or from underlying simpler, compact, data structures) or for which the matrix structure

itself may be exploited in some way in order to compute the matrix-vector products in

“operator” form.  A few examples of this are discussed in detail below.

2) The Davidson method is a subspace method.  As a trial vector is added to the

subspace during the iterative procedure, the new computed approximate eigenvalues from

this subspace (called the Ritz values) bracket those of the previous iteration.  This is
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particularly beneficial when computing the lowest roots because the intermediate

computed eigenvalues are always upper bounds to the final converged lowest

eigenvalues.  Similarly, the highest roots of an intermediate subspace representation are

lower bounds to the final converged highest eigenvalues.

3) The Davidson method can be used to find the lowest eigenpair, several of the

lowest eigenpairs, the highest eigenpair, several of the highest eigenpairs, or selected

interior eigenpairs.

4) A benefit of a subspace method is that convergence is generally more robust

than for a single-vector (or update) method.  In general, given any single-vector iterative

method, a corresponding subspace method may be devised, and this subspace method

will always converge better than the original single-vector method.   In fact, the subspace

method may sometimes converge rapidly even when the single-vector method upon

which it is based oscillates, diverges, exhibits false convergence, or otherwise converges

problematically.  However, the subspace method typically requires more resources

(memory, disk space, etc.) than the corresponding single-vector method, and the

manipulation of the multiple vectors is computationally more demanding than for the

single-vector method.  (These comments regarding convergence may not apply

necessarily to sequential relaxation[7], also called continuous update, single-vector

methods.  Each iteration of such a method consists of N individual updates, usually

applied in sequential order to the elements of the trial eigenvector. A subspace analog of

these types of single-vector methods is impractical because the subspace dimension

would grow too large.  Although these methods can converge efficiently, particularly for

isolated eigenpairs, the sequential update process requires ordered access to the matrix

elements, and this limits the range of applicability of these methods.)

5) It is possible for the Davidson method to converge to the wrong root, or, when

several roots are requested, to “skip” over roots and converge to nearby roots instead.

This places some importance on the choice of initial vectors.

One disadvantage of the Davidson method is that it can be slowly convergent for

some matrices.  These include matrices that are not diagonally dominant.  Slower

convergence means that more matrix-vector  products are required, resulting in greater

computational effort.  This is particularly problematic for matrices of very large
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dimension for which each matrix-vector product requires a major computational effort.  It

is primarily this situation that is addressed by the method described in this work.

2. The SPAM Method

The original Davidson Method is outlined in Figure 1.  During the iterative

procedure, a set of expansion vectors{xj; j=1,n} is available.  These vectors may be

collected together to form the columns of a matrix X[n], where the superscript denotes the

number of vectors.  The details of the methods used to generate the new expansion

vectors are discussed in Appendix B.  There are also the corresponding matrix-vector

products W[n]=HX[n] that are stored.  The representation of H within this subspace is

given by

〈H〉[n] = X[n]T H X[n] = W[n]T X[n] 2.1

in which the superscript T denotes the transpose.  A projection matrix may be defined as

P[n]=X[n] (X[n]T X[n])-1 X[n]T 2.2

The method described here may be implemented in terms of general nonorthogonal

expansion vectors.  However, for simplicity, it will be assumed hereafter that the

expansion vectors are chosen to satisfy the relation (X[n]TX[n])=1.  This allows the

projection matrix to be written simply as P[n]=X[n]X[n]T.  There is also the orthogonal

projector defined as Q[n]=(1–P[n]).  These projectors result in the identity

H = (P[n]+Q[n]) H (P[n]+Q[n]) 2.3

= P[n] H P[n] + P[n] H Q[n] +Q[n] H P[n] +Q[n] H Q[n] 2.4

= ( X[n] 〈H〉[n] X[n]T + X[n] W[n]T Q[n] +Q[n] W[n] X[n]T ) +Q[n] H Q[n] 2.5

An arbitrary matrix-vector product Hy may therefore be computed as four separate

contributions, the first three of which involve only operations with the subspace vectors

X and W.

The crucial idea of the method described here is that an approximate matrix H(1) is

available, that matrix-vector products H(1)y require less effort to compute than the exact

products Hy, and that these approximate matrix-vector products are used to reduce the

overall computational effort.  This reduced effort could be because H(1) is less dense than

H, or because H(1) is generated from some formal or algebraic approximation to H (e.g.
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simpler basis, a smaller basis, a lower-order approximation,  an outer-product

approximation, a tensor-product approximation, a coarser computational grid, etc.).  With

this approximate matrix available, a Subspace Projected Approximate Matrix (SPAM)

H[ ]n  is defined

H[ ]n ≡ P[n] H P[n] + P[n] H Q[n] +Q[n] H P[n] +Q[n] H(1) Q[n] 2.6

= ( X[n] 〈H〉[n] X[n]T + X[n] W[n]T Q[n] +Q[n] W[n] X[n]T ) + Q[n] H(1) Q[n] 2.7

Note that the first three terms in Eqs. 2.6 and 2.7 are “exact” when compared to Eqs. 2.4

and 2.5.  It is only the last term that is affected by the approximation.  For a given

subspace of dimension [n], the eigenpair from this approximate matrix is computed

H v 0[ ] [ ] [ ]n
j
n

j
n−( ) =λ 2.8

This eigenvector is then appended to the subspace (after orthonormalization) to form

X[n+1].  An exact matrix-vector product is computed to form W[n+1].  This expanded

subspace then defines a new projector P[n+1] and a corresponding new approximate matrix

H[ ]n+1 , and the process is repeated until convergence is achieved.  Although the

underlying approximate matrix H(1) remains the same during this process, the SPAM

H[ ]n  changes as the iterations proceed.  Both the eigenvector and the eigenvalue from

Eq. 2.8 are approximations to the converged results.  The accuracy of the approximation

is quantified in Appendix A.  However, the approximate eigenvalue does not enjoy the

upper (or lower, as relevant) bound property that holds for the subspace eigenvalue

computed from the exact matrix-vector products only.

When a vector y is a member of {xj;j=1,n}, or if it is a general linear combination

of these vectors, y= X[n]c, then Eq. 2.6 results in the relation

H y Hy y X[ ] [ ];n nSpan= ∈ ( )when 2.9

It is only vectors y orthogonal to X[n], or that contain orthogonal components, that are

approximated by H[ ]n y relative to the exact matrix-vector product Hy.  As the procedure

converges to the eigenpair of interest, the subspace X[n] contains the eigenvector.  When

this occurs, the converged eigenpair of H[ ]n  is also an eigenpair of the exact H.

This leads to the question of how to solve the eigenvector equation of Eq. 2.8.  It

is the same dimension as the original equation, so it is appropriate that an iterative
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method should be used.  In the current work, the iterative Davidson method outlined in

Figure 1 is used.  Eq. 2.9 suggests that an initial subspace consisting of X[n] could be used

for this iterative solution.  Because the exact matrix-vector products W[n] are already

available, the first nxn subblock of the subspace matrix 〈 H[ ]n 〉1:n,1:n has already been

computed and is available.  Furthermore, all of the new expansion vectors that are added

during the iterative eigensolution can be chosen to be orthogonal to X[n].  In this case, a

matrix-vector product takes the simple form

H x X W x Q H x[ ] [ ] [ ] [ ] ( )n n n T n
⊥ ⊥ ⊥= + 1 2.10

= + −( )⊥w X W x X w( ) [ ] [ ] [ ] ( )1 1n n T n T 2.11

where w(1)=H(1)x⊥ is the inexpensive matrix-vector product.   Furthermore, due to Eq. 2.9,

a subspace matrix element between a vector y within X[n] and a vector x⊥ orthogonal to

X[n] is exact.

x H y y H x x Hy y X X x 0⊥ ⊥ ⊥ ⊥= = ∈ ( ) =T n T n T n n TSpan[ ] [ ] [ ] [ ]; , 2.12

It is only matrix elements in the diagonal subblock of 〈 H[ ]n 〉 between two vectors in the

orthogonal space that are not exact relative to the matrix 〈H〉 in the same vector subspace.

This suggests the SPAM implementation in Figure 2.  This is basically the same

as the original Davidson method, except that a flag, wtype, is toggled between 0 and 1 to

denote the type of matrix-vector product for each expansion vector.  Furthermore, the

convergence criteria are slightly more complicated.  Basically, there are two kinds of

convergence.  When convergence is achieved with wtypen=0, then all of the matrix-vector

products have been computed with the exact matrix H, and the desired eigenpair has been

found.  When convergence is achieved with wtypen=1, this means that the current SPAM

eigensolution of Eq. 2.8 has been found.  At this time, the new expansion vectors (the n1

vectors corresponding to the wtypek=1 vectors) are contracted using the coefficients c

from the current subspace eigenvector, this vector is saved in the [n0+1] position in X,

and wtype is then set to 0 for that vector to ensure that the next matrix-vector product will

be computed exactly.

One way to view the overall SPAM iterative procedure is to monitor the subspace

dimension and to note the number of exact (with wtypek=0) products computed and the
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number of approximate (with wtypek=1) vectors.  In the following discussion, such a

mixed subspace will be denoted [n0,n1].  As outlined above, the number of exact products

n0 in the subspace never decreases during the iterative procedure, but the number of

approximate products n1 is an irregular sawtooth function during the iterative procedure.

The number of approximate products increases for a few iterations, then upon

intermediate convergence of Eq. 2.8, the count n1 is reset to zero, and it then begins to

increase again from that point.  Examples of this convergence behavior are given below.

3. The Multilevel SPAM Method

During the SPAM iterative method, the iterative solution to the eigenvector

equation Eq. 2.8 is required.  Matrix-vector products with the approximate matrix H(1) are

assumed to require less effort than the exact products involving H≡H(0).  However, what

if convergence of Eq. 2.8 (for a given projection rank [n0]) is slow and there are many of

these H(1) matrix-vector products required, the total cost of which is excessive?  The

answer to this problem is to temporarily treat the matrix H[ ]n0  as “exact”, and to apply

the SPAM method to this problem with yet another “approximate” matrix H(2).

H P H P

P H Q

Q H P

Q H Q

[ , ] [ , ] [ ] [ , ]

[ , ] [ ] [ , ]

[ , ] [ ] [ , ]

[ , ] ( ) [ , ]

n n n n n n n

n n n n n

n n n n n

n n n n

0 1 0 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 1 0 12

= +

+

+

3.1

In order to reduce the computational effort, matrix-vector products with H(2) must require

even less effort than those of H(1).  The eigenvector solution from the equation

H v 0[ , ] [ , ] [ , ]n n
j
n n

j
n n0 1 0 1 0 1−( ) =λ 3.2

is converged using the Davidson procedure.  At this point the vector space is denoted

[n0,n1,n2], which means that there are n0 vectors for which exact matrix-vector products

with H(0) are available, n1 vectors for which H[ ]n0  matrix-vector products using the

approximate matrix H(1) have been computed, and n2 vectors for which H[ , ]n n0 1  matrix-

vector products using the approximate matrix H(2) have been computed and are available.

Upon convergence of Eq. 3.2 the [n0,n1,n2] subspace is contracted in order to define a new
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[n0,n1+1,0] subspace, and the process is continued until convergence is achieved.  When

convergence is achieved eventually for the sequence of level-1 SPAM approximations,

the current [n0,n1]≡[n0,n1,0] space is contracted down to form a [n0+1]≡[n0+1,0,0] space,

as described in Section 2.  Analogous to Eqs. 2.9 and 2.11, matrix-vector products satisfy

H y H y y X[ , ] [ ] [ , ];n n n n nSpan0 1 0 0 1= ∈ ( )when 3.3

H x w X W x X w

X x

[ , ] ( ) [ , ] [ , ] [ , ] ( )

[ , ];

n n n n n n T n n T

n n Twhen

0 1 0 1 0 1 0 1

0 1

2 2

0

⊥ ⊥

⊥

= + −( )
=

3.4

These equations suggest a generalization of the SPAM method to an arbitrary

number of approximation levels based on a modification of the subspace procedure

described in the previous section.  The SPAM at a given approximation level, labeled by

(m+1) and dependent on the current expansion vector subspace [n0,n1…nm], is defined in

terms of the previous m-level SPAM along with a new approximate matrix H(m+1).

H P H P

P H Q

Q H

[ , , ] [ , , ] [ , , ] [ , , ]

[ , , ] [ , , ] [ , , ]

[ , , ] [ , , ]

n n n n n n n n n n n n

n n n n n n n n n

n n n n n n

m m m m

m m m

m m

0 1 0 1 0 1 1 0 1

0 1 0 1 1 0 1

0 1 0 1 1

… … … …

… … …

… …

= +

+

−

−

− PP

Q H Q

[ , , ]

[ , , ] ( ) [ , , ]

n n n

n n n m n n n

m

m m

0 1

0 1 0 11

…

… + …

+

3.5

This procedure is outlined in Figure 3.  In this multilevel SPAM method, the wtypek

variable is set to the approximation level of the corresponding matrix-vector product: 0

for exact matrix-vector products, 1 for the first level of approximation, 2 for the second

level of approximation, etc.  When the maximum SPAM level is set to 0, then the

multilevel SPAM method outlined in Figure 1 is equivalent to the simple Davidson

method outlined in Figure 1.  When the maximum SPAM level is set to 1, then the

multilevel SPAM method in Figure 3 is equivalent to the method outlined in Figure 2.

This general idea is entirely consistent with the usual approach taken in various

applications involving eigenvalue problems.  The “exact” problem is too difficult to

solve, so it is approximated, in some way, by a model problem that is formally,

conceptually, or computationally simpler.  If this simpler problem is itself too difficult to

solve, then yet further approximations are invoked.  The SPAM method allows this series
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of approximations to be incorporated directly into the numerical solution of the original

“exact” eigenproblem.

4. Discussion

The single-level and the general multilevel SPAM methods described above have

been implemented in a standard Fortran 90 subroutine.  In this section, the features of this

implementation are discussed.  Several types of test matrices are used in these

discussions, and several different ways of formulating approximate matrices are

demonstrated.  Additional details of the implementation are discussed in the context of

these examples.

Banded Matrix Examples: The first examples are based on a banded matrix of

the general form

Hk,k  = k ; for k=1…N

Hk,l  = ∆ |k–l| ; for |k–l| ≤ W and k≠l

Hk,l  = 0 ; otherwise

4.1

These matrices are characterized by three scalar parameters, the matrix dimension N, the

bandwidth W, and ∆ which determines the diagonal dominance of the matrix.  In the

following test calculations, a matrix with a large bandwidth will be approximated by a

matrix with a smaller bandwidth.  By using recursion, matrix-vector products with this

matrix may be computed with O(N) floating point operations, independent of W.  The

SPAM method is not the best approach for this matrix because the exact matrix-vector

products are just as expensive to compute as the approximate ones, but this is an excellent

matrix to use as a model for general matrices that display similar convergence

characteristics because the degree of diagonal dominance and the accuracy of the

successive approximate matrices is easily controlled.

The first column of results in Table I shows the convergence of the regular

Davidson iterative method, with a diagonal-preconditioned residual (DPR) expansion

vector, for the lowest eigenpair of a matrix characterized by N=10,000, W=64, and

∆=0.75.  The initial vector is e1, the first column of a unit matrix of dimension N.  The

dimension is chosen so that this problem is nontrivial, yet the structure of the matrix

results in model test problems that are readily solved.  The convergence criterion for this
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test case is |r|<10–8 (see Appendix A), which is a typical convergence requirement.  For

this matrix, the lowest eigenvalue, λ1=0.585510562346823 is converged to

approximately machine precision (~10–15) with this convergence tolerance, which is

consistent with the bound in Eq. A14.  Twelve iterations, each of which require an H(0)

matrix-vector product, are required to achieve convergence with the traditional Davidson

DPR method.  This convergence rate is typical of many eigenproblems that occur in

various applications.  The largest off-diagonal element in this matrix is 0.75, and the

smallest nonzero off-diagonal element is 1.01⋅10–8.

An approximate matrix H(1) with half the bandwidth of H(0) is characterized by

N=10,000, W=32, and ∆=0.75, and a single-level SPAM is applied.  As seen in Table I,

only two H(0) matrix vector products are required along with 16 approximate H(1) matrix-

vector products.  The total number of iterations has increased, but almost all of them are

with the approximate matrix H(1) rather than the exact matrix H(0).  The smallest nonzero

off-diagonal element in H(1) is 1.00⋅10–4.  The largest element in the difference matrix

(H(1)–H(0)) has the magnitude 7.5⋅10–5.  If the H(1) products were 10 times cheaper to

compute than the H(0) products (an effort ratio of 1⁄10) for an actual application with

similar convergence properties, then already the SPAM method would have resulted in an

overall savings of 12:(2+1.6), or an overall 70% reduction of effort.

Inspection of the convergence trajectory of the SPAM calculation in Table I

suggests that too many level-1 iterations are performed during the generation of the [1,0]

subspace.  Basically, no matter how well the [0,n1] iterations are converged, the residual

of the [1,0] iteration (immediately after contraction of the n1 vectors) will have a vector

norm of at least ~1⋅10–4.  This suggests that instead of the final residual norm

convergence tolerance, a dynamic adjustment of the intermediate residual norms would

result in improved efficiency.  The accuracy of residual norms is quantified in Appendix

A.  Eq. A22 suggests that the convergence of the H[ ]0  matrix during this first SPAM

iteration needs to be converged to at least ||H(1)–H(0)||.  Two estimates of this matrix norm

were considered, one based on the Gerschgorin disk bound[8], and the other based on the

eigenvalue bound in Eq. A13 along with a coordinate unit vector.  The expression in Eq.

A13 was found empirically both to be smaller in magnitude and to result in the more

accurate residual norm estimate, with a value of 1.61⋅10–4 for this particular matrix.
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Because this estimate is based on a bound, and is not necessarily an accurate estimate of

either the matrix difference norm or of the residual vector of the [1,0] iteration, an

additional scale factor of α=0.95 is used, and the first SPAM iteration is converged to

|r|<1.54⋅10–4.  This may be regarded as a prediction, before contraction, of the actual [1,0]

residual norm after contraction.  If this scale factor α is chosen to be too small, then a few

extra approximate H(1) matrix-vector products may be computed.  However, if the scale

factor is too generous, and the first sequence of SPAM iterations is not sufficiently

converged, then the penalty is that too many expensive H(0) matrix-vector products may

be computed.  Because the penalty for overconverging the approximate SPAM sequence

is less than the penalty for underconverging the SPAM sequence, it is better generally to

err on the side of caution than to err on the side of optimism.  In the general case, if

n=n0+n1 is the number of expansion vectors during an iteration, then

Sin c c cn
n n n n

T
n n

ψ [ ]
: : :

0

0 0 01 1 1( ) = =+( ) +( ) +( )
4.2

This value involves only the expansion coefficients of the basis vectors in the n1

subspace.  The iterative solution of the SPAM eigenpair is terminated when the residual

norm satisfies

r H H[ , ] [ ] ( ) ( )n n nSin0 1 0 1 0≤ ( ) ⋅ −α ψ 4.3

Comparing the residual norms for the [0,7] and the [1,0] iterations in Table I, it is seen

that a choice of α =0.95, along with the above estimate of ||H(1)–H(0)||, is sufficiently

accurate for this particular matrix.  The final result of adjusting the convergence

dynamically during the SPAM iterative process according to Eq. 4.3 for this test case is

that 2 exact matrix-vector products are required and 13 approximate H(1) matrix-vector

products are required to achieve convergence.  That is, 3 approximate matrix-vector

products were skipped compared to the previous fixed-tolerance convergence trajectory.

For a matrix-vector product effort ratio of 1⁄10, the overall effort, compared to the

reference DPR expansion vector procedure, would be 12:(2+1.3), or an overall 73%

reduction in effort.

The convergence characteristics for several SPAM calculations are shown in

Table II.  Each row corresponds to a different choice of approximate matrix H(1).  For

each approximate H(1), the matrix difference norm ||H(1)–H(0)|| is estimated from Eq. A13
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and this estimate is used to dynamically adjust the intermediate convergence tolerances as

described above.  In all cases, a choice of α =0.95 was used.  For each convergence

trajectory, the maximum subspace dimension nmax that is required to achieve convergence

is listed, along with the total number of matrix-vector products for each of the two

matrices, H(0) and H(1).  Two separate final convergence tolerances are imposed on the

computed residual norms, a looser value of 10–5 and a tighter value of 10–8.  These span

the range of “typical” convergence criteria for various applications.  Both the maximum

subspace dimension and the total number of products can be important in determining the

overall efficiency of a calculation, and even whether the calculation fits within the

memory or disk space limitations.  A more detailed effort model is discussed below.

Comparing the two sets of calculations for the two residual norm tolerances shows that

smaller values of nmax and fewer matrix-vector products are required for the looser

convergence criteria.  This is consistent with the convergence of the usual Davidson DPR

method.  The other general trend is that the better the H(1) approximation, the fewer exact

H(0) products are required.  In particular, the W1=64, W1=56 and W1=48 calculations

demonstrate that convergence can be achieved with a single exact matrix-vector product

in the most favorable situations.  Convergence is always achieved with a single “exact”

matrix-vector product with W0= W1, and this is demonstrated in the first row in Table II;

this has no practical consequence, but it demonstrates that the implementation satisfies

this formal boundary condition in the limit H(1)→H(0).

The last two rows of Table II, with W1=1 and with W1=0 should also be

mentioned.  The W1=1 row uses a tridiagonal H(1) matrix.  For this test case, because of

the dynamical adjustment of the intermediate convergence, each DPR expansion vector

generated for H[ ]n0  is “contracted” immediately and used to form an exact H(0) matrix-

vector product.  The result is that there is an equal number of H(0) and H(1) products for

both convergence tolerances, and the H(0) convergence trajectory is identical to the DPR

trajectory.  The last row, with W1=0 employs a diagonal H(1).  This convergence trajectory

of this row is also equivalent to the DPR trajectory.  This is examined in more detail

below.  It is somewhat disappointing that a tridiagonal H(1) does not perform significantly

better than a diagonal H(1); linear equation solutions with a tridiagonal matrix require

only slightly more effort than those with a diagonal matrix, and combined with the



14

IIGD/GJD method, this would have been a good alternative way to generate improved

expansion vectors with minimal additional effort.

Table III shows the convergence trajectory for level-2 and level-3 SPAM

convergence with the same W=32 H(1) matrix described above, along with a W=16 H(2)

and a W=8 H(3) matrix.  The dynamical adjustment of the intermediate convergence

tolerance used previously is generalized to the multilevel case.  After each subspace

diagonalization, the coefficient vector is decomposed into contributions from the various

wtype levels.  These individual contributions are accumulated to define

Sin cn n n
n n n n

k

k
ψ [ , ]

:
0 1

0 1 1
…

+ …+ +( )( ) = 4.4

for each approximation level k.  This factor, along with the estimates of the matrix

difference norms, provides a prediction for the residual norm after the next contraction at

the k-th level according to Eq. A13.  The current intermediate residual norm is compared

to these estimates according to

r H H[ , ] [ , ] ( ) ( ) :n n n n n k k
nMax Sin k wtypek0 1 0 1 1 0… … +≤ ⋅ ( ) ⋅ − = …{ }α ψ 4.5

The Max in this comparison picks out the weakest link in the approximation sequence for

the current set of expansion vectors.  Just as in the single-level SPAM discussed above, it

does not improve efficiency to converge the intermediate results beyond this value

because a larger residual norm will be computed later after some subsequent contraction

step.  As seen in Table III this results in an acceptable convergence trajectory without any

apparent wasted effort.  It should be mentioned that an incorrect estimate of the scale

factor α or of a matrix difference norm does not result in incorrect results, it simply

results in too much effort required to achieve the correct results.  Furthermore, just as for

the single-level case, the penalty for choosing an α (or a matrix difference norm estimate)

too large is greater than that for choosing an α too small, so, in general, it is better to be

too conservative than too optimistic.

In all of the above examples, the traditional Davidson DPR vector has been used

to define the new expansion vectors.  Before examining other SPAM convergence

trajectories, various choices for trial expansion vectors within the SPAM method will be

compared.  Olsen et al[26] have proposed the Inverse-Iteration Generalized Davidson
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(IIGD) method for generating expansion vectors within the Davidson subspace method.

As discussed in Appendix B, this is equivalent to the Generalized Jacobi-Davidson (GJD)

method of Sleijpen et al[27,28] when applied to the symmetric eigenvalue problem with

unit metric matrix and with the same (diagonal) approximate preconditioner.  For

essentially the same effort, and using the same diagonal preconditioner, the IIGD/GJD

method results in an improved expansion vector that sometimes converges better than the

traditional Davidson DPR method.  Another choice of expansion vector is the residual

vector itself.  As discussed in Appendix B, this results in the well-known Lanczos

method.

The convergence of the Davidson method using these three expansion vector

choices is compared in Table IV for the same W=64 banded matrix described above and

with the same convergence tolerance.  The convergence trajectory for the DPR expansion

vector has already been given in Table I.  The convergence using the IIGD/GJD

expansion vector is essentially identical for this matrix.  This is, in part, because the

starting vector is the first column of the unit matrix; other starting vector choices would

show larger iteration-by-iteration differences.  Both the DPR expansion vector and the

IIGD/GJD expansion vector require 12 iterations to converge.  The Lanczos expansion

vector, by contrast, requires 68 iterations to converge. As discussed in Appendix B, this is

typical of convergence comparisons between the preconditioned gradient expansion

vectors, which selectively converge the eigenpair of interest, and the underlying Krylov

subspace that is used in the Lanczos method which does not converge selectively.

Because there are no contractions or restarts in these calculations, the maximum subspace

is the same as the number of products for these calculations.  Although the subspace

diagonalization is still trivial for these cases, even for the slowly convergent Lanczos

case, the vector manipulations can become significant, particularly for very large matrix

dimensions N.

For comparison purposes, rows 4-6 of Table IV show the convergence results for

level-1 SPAM calculations in which H(1) is chosen to be the same diagonal matrix as the

preconditioners used in the DPR and in the IIGD/GJD methods.  The three rows

correspond to the three different choices for expansion vectors: DPR, IIGD/GJD, and

Lanczos.  The convergence is identical, iteration by iteration, for the DPR and IIGD/GJD
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expansion vectors: 11 exact H(0) matrix-vector products are required and 28 diagonal

matrix-vector products are required to converge the highest-level SPAM eigenvalue

problem.  The fact that 11, rather than 12 (as before), H(0) products achieves convergence

for this problem is an insignificant discretization artifact; as seen in Table I, the residual

norm on the 11th DPR iteration is just slightly larger than the convergence tolerance, and

for these SPAM convergence cases, it is just slightly below the tolerance on the 11th

iteration.  This demonstrates that there is no significant advantage of the SPAM method

over these other preconditioned expansion vector procedures for this choice of H(1).  As

discussed in Appendix B, it is expected that this result will be general.  This is because

the formal advantages of SPAM are not significant compared to the coarseness of the

diagonal H(1) approximation.  Furthermore, although SPAM requires, in principle, several

iterations to solve the H[ ]n  eigenvalue equation, in practice it is observed usually that a

single DPR (or IIGD/GJD) iteration is sufficient to achieve convergence with the

dynamically adjusted tolerance.  Forcing convergence beyond this value does not

improve significantly the overall efficiency.  When only a single iteration is performed to

solve the SPAM equation, the expansion vector is exactly the same as that for the DPR

method (or whichever expansion vector method is used to generate expansion vectors for

the iterative solution of the highest SPAM level).  This was demonstrated already in

Table II.  The results in Table IV were generated by adjusting the estimate for ||H(1)–H(0)||

in order to artificially prevent this from occurring for this particular comparison; two or

three iterations where required to solve for each SPAM eigenvector for the SPAM/DPR

and SPAM/IIGD expansion vectors.

Row 6 of Table IV shows the results for the Lanczos expansion vector.  For this

expansion vector, 13 exact H(0) matrix-vector products are required and 131 diagonal

matrix-vector products are required to converge the highest-level SPAM eigenvalue

problem with the same adjusted estimate for ||H(1)–H(0)|| as before.  This is an interesting

result for several reasons.  First, it demonstrates the general principle that the SPAM

method isolates the number of exact matrix-vector products that are required to achieve

convergence from the quality of the individual expansion vectors.  This is true for

arbitrary H(1) approximations, the diagonal approximation here is simply the most

extreme example.  Secondly, this example shows that the number of high-level (i.e. more
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approximate) matrix-vector products generally increases as new SPAM approximation

levels are added.  This is compensated by a reduced number of low-level (i.e. more exact)

products.  Whether or not this is beneficial depends on the relative costs of the products

with the two different approximations and on the number of products of each that are

required.  This is discussed in more detail below.  Finally, another advantage of SPAM in

this situation is that the maximum subspace dimension reached during the entire process

is only n=28 compared to the n=68 with the straight Lanczos method in row 3.

Rows 7-9 of Table IV show the results for a 2-level SPAM convergence with each

of the three choices for expansion vectors.  The number of products required are 2, 13,

and 20 respectively for the three matrices with bandwidths of 64, 32, and 0 for the DPR

and for the IIGD/GJD expansion vectors.  The Lanczos expansion vector requires 2, 14,

and 289 matrix-vector products respectively for the three matrices.  The same general

trend is seen as for the previous Lanczos rows in Table IV.  Namely, the slow

convergence of the Lanczos expansion vector is isolated to the highest approximation

level.  It is also worth noting that the maximum subspace dimension has increased to

n=77, which is larger even than the straight Lanczos convergence in row 3.  Although

this increase is somewhat artificial because of the adjusted convergence tolerance, the

increase is interesting even when compared in a relative way to row 6, which has the

same adjusted convergence tolerance.

Multilevel SPAM convergence is examined in Table V.  The bandwidths of the

various approximation levels are shown in the first column, and the corresponding

number of matrix-vector products required to achieve convergence is shown in the

second column.  The expansion vector in all cases is the DPR procedure, but the IIGD

expansion produces identical results.  Except for small variations in the matrix-vector

product counts due to threshold discretization, it is generally observed that as new SPAM

levels are added, the counts for the previous levels remain constant.  It is only the highest

level that is changed when a new level is added.  The overall effort required to achieve

convergence is given by the sum of the total efforts required for each level.  This can be

modeled by assuming that the ratio of the effort required

µk = Effort(H(k)x) / Effort (H(k–1)x) 4.6
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for each approximation level is the same for all levels.  This will not be true in actual

applications, but it gives an idea of the general trend of overall efficiency as a function of

µ and of the number of approximation levels.

The first column of Table V corresponds to µ=1, which means that all of the

matrix-vector products require the same effort.  As expected, it is seen that the overall

effort increases with the number of SPAM levels.  This is actually the situation for the

banded test matrices used in this section–they all require the same effort regardless of the

bandwidth, so no efficiency is gained by approximating one matrix by another.  The

second column corresponds to µ=3⁄4.  That is, each successive SPAM level requires 75%

of the effort of the previous one.  In this case, it is seen that for the convergence rates for

this model problem, the minimum overall effort decreases for one SPAM level, and then

begins to increase as more approximation levels are added.  The third column

corresponds to µ=1⁄2.  For this case, adding one SPAM level reduces the overall effort by

about 30%, adding a second level reduces the overall effort by an additional 5%, but

adding more SPAM levels causes the overall effort to increase.  The next column

corresponds to µ=1⁄4.  For this case, the overall effort decreases down to about 31% with

three approximate matrices, and remains fairly constant after that.  For µ=1⁄10, the overall

effort minimizes with three SPAM levels at 21%, and then remains roughly constant

beyond that.  The last column corresponds to µ=1⁄100, and the effort minimizes at 17%

with two SPAM levels.  The general conclusion from this effort model is that there is

some optimum SPAM level for each problem, and increasing the SPAM level beyond

that either increases the overall effort, or leaves the overall effort approximately the same

so that nothing further is gained.  The optimal approximation level at which that

minimum effort occurs depends on the accuracy of the sequence of matrix

approximations and on the effort required for each matrix-vector product at each

approximation level.

It is also observed in Table V that the maximum subspace dimension tends to

decrease as the number of SPAM levels increases.  This effect is not included into the

simple effort model described above, but for very large matrix dimensions, where either

memory or external storage is a limiting factor, this can be an important aspect of overall

efficiency.
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All of the above discussion has concerned convergence of the lowest eigenpair.

Convergence of several of the lowest eigenpairs is examined next.  There are several

ways to converge excited states with the Davidson method.  One approach is to converge

the lowest vector completely and then save that converged vector and the corresponding

matrix-vector product.  Then a new trial vector is generated for the second root, and the

procedure is restarted with two initial trial vectors (x1,x2) and one product vector (w1).

Because the lowest vector satisfies its convergence criteria, all of the expansion vectors in

this second step will be directed toward convergence of the second eigenpair.  Upon

convergence, both of the lowest two vectors and products are saved, a new trial vector is

generated for the third root, and the process is continued until all of the desired eigenpairs

have been computed.  The lowest 10 eigenpairs of the banded test matrix described above

are computed in this “one at a time” approach, and the convergence summary is given in

the first row of Table VI.  The residual norm for each vector is converged to |rj|<10–8, the

same as the previous calculations.  For this particular matrix, the convergence of each

new vector requires 11 or 12 iterations, and convergence of all 10 roots requires 118

matrix-vector products total.  The maximum subspace dimension reaches its maximum

value of n=21 on convergence of the 10th vector.  At this time, 9 converged vectors for

the lower roots have been computed and stored, and while iterating the last vector, 12

additional subspace vectors are required to achieve convergence.

The above “one at a time” procedure for excited states is appropriate when it is

not known in advance how many vectors are needed.  After each vector is converged, it

may be examined to determine if another vector needs to be computed.  This

characterization is, of course, very problem-specific.  If it is known ahead of time how

many vectors will be required, then another procedure may be employed.  In this

approach, all of the requested vectors are converged simultaneously, from the same set of

expansion vectors.  One or more initial vectors are generated, and at each step, one or

more unconverged vectors are chosen to define one or more new expansion vectors.  If

the effort involved in the computation of a matrix-vector product is dominated by

processing of the matrix itself (e.g. generation of the matrix elements, indexing of the

elements in a sparse data structure, or performing the associated I/O on the matrix

elements), then it is beneficial to compute simultaneously several new trial vectors.  This
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is because the cost of the matrix processing is amortized over several vector products.

This is the basis of the blocked version of the Davidson method proposed by Liu[4,9].

However, if the effort is dominated by the multiplications with the vector elements, then

it is more efficient to add a single new vector at a time to the subspace.  This latter

situation is assumed in the SPAM implementation described in this section.  There are

three ways that this addition of a single expansion vector is done.

The first way is to select the lowest unconverged vector, and use the

corresponding Ritz value and residual vector to define the new expansion vector.  Once

this vector is added to the space, it may benefit not only the selected eigenpair, but also

all of the other eigenpairs.  In this way, the total effort required for convergence of

several eigenpairs is reduced compared to the “one at a time” approach.  The total matrix-

vector product count for this method is given in the second row of Table VI.  The total

number of products is reduced to 42, which is a significant reduction compared to the

“one at a time” approach.  On average, the number of matrix-vector products has been

reduced from 11.8/eigenpair down to only 4.2/eigenpair.  However, it is also seen that the

maximum subspace dimension has increased from n=21 to n=42, so, compared to the

“one at a time” approach, there is a tradeoff between reducing the number of expansion

vectors and increasing the maximum subspace dimension.

A second way that individual expansion vectors may be selected is to cycle

among the unconverged vectors.  It is perhaps not obvious why this should result in an

improvement, but experience shows that this is the case for some problems.  The

qualitative reason for this is that the final expansion vectors computed for a particular

almost-converged eigenvector are rather selective for that particular vector and do not

benefit the other vectors within the expansion space.  In contrast, the vectors that are

added early for the poorly converged eigenvectors tend to benefit other nearby poorly

converged eigenpairs.  By cycling over the roots early, rather than picking one and

iterating it to convergence, all the vectors within the space are benefited.  The results of

this approach are given in the third row of Table VI.  It is seen that the total number of

products is reduced to 28 vectors, which is, on average, less than 3 matrix-vector

products per converged eigenpair.  This improved overall convergence also reduces the
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maximum subspace dimension down to n=28.  This is not as good as the “one at a time”

value, but it is better than the second row results.

A third way that individual expansion vectors may be selected is to improve the

unconverged vector that has the largest residual norm.  The advantage of this approach is

that the intermediate Ritz values tend to maintain to the extent possible the same order

throughout the convergence process.  The convergence results for this method are given

in the fourth row of Table VI.  For this test case, the convergence is comparable to that

for the cycling option.

These same four general approaches to convergence of multiple eigenpairs in the

traditional Davidson method also apply to the SPAM method.  The matrix-vector product

counts are reported in rows 5-8 of Table VI.  In all four cases, the SPAM procedure

requires only 20 exact H(0) matrix-vector products to converge all 10 eigenpairs.  The

number of approximate H(1) products required shows the same trend as discussed above

for the traditional Davidson method.  Namely, the “one at a time” approach is least

efficient and requires 138 H(1) products, the “lowest unconverged vector” approach is

significantly better with 62 H(1) products, the “cycle among the unconverged vectors”

approach is best and requires only 50 H(1) products, and the “largest residual” approach is

almost as good with 52 H(1) products.  In all cases, the average number of exact products

required is reduced to only 2 per converged eigenpair, which is significantly better than

even the best performance that is achieved with the traditional Davidson/DPR procedure.

Furthermore, if the H(1) products are very much cheaper than the H(0) products, then the

use of the SPAM method allows the practical use of the “one at a time” approach to

convergence in those cases where the number of converged eigenpairs is unknown at the

beginning, and each converged vector must be examined.  The maximum subspace

dimensions for these four SPAM cases follow the same trend as for the analogous four

DPR cases.  Namely, the “one at a time” approach has the smallest subspace

requirements,  whereas the simultaneous convergence options, cycling among the

unconverged vectors, choosing the largest residual requires larger subspaces, and

iterating on the lowest unconverged vector, result in larger subspace requirements.
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The previous discussion has assumed that the lowest eigenpairs within the

spectrum are desired.  All of these vector choices apply also to the convergence of the

highest eigenpairs within the spectrum.  An example of this is given below.

In the above simultaneous convergence examples, all the requested vectors are

converged relative to their own dynamical convergence tolerances at each SPAM level

before contraction of the vectors to the next lower (more accurate) SPAM level occurs.

This contraction involves the projection operator Q[n], followed by orthonormalization of

all the vectors, and this projection may introduce linear dependencies in the set of

contracted vectors.  Early during the iterations at some level, none of the vectors are

converged, so a new expansion vector is computed for each requested eigenpair.

However, not all of the vectors converge at the same time, some will converge before

others.  Consequently, there are several situations that can occur during contraction of the

vectors. 1) There are more vectors than roots, and each root has at least one expansion

vector computed for it.  In this case the projected vectors will be linearly independent.  2)

There are more new expansion vectors than roots sought, but some roots do not have

expansion vectors because they are already converged at that level.  The projected vectors

may be linearly dependent in this case.  3) There are fewer new expansion vectors than

roots.  There may be linear dependencies in the projected vectors in this case.  In the

SPAM implementation described here, all three of these situations are treated with

singular value decomposition (SVD).  The subblock of the coefficient matrix is

decomposed according to

c U Vn n n
T

m r+( ) =1 1: , : σ 4.7

nr is the number of requested roots (or the current subspace dimension as appropriate).  nm

is the number of expansion vectors up through the mth SPAM level (i.e. the ones not

being contracted).  U and V are orthogonal square matrices, and σσσσ is the “diagonal”

matrix of singular values.  In general, the subblock of c is rectangular, not square, and σσσσ

has the same dimensions as the subblock of c.  All three of the above situations may be

treated by examining the ratio of the singular values    σj/ σ1.  When this ratio becomes too

small, less than about 0.1 in most situations, then the corresponding vector in U may be

safely ignored without affecting convergence.  In case 1) above, there will be nr singular
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value ratios that are very close to 1.0.  In case 2) above, there will be one or more

singular values close to 1.0, and the remaining singular values will be small (usually

0.001 or smaller).  In case 3), there will be one or more ratios close to 1.0, but there may

be also small singular values that must be deleted.  Once the number of “large” singular

values are identified, the corresponding columns of U define the appropriate contraction

coefficients and the expansion vectors are contracted accordingly.  In the special case of a

single root, this procedure is always equivalent to the contraction described in Figure 2

and Figure 3.  It is only for simultaneous convergence of several states that the SVD

procedure is used to recognize linear dependencies.  There are several features of this

SVD transformation that are important.  Because the columns of U are orthonormal, and

the underlying expansion space is already orthonormal, the vectors may be contracted

without further orthonormalization.  Also, all of the above SVD operations occur just

within the subspace; manipulations within the large vector space X[n] are therefore

simplified or eliminated entirely.  The matrix V is not used in this procedure, so it need

not be computed or stored.  In situations for which loose convergence criteria are

specified for some eigenpairs, and tight convergence criteria are specified for others, it is

convenient to weight correspondingly the columns of c prior to the SVD procedure.

There are two other forms of excited state convergence that are implemented

within the SPAM procedure discussed in this section.  In some situations, a single interior

eigenpair is desired of some unknown index j within the entire spectrum (1…N), but a

good estimate of the final converged eigenvalue is known.  After the Ritz values within

the subspace are determined, the vector associated with the approximate eigenvalue

closest to this reference value is used to define the next expansion vector.  This is called

the root-homing mode.  In order to converge to the correct eigenpair, a good initial guess

for the vector in addition to the eigenvalue is required, and the target eigenvalue should

be well separated from other nearby eigenvalues.  An example of root-homing

convergence is given in Table VII.  An estimate of the eigenvalue is ρref=10.0 and the

starting vector is x1=e11, the 11th column of the unit matrix.  The Davidson procedure

with the DPR expansion vector converges to the appropriate root in 20 iterations.  In this

case, the IIGD expansion vector converges in only 16 iterations.  Applying a single-level

SPAM to this requires only 2 exact matrix-vector products to converge, a significant
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reduction.  SPAM using the IIGD expansion vector requires the same number of exact

products, but it reduces the number of approximate products compared to the DPR

expansion vector.

The other excited state method applies to the situation in which the index j within

the entire spectrum (1…N) is unknown, but it is the character of the eigenvector that

determines the appropriate eigenpair.  Suppose that there is some reference vector z,

perhaps that results from some simplified model problem, or the solution of an

eigenvalue equation that is “similar” to the current problem in some general sense.  After

the determination of the Ritz vectors, the overlaps (zTvj) may be computed for (j=1…n),

the current subspace dimension.  Then the approximate vector with the largest absolute

overlap is chosen to define the next correction vector.  This is called the vector-following

mode.  An example of vector-following convergence is given in Table VII.  The same

starting vector x1=e11 is used as before for the root-homing mode, and this same vector is

used also to define the reference vector.  The convergence trajectory is slightly different

for vector-following than for root-homing, and in this particular case the DPR expansion

vector performs slighltly better than the IIGD expansion vector for the straight Davidson

method, but the IIGD expansion vector performs slightly better for the SPAM method.  In

both of the SPAM calculations, only 2 exact matrix-vector products are required to

achieve convergence, and these are significant improvements over the straight Davidson

DPR and IIGD results.

Inspection of the converged eigenvector in both the root-homing and vector-

following calculation reveals that the initial vector overlap with the final converged

eigenvector is only 0.7439.  If a better starting vector is used, then convergence improves

for the DPR and IIGD methods.  The excellent convergence results of SPAM in this case

demonstrates the inherent advantage of isolating the quality of the initial vector from the

H(0) convergence rate.  In this case, even starting with a relatively poor starting vector, the

SPAM method converges in the same number of iterations as does a SPAM ground state

calculation with the same H(1).  By contrast, the Davidson DPR and IIGD methods

require almost twice as many iterations for this interior eigenpair (with a poor starting

vector) as they require for the ground state calculation (with a better starting vector).
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Tensor-Product Examples: Tensor-product (also called direct-product, or

Kronecker product) matrices occur in many application areas.  Examples include

separable differential equations, boundary value problems, translational and rotational

operators in many-body problems, and symmetry operators in group theory.  A tensor

product of two matrices is defined by

A B⊗( ) =( )( )ij kl ik jlA B 4.8

If the dimensions of the component matrices A and B are NAxMA and NBxMB respectively,

then in the tensor-product “matrix”, (ij) is treated as a single row index that ranges from 1

to NANB, and (kl) is treated as a single column index with range 1 to MAMB.  Eq. 4.8 may

be used to demonstrate the following useful relations with tensor-product matrices.

a. (A+B)⊗C = A⊗C+B⊗C

b. (A⊗B)⊗C = A⊗(B⊗C)

c. (AB)⊗(CD) = (A⊗C)(B⊗D)

d. (A⊗B)-1 = A-1⊗B-1

e. Rank(A⊗B) = Rank(A)⋅Rank(B)

f. Tr(A⊗B) = Tr(A)⋅Tr(B)

g. { λ(A⊗B)} = { λj(A)⋅ λk(B) : j=1…NA, k=1…NB}

h. Det Det DetN NB AA B A B⊗( ) = ( ) ( )

4.9

All of these relations generalize in the obvious way for tensor-products of three or more

component matrices.  Consider a general matrix-vector product of a tensor-product

matrix with a vector: w=(A⊗B)x.  In the general dense case, this would appear to require

NANBMAMB floating point multiplications (and an equal number of additions).  However,

Eq. 4.8 allows the matrix-vector product to be rewritten in the form

w x A B xij ij kl
kl

kl ik
k

jl kl
l

( ) ( )( )
( )

( )= ⊗( ) =








∑ ∑ ∑A B

4.10

The term in parentheses is a matrix-matrix product that requires MANBMB floating point

multiplications.  The second summation, over k is a second matrix-matrix product that

requires NAMANB floating point multiplications.  For rectangular matrices A and B, a

different operation count may result if the summation order is interchanged.  Particularly

for square component matrices of large dimension, matrix-vector products involving
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tensor-product matrices are much easier to compute in this “operator” form than those of

a general matrix of the same dimensions.  Sparseness and symmetry of the component

matrices can reduce the operation counts even below those given above.  In the more

general case, matrix-vector products of tensor-product matrices may be computed as

  

w x

A A A x

i i i
m

i i i j j j
j j j

j j j

i j
j

i j i j
m

j j j
jj

m
m m

m

m

m m m

m

( )
( ) ( ) ( )

( )( )
( )

( )

( ) ( ) ( )
( )

1 2
1 2 1 2

1 2

1 2

1 1
1

2 2 1 2

2

1 2

1 2

K
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K
K
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= ⊗ ⊗( )

=










∑

∑ ∑

A A A

∑∑












4.11

In other words, each component matrix A(k) is used to transform one index in the “vector”

x, and there are m such nested one-index transformations.  With a suitable arrangement of

the subscript indices, each one-index transformation is a matrix-matrix product, and for

rectangular component matrices, the total operation count depends on the order of the

summations.  If each component matrix is square and of dimension N, then Eq. 4.11

requires only mN(m+1) floating point multiplications.  This should be compared to the N2m

multiplications that are required for a general matrix-vector product involving a matrix of

dimension Nm.  Therefore, when treated in “operator” form as in Eq. 4.11, matrix-vector

products involving tensor-product matrices can require much less effort than a general

matrix-vector product of the same dimension.

Eqs. 4.9 may be used to show that the eigenpairs of a tensor-product matrix are

given by

A B v 0

v v v

A B

⊗( ) −



 =

= ⊗

= ⋅

λ

λ λ λ

( ) ( )

( )

( ) ( ) ( )

ij ij

ij

ij

i
A

j
B

i j

4.12

Murray et al[25] have proposed the use of tensor-product matrices as test problems for

iterative diagonalization methods because the exact eigenvalues and eigenvectors may be

determined in this product manner and compared to the results from the iterative

calculation.

In the present work, the reduced computational effort for the matrix-vector

products involving tensor-product matrices is exploited in a different manner.  Suppose
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the eigenpairs are required for some large matrix H(0).  It is assumed that H(0) is not a

tensor product matrix, but a good approximation H(1) exists that is of tensor-product form.

Such approximations often occur naturally, for example, from low-order operator

expansions or truncations, combined with an appropriate formal expansion basis.  The

goal in the present work is to exploit the tensor-product nature of H(1) in order to improve

the efficiency of the eigenvector determination of H(0).

In order to model this general kind of matrix decomposition, a perturbed-tensor-

product matrix H(0) will be defined as

H(0) = H (1) + β ∆∆∆∆ 4.13

in which H(1)=A(1)⊗A(2)⊗…⊗A(m) is the m-fold tensor-product of the 4x4 matrices used

by Murray et al[25].

A(k+1) = 

3 10 1 10 2 10 3 10

1 10 4 10 0 0

2 10 0 5 10 0

3 10 0 0 6 10

+
+

+
+



















k

k

k

k

  ;for k=0…(m-1)

4.14

The perturbation matrix ∆∆∆∆ is defined with the elements

∆jk = –1⁄2     ; for |j–k|=1

∆1N = ∆N1 = –1⁄2

∆jk = 0         ; otherwise

4.15

This matrix occurs in the Hückel theory of the molecular electronic structure of cyclic

polyenes[10], and both the eigenvalues and the eigenvectors have closed-form, analytic

solutions.  The lowest eigenvalue is λ1=–1, and the corresponding (unnormalized)

eigenvector is given by vk=1 for k=1…N; the largest eigenvalue is λN=+1, and the

corresponding eigenvector is vk=(–1)k for k=1…N; the remaining eigenvalues are doubly

degenerate and are otherwise distributed evenly about zero in between these extreme

values.  This results in the norms ||∆∆∆∆||=1 and ||H(1)–H(0)||=β.  The perturbation is not of a

tensor-product form, and this ensures that H(0) is not an exact tensor-product.  However, β

will be chosen appropriately in order to ensure that H(1) is a good approximation that can

be used to accelerate convergence of the eigenvectors.  The sparse form of ∆∆∆∆ allows for

efficient computation of matrix-vector products, and this combination results in good test

problems for the SPAM method. The test cases in Ref. [25] involve the 8-fold and the 10-
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fold tensor products.  The corresponding matrix dimensions are 48=65,536 and

410=1,048,576 respectively.  Ordinarily, dense matrix-vector products with matrices of

these dimensions would require 416=4.3⋅109 and 420=4.1⋅1012 floating point multiplications

respectively; by contrast the tensor-product contributions, computed according to Eq.

4.11, require only 8⋅49=2.1⋅106 and 10⋅411=4.2⋅107 floating point multiplications

respectively (ignoring the sparseness and symmetry in the component matrices), and the

operation count for the perturbation matrix is insignificant.  If these test matrices are

taken as models of general matrices of the same dimensions, then these operation counts

would results in effort ratios of µ8=4.9⋅10-4 and µ10=1.0⋅10-5.  These effort ratios are

typical of tensor-product approximations, and these examples show the tremendous

advantage this type of approximation offers in improving efficiency when combined with

the SPAM method.  Although these test cases are nontrivial, they do provide a relatively

inexpensive (a few seconds for each matrix-vector product on current desktop computers)

model for testing the behavior of SPAM for tensor-product matrices.

The convergence summaries are given in Table VIII for the lowest few roots of

the m=8 and m=10 matrices.  For both matrices, the perturbation parameter β was chosen

to result in 10 to 20 DPR iterations with the usual Davidson method to converge the

lowest eigenpair.  This level of perturbation is representative of operator approximations

in many applications.  The same four convergence approaches are taken as before: the

vectors are converged either sequentially or simultaneously, and the three possible

choices to determine the next expansion vector are compared for the simultaneous-

convergence cases.  In all cases, the initial vectors were chosen to be the appropriate H(1)

eigenvector, which was computed as a tensor product of the component matrix

eigenvectors according to Eq. 4.12.

The DPR convergence summaries for the lowest 10 roots are given in the first

four rows of Table VIII.  As with the previous banded matrix examples, the simultaneous

convergence options result in fewer matrix-vector products than the “one at a time”

convergence approach, and the simultaneous convergence options require larger

maximum subspaces.

The convergence summaries for the SPAM calculations, with the usual DPR

expansion vector, are given in rows 4-8 in Table VIII.  Significant reductions in the
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numbers of H(0) products are achieved for the “one at a time” convergence mode and for

the simultaneous convergence modes.  The total relative effort is given for each

convergence mode relative to the corresponding DPR convergence using the µ effort

ratios discussed above.  The reduction in effort is significant for all of the SPAM cases,

but largest for the “one at a time” convergence mode, resulting in a 91% reduction of

effort relative to the DPR “one at a time” calculation for the m=8 matrix, and an 86%

reduction of effort for the m=10 matrix.

In addition to using the diagonal elements of H(0) as the preconditioner in the DPR

method, the tensor-product nature of H(1) allows for a significant improvement when

using the IIGD/GJD procedure to determine the expansion vectors.

(H(1) – ρ ) δδδδIIGD = –r  + ε x 4.16

The spectral form, (H(1)–ρ )=U(D–ρ )UT, with

U=U(1)⊗U(2)⊗… ⊗U(m) 4.17

in which U(k) is the set of eigenvectors of the component matrix A(k), allows for the

efficient computation of the inverse.  This is called a fast inverse procedure.  For the

component matrices in Eq. 4.14, the eigenvectors are the same for each component

matrix, and the corresponding component eigenvalues are related by a uniform shift of

1/10 from the previous component matrix.  This leads to some simplifications in

computing the fast inverse, but it does not result in any significant additional performance

advantage.  The eigenvalues D are products of the component matrix eigenvalues, the

generalization of Eq. 4.12.  This spectral decomposition allows the IIGD/GJD expansion

vector to be computed with the steps

rU = UT r

xU = UT x

(D – ρ ) δδδδU = –rU  + ε xU

δδδδIIGD
 = U δδδδU

4.18

During the SPAM iteration, each IIGD/GJD expansion vector requires four total matrix-

vector products (two with UT, one with U, and one, after orthonormalization, with H(1))

compared to the single H(1) matrix-vector product each iteration with the simple diagonal

preconditioner.  The effort ratio µ is four times larger for this procedure than that for a
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SPAM iteration involving the simple diagonal preconditioner.  Therefore, in order to

improve efficiency, the IIGD/GJD procedure should converge in 1/4, or fewer, of the

number of SPAM iterations required with the simple diagonal preconditioner.  The

optimal choice of expansion vector method is therefore problem-specific.

The convergence summary of SPAM using the IIGD/GJD expansion vectors is

given in the last four rows of Table VIII.  These results may be compared directly with

the previous four rows, which used the DPR expansion vectors in the SPAM procedure.

For both the m=8 and m=10 matrices, the SPAM+IIGD expansion vectors result in

significant reduction in the number of H(1) products that are required, but, because of the

larger effort ratios µ, only modest overall efficiency improvements compared to the DPR

expansion vectors.  However, the maximum subspace dimension is reduced significantly

for the IIGD/GJD expansion vector choice compared to the DPR expansion vector

choice.

For future reference, the lowest computed eigenvalues are given in Table IX for

both of these tensor-product test matrices.  The unperturbed β=0 eigenvalues are the

tensor-product eigenvalues, the lowest of which are given by Murray et al (note the

typographical error for λ2 in Ref. 25).  These may also be computed by taking the

appropriate products of the eigenvalues of the component matrices of Eq. 4.14.  The

perturbed β≠0 eigenvalues have no simple or closed-form solution.

MRSDCI Examples: The multireference single- and double-excitation

configuration interaction (MRSDCI) code in the COLUMBUS Program System[11,12] is

a “direct-CI” method, which means that the hamiltonian matrix is treated in operator form

– the required matrix-vector products are computed “directly” from the underlying

repulsion integrals and coupling coefficients.  The repulsion integrals are partitioned

based on the number of “internal” and “external” orbital indices, and the coupling

coefficients are partitioned and computed correspondingly.  The most important

contributions to the eigenvalue are from the repulsion integrals indexed by four “internal”

orbital indices, gpqrs; these include both the reference configuration state function (CSFs)

and those related to the reference CSFs by rearrangements of the electrons within the

internal orbitals.  In the graphical unitary group approach used in the COLUMBUS

Program System, these CSFs are called the “z-walks.”  The next most important
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contributions to the eigenvalue are those that involve the interactions of the z-walks with

the other expansion CSFs.  These involve only the small subset of the integrals with three

internal, gapqr, and two internal, gabpq and gapbq, orbital indices.  These interactions are

sufficient to determine the first-order wave function and the second-order energy

contributions in the perturbation expansion.  An approximate hamiltonian matrix may be

defined that consists only of the diagonal elements and of the rows and columns

corresponding to the z-walks.  This is called a “Bk” approximate hamiltonian matrix.

Matrix-vector products with the Bk and exact hamiltonian matrices correspond to typical

effort ratios of µ=10–1 to µ=10–3.

This suggests the use of the Bk hamiltonian as the H(1) matrix, and H(0) as the exact

matrix in the SPAM procedure[13].  The convergence summaries for two test

calculations are given in Table X.  The first calculation is for a single-reference wave

function for the 3B1 ground state of the CH2 molecule.  This small calculation consists of

2,036 expansion CSFs with two z-walks, and this results in a measured effort ratio of

µ=1.03⋅10–1.  The second calculation is for a multireference wave function for the ground

state of the CH3 radical.  This is a larger test case, but is still modest, with 70,254

expansion CSFs and 188 z-walks, and this results in a measured effort ratio of

µ=6.04⋅10–2.  In both cases, the initial vector is the column of a unit matrix corresponding

to the lowest diagonal element.  As seen in Table X, the SPAM procedure only improves

the overall efficiency by a modest factor of 10%-30%, depending on the convergence

tolerance.  This is because the Bk hamiltonian is a rather poor approximation to the exact

hamiltonian matrix, and leads to a large ||H(1)–H(0)|| (which was empirically estimated in

these calculations for the dynamic tolerance).  This is also evident from the convergence

trajectories in which a single H(1) iteration often is followed immediately by a subsequent

H(0) iteration.  Future effort will be directed toward finding more accurate approximate

H(1) hamiltonian matrices.

Rational-Function Direct-SCF Examples: Self-Consistent Field (SCF) wave

function optimization involves the optimization of a trial electronic structure wave

function with respect to the essential subset of orbital rotations[14].  One approach to this

nonlinear optimization problem involves a sequence of rational function approximations.
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Optimization of an intermediate rational function approximation results in the eigenvalue

equation

B w

w

k 0−
−












= 





λ
λT 1 0

4.19

In this equation, the matrix B is the orbital-rotation hessian matrix (the matrix of second

derivatives) evaluated with the current reference wave function, the vector w is the

orbital-rotation gradient, and k is the vector that defines the optimal orbital rotations

within the local rational-function approximation.  The vector k is used to update the wave

function and to define a new reference wave function expansion point for the next

rational function approximation; this sequence of wave function updates constitutes an

“outer” iteration.  For each “outer” iteration, a single eigenpair of Eq. 4.19 is required,

and it is the one that corresponds to the lowest eigenvalue.  The iterative solution of this

eigenvector is the “inner” iteration.  Further details of this kind of wave function

optimization may be found in Refs. [14,15].  For the present discussion, the form of the

matrix B is of interest.

B F F

g g g
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2

δ δ 4.20

During the eigenpair solution, the Fock matrix elements Fab and Fij are available, but the

remaining repulsion integral contributions to the matrix (2gaibj–
1⁄2gajbi–

1⁄2gabij) are relatively

expensive to include.  For large molecular problems in which the “direct-SCF” approach

is used, these contributions must be recomputed on-the-fly as the matrix-vector products

are needed during the iterative solution to the eigenvalue equation[16].  This suggests the

SPAM procedure using the approximation

B B g g gia jb ia jb aibj
MO

ajbi
MO

abij
MO

( )( )
( )

( )( )
( ) [ ] [ ] [ ]0 1 1

2
1
28 2= + − −( ) 4.21
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4.22

The tensor-product form of the B(1) matrix is shown explicitly in Eq. 4.22.  The relative

effort between a B(0) and the simpler B(1) matrix-vector product ranges from µ=10–2 to

µ=10–4 or better[15,17].  This approximation to the Hessian matrix has also been used
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successfully by Wong and Harrison[18] in a preconditioned-conjugate-gradient

optimization. Table XI summarizes the DPR and SPAM convergence using this tensor-

product approximation to the hessian matrix for the Fe(CO)5 molecule.  This calculation

requires three or four “outer” iterations (each of which requires a new eigenvector

solution) to converge, depending on the overall convergence tolerance.  The number of

matrix-vector products required to achieve convergence is given for each of the “outer”

iterations, along with the overall totals.  The efficiency improvements are modest for this

calculation, ranging from 10% to 30% reductions in the total effort.

There are two other important features of this particular optimization problem that

should be mentioned because they apply generally to other similar optimization

problems.  First, because the eigenvalue equation is embedded within an “outer” level

optimization process, the convergence criteria for the individual eigensolutions changes

as the overall optimization process converges; in particular in the present application,

during the initial outer iterations, the eigensolution involving B(1) alone is often

sufficiently accurate, and the costs for the B(0) products increases as the repulsion integral

thresholds are tightened toward convergence.  Secondly, the above equations are written

in the molecular orbital [MO] basis.  However, the actual calculations are done in the

atom-centered atomic-orbital [AO] basis where computation of the repulsion integrals

g[AO] is easiest; B(1) is also a tensor-product matrix in this basis[14-17].  This is typical of

such tensor-product approximations.  Because the tensor-product nature of the matrix is

maintained after such basis transformations, the individual component matrices may be

treated in the most convenient or most efficient manner.

Ill-Conditioned Eigenproblem Examples:  Due to the finite precision used in

computations, the computed eigenvalue  ρj  and eigenvector vj of the matrix H almost

satisfy[1] the exact equation

( H + E –ρj )vj = 0       [exact arithmetic] 4.23

That is, the computed eigenpair is almost the exact eigenpair of a matrix (H+E) that is

close to the matrix H.  Using backward-error-analysis[1], the error matrix E satisfies

||E|| ≤ p(N) ε ||H|| 4.24

p(N) is a modestly growing polynomial of the matrix dimension N.  ε is the relative

precision of the floating point representation and is called the machine epsilon.  For
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simplicity, the polynomial will be approximated hereafter as p(N)≈1.  The bound Eq. A1

may be used to estimate the absolute error of the computed eigenvalue.

|λj – ρj| ≤ ||E|| ≈ ε ||H|| 4.25

The relative error of the eigenvalue is then bounded by

e
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4.26

The ratio of the largest exact eigenvalue magnitude and the smallest exact eigenvalue

magnitude on the right hand side of Eq. 4.26 is called the matrix condition number.  Eq.

A2 gives a similar bound on the accuracy of the computed eigenvector
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From Eq. 4.26 and Eq. 4.27 it is seen that the accuracy with which an eigenvalue

and eigenvector  may be computed using finite precision arithmetic depends on the

machine epsilon, the condition number of the matrix, on the eigenvalue being computed,

and on the gap of the eigenvalue being computed.  An ill-conditioned eigenproblem is

one in which the accuracy of the desired eigenpair of a given problem is limited due to an

unfortunate combination of these factors.

In order to examine the convergence behavior of the SPAM method with ill-

conditioned eigenproblems, a model matrix H is defined in spectral form according to

H = U D UT 4.28

Djk = ∆k–1 δjk    ; for all j, k 4.29

U = (1 + Y) (1 – Y)–1 4.30

Yk,k+1 = –Yk+1,k = –Y1N = YN1 = α     ; for all k

Yjk = 0    ; otherwise

4.31

The exact eigenvalues of H are the elements of the diagonal matrix D, and the

corresponding eigenvectors are the columns of the orthogonal cyclic Toeplitz matrix U.

Specifically, there is an eigenvalue with the positive value λk=∆k–1 and with the

corresponding eigenvector vk=Uek where ek is the unit vector corresponding to the kth

coordinate.  The scalar parameter ∆, along with the matrix dimension N, determine the

condition number of the matrix and the eigenvalue gaps.  The scalar parameter α defines
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the skew-symmetric matrix Y, which may be regarded as a generator for the orthogonal

rotation matrix U.  The parameter α corresponds roughly to a rotation angle, with smaller

angles α corresponding to smaller rotations which, in turn, result in smaller off-diagonal

elements of the matrix H.  With these scalar parameters, the condition number, the

eigenvalue gaps,  and the diagonal dominance of the matrix may be controlled.

For large matrix dimension N, it is not practical to compute the matrix H

explicitly.  However, matrix-vector products may be computed efficiently in operator

form as

H x = (1 + Y) (1 – Y)–1 D (1 – Y) (1 + Y)–1 x 4.32

in which the individual factors operate on the trial vector x in right-to-left order.  Because

of the special form of the skew-symmetric matrix Y, both the matrix-vector products and

the linear equation solutions for the individual factors may be computed with only O(N)

arithmetic operations.

The rotation matrix U may be approximated by truncation of the series expansion.

Um = 1 + 2Y + 2Y2 + 2Y3 +…+ 2Ym 4.33

= 1 + Y(2+… (2 + Y(2 + Y(2 + 2Y)))) 4.34

This allows an approximate matrix to be defined as

H[1] = Um D Um
T 4.35

Because the truncated Um matrix is not orthogonal, both the eigenvalues and the

eigenvectors of H[1] differ from those of H.  The accuracy of the approximate matrix H[1]

depends on the expansion length m, longer expansions being more accurate generally

than shorter expansions.  Matrix-vector products (Umx) are computed recursively using

the factored representation of Eq. 4.34, the effort for which scales modestly as O(mN).

Table XII shows the convergence summaries  for four different sets of

calculations.  In all cases, N=1000, α=0.1, and the final convergence criteria are set to

guarantee that Sin(ψk)≤ 10–8 according to the bound Eq. A15.  Because the exact

eigenvalue gaps are known for this model problem, they were used to set the convergence

criteria.  Up to two levels of approximation are used in these calculations: H[1] is

constructed from a U16 truncation, and H[2] is constructed from a U12 truncation.  Other,

lower-order, expansions were also examined, but these approximations resulted either in
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impractically slow SPAM convergence,  or they were not sufficiently accurate to improve

convergence over the reference Davidson method.  The exact matrix H is denoted as

m=∞ in Table XII.  In all cases, the expansion vectors are constructed using diagonal

preconditioned residuals.  The initial vectors in all cases are the appropriate columns of

the unit matrix.  The four sets of calculations differ by the choice of ∆.

The first set of calculations corresponds to ∆=1.01.  The condition number for this

matrix is 2.1⋅104, which corresponds to a fairly well-conditioned matrix.  Convergence

summaries for the lowest five eigenpairs are given in the first columns, and the

convergence summaries for convergence of the highest five eigenpairs are given in the

last columns.  For the lowest eigenpair calculations, the number of exact matrix-vector

products required is reduced from 19, for the straight Davidson method, to 10 for the

SPAM method.  For the highest eigenvalues, the product count is reduced from 13 to

only 5 – only a single exact matrix-vector product is required to achieve convergence for

each of the higher eigenpairs.  The individual eigenvalues are more widely separated at

the high end of the spectrum, and this results in the superior convergence rate.  The gaps

for λ1 and λN are shown in Table XII.  Both the Davidson and the SPAM convergence are

improved because of the larger gaps. The relative errors ek in the eigenvalues are also

included in Table XII.  The relative error basically indicates the number of correct

significant digits in the computed eigenvalue.  The maximum relative error for the five

computed eigenvalues is given in the table, but in all cases, the errors were comparable

for all of the individual eigenvalues in the set.  As seen in Table XII, the relative error is

somewhat larger for the small end of the spectrum than for the large end of the spectrum.

The lowest computed eigenvalues are two or three significant digits less accurate than the

highest computed eigenvalues, which in turn are correct to almost machine precision.

This is a result of the condition number of the matrix as shown in Eq. 4.26.  Loosely

speaking, the relative error when a small eigenvalue is contaminated by a large

eigenvalue is larger than the relative error when a large eigenvalue is contaminated by a

small eigenvalue.  The maximum subspace dimension is also given in Table XII, and it is

seen that it changes very little for this matrix for the two levels of SPAM.  The most

significant improvement for the SPAM method is the reduction of the number of exact

matrix-vector products that are required to achieve convergence.
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The second set of calculations corresponds to ∆=(1.01)–1.  It may be verified that

this matrix is the inverse of the first matrix, so the condition number is the same.

However, the eigenvectors corresponding to the small eigenvalues of the first matrix

correspond to those of the large eigenvalues of the second matrix.  The eigenvalues of the

first matrix are the inverse of the eigenvalues of the second matrix.  Consequently, the

eigenvalue gaps of the second matrix are smaller than those of the first matrix.  Because

of this difference in the gaps, the convergence rates are slower for the second matrix than

for the corresponding eigenpairs of the first matrix for the lower eigenpairs.  This slower

convergence is observed both for the Davidson iterations and for the SPAM iterations.

Just as for the first matrix, the higher eigenpairs are converged with a single exact matrix-

vector product each using the SPAM method.  It is also seen that the relative errors are

about the same for this second matrix as for the first matrix, and in particular, the lowest

computed eigenvalues are less accurate than the highest computed eigenvalues by only

two or three significant digits.  The maximum subspace dimension is fairly constant for

the convergence of the higher eigenpairs, but it becomes significantly larger for the two-

level SPAM calculation for the lower eigenpairs due to the smaller eigenvalue gaps.

The third set of calculations corresponds to ∆=1.05.  The condition number for

this matrix is 1.5⋅1021, a large value that corresponds to a very ill-conditioned matrix.

Convergence could not be achieved for the lowest eigenpairs of this matrix.  The relative

errors are given for the partially converged eigenvalues, and it is clear that no progress

toward convergence can be attained under any circumstances.  Not only are there no

significant digits that are correct in the eigenvalues, but, consistent with Eq. 4.26, the

partially converged eigenvalues are incorrect by several orders of magnitude.  Even if the

procedure is started with eigenvectors that are exact to machine precision, the numerical

errors involved in computing the matrix-vector product result in large residual norms and

in incorrect computed eigenvalues.  This is because of the extremely large condition

number for this matrix.  This demonstrates that it is not just the convergence of the

iterative procedure that is problematic, it is the fundamental matrix-vector product

operation itself that cannot be performed accurately.  However, even with the poor

condition number for this matrix, rapid convergence could be achieved for the highest
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eigenpairs, and furthermore, consistent with Eq. 4.26, the computed eigenvalues display

small relative errors.

The fourth set of calculations corresponds to ∆=(1.05)–1.  This results in the same

poor condition number as for the third matrix, and just as for the third matrix,

convergence could not be achieved for the lowest eigenpairs.  Rapid convergence could

be achieved for the highest eigenpairs, and the computed eigenvalues show very small

relative errors.  It is interesting to note that the computed eigenvectors for the highest

eigenvalues are exactly those that would have been computed (with exact arithmetic) for

the lowest eigenpairs of the third matrix.  Similarly, the computed eigenvectors

corresponding to the highest eigenvalues of the third matrix correspond exactly to those

that would have been computed (with exact arithmetic) for the lowest eigenpairs of the

fourth matrix.

The need to compute eigenpairs of ill-conditioned eigenvalue equations or

clustering of eigenvalues arises in a wide variety of applications.  Among these are

problems in computational chemistry (e.g. the cumulative reaction probability

formulation of Miller [19] in chemical kinetics), two-dimensional disordered atomic

systems [20,21], and the solution of generalized eigenvalue problems arising in structural

mechanics and other areas (e.g. ocean wave modeling) [22,23].  The above examples

show that the SPAM method may be applied to these equations in certain situations, and

that significant improvements in efficiency can be achieved compared to the usual

Davidson method.  First, the problem should be expressed in such a way that eigenpairs

at the high end of the spectrum are computed.  This may involve the use of shift-and-

invert transformations of the original problem in order to achieve this formulation.

Secondly, appropriate, and sufficiently accurate, approximate matrices must be devised

for this transformed problem in order to apply the SPAM procedure.

5. Summary and Conclusions

A new diagonalization method, SPAM, has been developed and applied to several

matrix eigenproblems.  This method is a modification of the Davidson subspace method.

It uses an approximate matrix, or a sequence of approximate matrices, along with
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projection operators, in order to generate the basis vectors for the subspace expansion.

The goal of the method is to reduce the number of exact matrix-vector products that are

required, and, in this way, to reduce the overall effort required to achieve convergence.

The method is applicable to the lowest eigenpair of the spectrum, the lowest few

eigenpairs, the highest eigenpair, the highest few eigenpairs, or selected interior

eigenpairs determined either with vector-following or root-homing approaches.  A

dynamical convergence criterion is developed that allows for efficient early termination

of the intermediate iterations for single-level and multilevel SPAM.  Contraction of the

intermediate-converged eigenvectors in order to construct the expansion subspace for

multiroot calculations is achieved with singular value decomposition.

The method is applied to banded matrices, perturbed-tensor-product matrices,

MRSDCI Hamiltonian matrices, a set of ill-conditioned matrices, and the eigensystem

that results from rational-function direct-SCF wave function optimization.   In these

applications, approximate matrices are generated by deletion of small matrix elements,

deletion of off-diagonal blocks of matrix elements, tensor-product approximations,

operator approximation, and by truncation of series expansion.  With sufficiently accurate

approximations, the SPAM method improves the convergence efficiency in all of these

applications, in some cases only modestly, and in some cases dramatically.  Several

examples that involve “one vector at a time” convergence of multiple eigenpairs show

extraordinary improvements over the reference Davidson procedure.  The expansion

vectors are generated using the usual preconditioned residual vector and the IIGD/GJD

procedure, with the latter displaying superior convergence with suitably accurate

preconditioners, and both procedures are observed to display convergence superior to the

Krylov/Lanczos approach.

Many eigenvalue problems lend themselves naturally to formal approximation.

The solution of the approximate problems leads to conceptual insight in addition to

approximate numerical solutions to the original problem.  In some cases, there exists a

sequence of successively simpler approximations, each requiring less effort than its

predecessor.  The multilevel SPAM method provides a framework within which each of

these approximations can be used to improve the efficiency of the original eigenproblem.
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A standard Fortran 90/95 subroutine has been written that implements the

multiroot multilevel SPAM method described in this work.  This subroutine, along with

documentation and test examples, is available from the anonymous ftp server

ftp.tcg.anl.gov.

There are several directions for future extensions of this method.  The first is to

the generalized symmetric eigenvalue problem ( H – λjS)vj = 0, in which the metric

matrix S is symmetric and positive definite.  The iterative subspace solution of this

equation has been analyzed in detail by Sleijpen et al[27,28], and we believe that this

analysis applies in a straightforward way to the SPAM method. A second possible

extension is to the general nonsymmetric eigenvalue problem.   This extension is

somewhat more problematic[3].  We are also examining the use of the SPAM in the

solution of other linear and nonlinear matrix equations.

Appendix A: Bounds and Estimates

In this appendix, an analysis of the SPAM procedure is presented.  This includes

various bounds and error estimates of the eigenvalues and eigenvectors.  Suppose a

selected eigenvector vj
(0)  and eigenvalue λj

(0) of a symmetric matrix H≡≡≡≡H(0) are desired,

and an approximate matrix H(1) is chosen, constructed, or made available with the

corresponding eigenpair vj
(1) and λj

(1).  In general, the eigenvalues and corresponding

eigenvectors of the two matrices should be “close” in some sense, and in particular this

should be true for the eigenpair of interest.  The rigorous bounds[1]

λ λj j
( ) ( ) ( ) ( )0 1 1 0− ≤ −H H A1

Sin
Gap j

j j
j

∠( )( ) ≤
−

( )v v
H H

H
( ) ( )

( ) ( )

( ) ( )
,

, ,

1 0
1 0

1λ γ
A2

(with γ=0 or 1) apply to all of the eigenvectors and eigenvalues of the two matrices.  The

matrix norm used in this discussion is the spectral norm defined as

  
A A= =Max j Nj{ ( ) : }λ 1K A3

where λj(A) is the jth eigenvalue of the matrix A in which the eigenvalues are ordered

from smallest to largest.  For the matrix norm ||H(1)–H(0)|| in particular, the eigenvalues of
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the matrix (H(1)–H(0)) will be, generally, both positive and negative, but they should all be

“small” in magnitude in a qualitative sense for these bounds to be useful.  The gap

function in Eq. A2 is defined as

Gap j Min k N k jkα α λ, , { ( ) : ; }A A( ) = − = … ≠1 A4

In words, it is the smallest gap between the scalar argument α and the nearest eigenvalues

that surround the jth eigenvalue of the matrix A.  Eq. A2 suggests that, for an isolated

eigenvalue (i.e. a large gap), the corresponding eigenvector may be approximated well

from the approximate matrix, but for closely spaced eigenvalues (with small gaps

separating them), it is only the vector subspace spanned by the entire set of nearby

vectors that is approximated well.  This is discussed in more detail in Ref. [1].  Note that

the gap of either matrix H(0)or H(1) may be used in Eq. A2  as appropriate.  In particularly

bad situations of clustered eigenvalues, the corresponding eigenvectors may be very

sensitive to the small differences in (H(1)–H(0)), whereas the eigenvalues themselves are

relatively stable to these small differences.  Another useful property of a matrix is the

Spread(A), defined as

Spread(A)≡ λN(A)- λ1(A) A5

which is the numerical range of the eigenvalues of the matrix A.

The angle ψ= ∠( )v w,  between two arbitrary vectors v and w is defined in the

usual way

Cos

T

ψ( ) =
( )

⋅

v w

v w

A6

It is also useful to decompose an arbitrary unit vector into orthonormal components, such

as

w v v= + ⊥Cos Sin( ) ( )ψ ψ A7

This decomposition is consistent with the definition of ψ in Eq. A6.

In the SPAM method, the selected eigenvector and eigenvalue are iterated to

convergence, so the bounds in Eqs. A1-A2 are not especially useful in determining the

accuracy of this eigenpair.  This is because the above general bounds must hold also for

the eigenpairs that are not being improved during the iterative process.  In order to refine

the bounds of the selected eigenpair, the iterative procedure itself must be examined.
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During the iterative process, there is some set of expansion vectors {xj:j=1…n},

assumed herein to be orthonormal, that are collected into the matrix X[n] and that define

the projection operators P[n]=X[n]X[n]T and Q[n]=1-P[n].  These projectors, in turn, define the

SPAM

H P H P P H Q Q H P Q H Q[ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] ( ) [ ] [ ] ( ) [ ]n n n n n n n n n≡ + +( ) +0 0 0 1 A8

= + −( )H Q H H Q( ) [ ] ( ) ( ) [ ]0 1 0n n A9

Note that the first form is used in the computation because the first three terms in

parentheses may be constructed entirely from the stored vectors X[n] and matrix-vector

products W[n]= H(0)X[n] and do not require an explicit computation of a matrix-vector

product with the matrix H(0).  The second form is convenient for some of the formal

analysis in this section.  The eigenpair is determined from this approximate SPAM

H v 0[ ] [ ] [ ]n
j
n

j
n−( ) =λ A10

The normalized eigenvector vj
[n] may be decomposed according to

v X c xj
n n n n nSin[ ] [ ] [ ] [ ] [ ]( )= + +ψ 1 A11

in which the unit vector x[n+1] is orthogonal to X[n].  The normalization is

c[n]Tc[n]+Sin2(ψ[n])=1.  This is a generalization of the decomposition of Eq. A7.  As the

iterative SPAM procedure converges |c[n]|→1 and Sin(ψ[n]) →0.

Once an eigensolution of H[ ]n  has been computed, the accuracy of the original

H(0) eigensolution may be assessed by computing the residual vector

r H vj j j
n= −( )( ) [ ]0 ρ A12

with ρ j j
n T

j
n= v H v[ ] ( ) [ ]0  being the scalar that minimizes the residual norm.  A

conservative bound on an exact eigenvalue is given by [1]

ρ λj j j− ≤( )0 r A13

Another (ultimately tighter) bound is given by

ρ λ
ρ

j j
j

jGap j
− ≤ ( )

( )
( ), ,

0
2

0

r

H

A14
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but this requires knowledge of the exact gap of H(0), which is generally unknown.  A

useful lower bound on the gap may be computed sometimes from Eq. A13, and that

lower bound can be used in the RHS of Eq. A14.

In principle, there is no lower bound on the residual norm magnitude |rj|.

Consider, for example, the special case in which H(1) and H(0) share the same

eigenvectors, but have different eigenvalues.  As long as the vectors are ordered

correctly, then|rj|=0 and convergence would be achieved in a single iteration, regardless

of the magnitude of ||H(1)–H(0)||.

The accuracy of the vector vj
[n] is determined by ψ= ∠( )v vj

n
j

[ ] ( ), 0 , and this angle is

bounded by[1]

r

H

r

H

j j

jSpread
Sin

Gap j( ) ( ), ,0 0( ) ≤ ( ) ≤ ( )ψ
ρ

A15

The exact Spread and Gap of H(0) are unknown, but useful upper and lower bounds,

respectively, may sometimes be computed and used to bound the exact Sin(ψ).  In

practical applications, any or all of the above bounds, on the eigenvalues, Eqs. A13 and

A14, or the eigenvector error, Eq. A15, may be used to terminate the iterative

diagonalization procedure.

Substitution of Eq. A9 into Eq. A12 results in

r H Q H H Q v

Q H H Q v

j
n n n

j j
n

j
n

j
n n

j
n

= − −( ) −

= − − −( )
( )

( )

[ ] [ ] ( ) ( ) [ ] [ ]

[ ] [ ] ( ) ( ) [ ] [ ]

1 0

1 0

ρ

λ ρ

A16

Multiplying from the left by v j
n T[ ]  gives

( )[ ] [ ] [ ] ( ) ( ) [ ] [ ]λ ρj
n

j j
n T n n

j
n− = −( )v Q H H Q v1 0 A17

= ( ) −( )+ +Sin n
j
n T

j
n2 1 1 0 1ψ [ ] [ ] ( ) ( ) [ ]x H H x A18

λ ρ ψj
n

j
nSin[ ] [ ] ( ) ( )− ≤ ( ) ⋅ −2 1 0H H A19

The bound in Eq. A19 follows from Eq. A18 and the definition of the matrix norm Eq.

A3.  This improves on the general eigenvalue bounds given directly by Eq. A1.

Substituting Eq. A17 into Eq. A16 gives
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r v v Q H H Q v Q H H Q v

v v Q H H Q v

v

j j
n

j
n T n n

j
n n n

j
n

j
n

j
n T n n

j
n

n
jSin

= −( ) − −( )
= − −( ) −( )
= − ( ) −

[ ] [ ] [ ] ( ) ( ) [ ] [ ] [ ] ( ) ( ) [ ] [ ]

[ ] [ ] [ ] ( ) ( ) [ ] [ ]

[ ]

1 0 1 0

1 01

1ψ [[ ] [ ] [ ] ( ) ( ) [ ]n
j
n T n

j
nv Q H H x( ) −( ) +1 0 1

A20

r v v Q H H xj
n

j
n

j
n T n nSin= ( ) ⋅ −( ) −( ) +ψ [ ] [ ] [ ] [ ] ( ) ( ) [ ]1 1 0 1 A21

This results in the bounds

r H Hj
nSin≤ ( ) ⋅ −ψ [ ] ( ) ( )1 0 A22

Sin Sin
Gap j

Sin
Gap j

n j
n

j
n T n n

j

n

j

ψ ψ
ρ

ψ
ρ

( ) ≤ ( ) ⋅
−( ) −( )

( )
≤ ( ) ⋅

−

( )

+
[ ]

[ ] [ ] [ ] ( ) ( ) [ ]

( )

[ ]
( ) ( )

( )

, ,

, ,

1 1 0 1

0

1 0

0

v v Q H H x

H

H H

H

A23

ρ λ ψ

ψ

j j j
n

j
n

j
n T n n

n

Sin

Sin

− ≤ = ( ) ⋅ −( ) −( )
≤ ( ) ⋅ −

+( ) [ ] [ ] [ ] [ ] ( ) ( ) [ ]

[ ] ( ) ( )

0 1 0 1

1 0

1r v v Q H H x

H H

A24

ρ λ ψ
ρ

j j
n j

n
j
n T n n

j

Sin
Gap j

− ≤ ( ) ⋅
−( ) −( )

( )
+

( ) [ ]
[ ] [ ] [ ] ( ) ( ) [ ]

( ), ,
0 2

1 0 1 2

0

1 v v Q H H x

H

A25

≤ ( ) ⋅
−

( )Sin
Gap j

n

j

2
1 0 2

0
ψ

ρ
[ ]

( ) ( )

( ), ,

H H

H

A26

On the first SPAM iteration, when the first vector is being computed to form the

subspace X[1], Sin(ψ)=1 and Eq. A22 shows that the residual norm |rj| is bounded from

above by the matrix difference norm ||H(1)–H(0)||.  Similarly, the bound on the error angle

Sin(ψ) reduces to that given in Eq. A2, and the eigenvalue error reduces to that given in

Eqs. A1 and A14.  It is only as vectors are added to the subspace X[n] that the bounds

improve.  All of the bounds in Eqs. A22-A26 improve upon the general bounds because

the Sin(ψ[n]) coefficient (which is a computable quantity)  decreases toward zero as the

procedure converges.   Eq. A23 shows also that Sin(ψ), the exact error in the eigenvector,
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and Sin(ψ[n]) are of the same order, and both decrease together as convergence is

achieved.

The accuracy from one SPAM iteration to the next is now examined.  The

eigenvector vj
[n] of H[ ]n  is decomposed according to Eq. A11, and the vector x[n+1] is

appended to the X[n] basis vectors to give the new projectors

P X X P x x[ ] [ ] [ ] [ ] [ ] [ ]n n n T n n n T+ + + + += ( ) = + ( )1 1 1 1 1 A27

Q Q x x[ ] [ ] [ ] [ ]n n n n T+ + += − ( )1 1 1 A28

The next SPAM is then given by

H H Q H H Q[ ] ( ) [ ] ( ) ( ) [ ]n n n+ + += + −( )1 0 1 1 0 1 A29

= + −( )+H H H[ ] [ ] [ ]n n n1 A30

= + −( ) − −( )( )+ +H Q H H Q Q H H Q[ ] [ ] ( ) ( ) [ ] [ ] ( ) ( ) [ ]n n n n n1 1 0 1 1 0 A31

= +H[ ]n ∆ A32

with the obvious definition of the matrix ∆∆∆∆.  The scalar expansion parameter β may be

introduced in the [n+1] eigenvalue equation as

H H[ ] [ ]n n+ = +1 β∆ A33

and the eigenvector (with intermediate normalization) and eigenvalue may be expanded

in powers of this parameter as

0 H v= −( )+ + +[ ] [ ] [ ]n
j
n

j
n1 1 1λ A34

= +( ) − + + + …( )( ) + + + …( )H v v v[ ] { } { } { } { } { } { }n
j j j j j jβ λ βλ β λ β β∆ 0 1 2 2 0 1 2 2 A35

For notational simplicity, the [n+1] superscript has been dropped in Eq. A35.  In the

usual perturbation theory approach, it is the solution of the eigenvalue equation at β=1

that is of interest, but only the low-order terms are kept to define various approximations

to the desired eigenvalue λ j
n[ ]+1  and eigenvector v j

n[ ]+1 .  Collecting the zeroth order

terms together, the first-order terms together, and the second order terms together gives

0 H v= −( )+ +[ ] [ ]{ } [ ]{ }n
j
n

j
nλ 1 0 1 0 A36
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0 H v v= −( ) + −( )+ + + +[ ] [ ]{ } [ ]{ } [ ]{ } [ ]{ }n
j
n

j
n

j
n

j
nλ λ1 0 1 1 1 1 1 0∆ A37

0 H v v v= −( ) + −( ) ++ + + + + +[ ] [ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }n
j
n

j
n

j
n

j
n

j
n

j
nλ λ λ1 0 1 2 1 1 1 1 1 2 1 0∆ A38

Eq. A36 means that λ λj
n

j
n[ ]{ } [ ]+ =1 0  and v vj

n
j
n[ ]{ } [ ]+ =1 0 , the eigenpair from the previous

SPAM H[ ]n .  Making these substitutions, multiplying Eq. A37 from the left by v j
n T[ ] ,

and noting that Q v 0[ ] [ ]n
j
n+ =1 , gives the first-order contribution and corresponding

bound to the eigenvalue

λ ρ λj
n

j
n T

j
n

j
n T n n

j
n

j j
n[ ]{ } [ ] [ ] [ ] [ ] ( ) ( ) [ ] [ ] [ ]+ = = −( ) = −( )1 1 1 0v v v Q H H Q v∆ A39

λ ψj
n nSin[ ]{ } [ ] ( ) ( )+ ≤ ( ) ⋅ −1 1 2 1 0H H A40

The first-order contribution to the eigenvector is

v H vj
n n

j
n

j
n

j
n[ ]{ } [ ] [ ] * [ ]{ } [ ]+ − += − −( ) −( )1 1 1 1 1λ λ∆ A41

in which the pseudoinverse (denoted as –1*) operates only within the subspace

orthogonal to vj
[n].  Substitution of the matrix ∆∆∆∆ from Eq. A31 results in

v H Q H H xj
n n n

j
n n nSin[ ]{ } [ ] [ ] [ ] * [ ] ( ) ( ) [ ]+ − += ( ) −( ) −( )1 1 1 1 0 1ψ λ A42

v
H H

H
j
n n

j
n n

Sin
Gap j

[ ]{ } [ ]
( ) ( )

[ ] [ ], ,

+ ≤ ( ) ⋅
−( )

( )
1 1

1 0

ψ
λ

A43

Multiplying Eq. A38 from the left by v j
n T[ ] , and noting that Q v 0[ ] [ ]n

j
n+ =1 , gives the

second-order contribution and corresponding bound to the eigenvalue

λ

λ

ψ

j
n

j
n T

j
n

j
n T n n n

j
n

n n
j
n

n n TSin

[ ]{ } [ ] [ ]{ }

[ ] [ ] ( ) ( ) [ ] [ ] [ ] *

[ ] ( ) ( ) [ ] [ ]

[ ] [ ] ( ) (

+ +

−

+

=

= − −( ) −( ) ×

−( )
= − ( ) −

1 2 1 1

1 0 1

1 0

2 1 1

v v

v Q H H Q H

Q H H Q v

x H H

∆

00

1 1 0 1

) [ ]

[ ] [ ] * [ ] ( ) ( ) [ ]

( ) ×

−( ) −( )− +

Q

H Q H H x

n

n
j
n n n Tλ

A44
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λ ψ
λj

n n

j
n n

Sin
Gap j

[ ]{ } [ ]
( ) ( )

[ ] [ ], ,

+ ≤ ( ) ⋅
−( )

( )
1 2 2

1 0 2
H H

H

A45

Alternatively, Eq. A9 may be used to define a perturbation theory for the

eigenpair of the exact matrix.  The scalar expansion parameter β may be introduced as

H H Q H H Q( ) [ ] [ ] ( ) ( ) [ ]0 1 0= − −( )n n nβ A46

Expanding the eigenvector and eigenvalue  of H(0) in powers of β and collecting the

zeroth order terms

0 H v= −( )[ ] ( ){ } { }n
j jλ 0 0 0 A47

This means that λ λ λj j
n

j
n( ){ } [ ]{ } [ ]0 0 1 0= =+  and v v vj j

n
j
n( ){ } [ ]{ } [ ]0 0 1 0= =+ .  Collecting the

first-order terms in β gives

λ λ ρ λj j
n

j j
n( ){ } [ ]{ } [ ]0 1 1 1= = −( )+ A48

v v H Q H H xj j
n n n

j
n n nSin( ){ } [ ]{ } [ ] [ ] [ ] * [ ] ( ) ( ) [ ]0 1 1 1 1 1 0 1= = ( ) −( ) −( )+ − +ψ λ A49

Collecting the second-order terms in β gives

λ λj j
n( ){ } [ ]{ }0 2 1 2= + A50

It may be verified that the second- and higher-order terms in the eigenvector corrections,

and the third- and higher-order terms in the eigenvalue corrections, are different in these

two perturbation expansions.  However, through first-order for the eigenvector and

through second-order for the eigenvalue, Eqs. A47-A50 demonstrate that the low-order

corrections to the SPAM H[n+1] and to the exact matrix H(0) are identical.  That is, these

equations show that the same Sin(ψ[n]) factor appears in the low order corrections to the

eigenvectors and eigenvalues of H[ ]n  and H(0).  This is the basis of the improved

efficiency with the SPAM method.  The effort required to solve the H[ ]n  eigensolution

involves only matrix-vector products with the H(1) matrix.  Once found, a correction of

approximately the same accuracy is incorporated (with the effort of only a single H(0)

matrix-vector product) into the desired eigenpair.  The factor Sin(ψ[n]) is a computable

quantity, and it converges toward zero as the procedure converges toward the selected

eigenpair.
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Appendix B: Generation of New Expansion Vectors

There are several ways of generating expansion vectors that have been considered

in the past with the Davidson diagonalization method.  These are discussed briefly here

and compared to the SPAM method.  These correction vectors may be derived from

perturbation theory, relaxation, minimization of the residual norm, stablization of the

Rayleigh quotient, or, in a heuristic manner, by approximation [3-4].  The latter approach

is taken here.  This facilitates comparisons, but it provides a rather narrow view of each

of the methods; the reader should consult the original references for additional details.

For a matrix H, the desired eigenvector and eigenvalue satisfy the equation

(H – λ)v = 0 B1

The exact eigenvector v may be written as a sum of a unit trial vector x and an orthogonal

correction vector δδδδ, as v=x+δδδδ.  Furthermore, the eigenvalue may be written as λ=(ρ+ε)

where ρ=xTHx is the Rayleigh quotient. For this decomposition to be useful ∠( )v x,

should be small, |δδδδ| should be small, and ε should be small.  For practical reasons, it will

be useful to introduce an approximate matrix D.  This allows the eigenvalue equation to

be written in the various forms

(H – ρ  – ε ) δδδδ = –(H – ρ  – ε ) x B2

= –r  + ε x B3

(D – ρ +(H – D – ε )) δδδδ = –r  + ε x B4

Note that the matrix (H–λ) is singular, so this expression is a statement about how the

exact vector v is annihilated from the RHS of the Eqs. B2-B4.  All of the methods

discussed in this appendix will be expressed as approximations to these exact equations.

The original Davidson[2,3,4] method follows from two separate approximations.

The first is that the terms (H–D–ε) are deleted from the LHS, and the ε term is deleted

from the RHS of Eq. B4.  This results in the equation

(D – ρ) δδδδD = –r B5

The second approximation in the Davidson method is that D is usually taken to be a

diagonal matrix.  Other choices have been used also[3,4,5,6], but the diagonal

approximation makes the linear equation in Eq. B5 trivial, and it is the most common
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choice. The residual vector r is proportional to the gradient of the Rayleigh quotient with

respect to variations in the trial vector x, and consequently δδδδD from Eq. B5 may be

regarded as a preconditioned gradient.  This has been discussed by van Lenthe and Pulay

[24] and by Davidson et al [25].  The correction vector δδδδD from Eq. B5 is not orthogonal

to x.  This traditional Davidson method is denoted the diagonal-preconditioned-residual

(DPR) method and is used as the reference for comparisons in this work.

Many methods are based on Rayleigh quotient inverse iteration (RQII).  This is

usually regarded as a single-vector method in which the trial vector is replaced, during

each iteration, with the solution of the linear equation

(H – ρ ) xnew = x B6

This method displays asymptotic cubic convergence[1], which means that, when the

reference vector x is sufficiently close, the error in the eigenvector each iteration is

proportional to the cube of the error of the previous iteration. Of course, this cubic

convergence cannot be exploited practically for matrices of large dimension (except for

special or simple forms of the matrix H) because of the need for the linear equation

solution.  For a subspace method, it is not the new vector that is of interest, it is the

component of the new vector that is orthogonal to the previous vector that is of primary

importance.  Writing xnew=(x+δδδδRQII)/ε and rearranging the expression[26]  gives

(H – ρ ) δδδδRQII = –r  + ε x B7

This shows that the subspace expansion vector generated from RQII is the approximation

to the exact equation that results from deleting the ε term from the LHS of Eq. B3.  The

scalar ε may be determined by operating on the left by xT(H–ρ1111)–1.  This gives

ε
ρ

=
−( )−
1

1x 1 xT H

B8

This suggests that two linear equation solutions are required during each RQII iteration

when the vector δδδδRQII is computed, one to determine ε, which then allows the RHS of Eq.

B7 to be evaluated, and the other linear equation solution to determine δδδδRQII.  Sleijpen et

al[27,28] and van Dam et al[29] suggest two alternatives in their Generalized Jacobi-

Davidson (GJD) method.  Operating on the left of Eq. B7 by the projector (1–xxT) gives

the equation
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(1–xxT) (H – ρ ) δδδδGJD = –r B9

This eliminates the parameter ε from appearing explicitly in the solution of the linear

equation for δδδδGJD.  During the solution of this linear equation, care should be taken to

ensure that the matrix operates only in the subspace that is complementary to x.  Once

δδδδGJD has been determined, ε may be computed, if desired, as ε=rTδδδδGJD.   Sleijpen et al also

suggest that the inverse iteration equation for the expansion vector may be solved in the

augmented form

H x

x

r− −
−












= 





ρ
εT

GJD

0 0
δ B10

in which both unknowns, ε and δδδδGJD, are determined together.  Eqs. B9 and B10 both

show that the vector δδδδGJD may be solved with a single linear equation.  Sleijpen et al[27]

proposed that iterative solutions of the linear equations should be terminated early during

the initial iterations in order to improve efficiency, and van Dam et al[29] suggested the

use of block-diagonal approximations to H.

Olsen et al[26] have proposed the Inverse-Iteration Generalized Davidson (IIGD)

method.  The terms (H–D–ε) are deleted from the LHS of Eq. B4, resulting in the linear

equation

(D – ρ ) δδδδIIGD = –r  + ε x B11

This is equivalent to replacing H by D in the preconditioner in the RQII equation B7.

The scalar ε is determined by operating on Eq. B11 from the left by xT(D–ρ1111)–1 and

enforcing the orthogonality relation xTδδδδIIGD=0.

ε
ρ
ρ

=
−( )
−( )

−

−
r D 1 x

x D 1 x

T

T

1

1

B12

In principle, the correction vector and parameter ε could also be determined using Eqs.

B9 and B10, but for a diagonal D, there is little practical advantage.  Olsen et. al.[26]

pointed out that in the limit D→H, the DPR correction δδδδD becomes exactly linearly

dependent with the current trial vector x (which means it makes no progress toward

convergence), whereas the IIGD step δδδδIIGD becomes equivalent to Rayleigh quotient

inverse iteration (compare to Eq. B7), which not only converges, but converges cubically.
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The other popular subspace generation approximation consists of deleting the

ε term from the RHS of Eq. B3 and approximating the entire  (H–λ) matrix as a unit

matrix (or a scalar multiple thereof).  This results in the Lanczos expansion vector

δδδδL = –r B13

This requires the least amount of effort of any of the methods discussed in this appendix

to generate the expansion vector, but it suffers from the slowest convergence properties.

Because r is proportional to the gradient of the Rayleigh quotient, the Lanczos method

may be considered a gradient search method.  The slow convergence is because the

sequence of expansion vectors corresponds to an orthogonalized Krylov sequence, which

does not selectively converge to the desired eigenpair of interest.  Its main advantage is

the fact that the subspace matrix 〈H〉[n] generated by this sequence of vectors is

tridiagonal, which means that not only is the subspace eigenvalue equation relatively easy

to solve, but also, only the two most recent vectors must be saved.  In contrast, all of the

other preconditioned expansion vector  methods discussed in this appendix result in a

dense subspace matrix and require the storage of both X[n] and W[n].  It is easily verified

that X[n]Tr=0, which means that δδδδL is orthogonal not only to the reference vector x but to

the entire expansion space X[n].

The SPAM method may now be compared to these other expansion vector

methods.  In general, the SPAM equation A10 may be rewritten using the splitting of the

matrix, the eigenvalue and the eigenvector given above.   In particular, let H(1)=D, x=

X[n]c[n],  λ[n]=(ρ–ε), and δδδδSPAM=Sin(ψ[n])x[n+1] from Eq. A11.

( H[ ]n  – λ[n]) v[n] = ( H + Q[n] (D – H) Q[n] – ρ – ε  ) (x + δδδδSPAM) = 0 B14

Rearranging into the form of Eq. B3 and noting that Q[n]x=0, this equation may be

rewritten as

( H – Q[n] (D – H) Q[n] – ρ – ε  ) δδδδSPAM = –r + ε x B15

It is clear that in the limit D→H, the SPAM expansion vector approaches the exact

correction vector, and convergence would be achieved in a single SPAM iteration.  This

is in contrast to all of the other expansion vector methods discussed in this appendix (δδδδD,

δδδδRQII, δδδδGJD, δδδδIIGD, δδδδL), none of which converge in a single iteration in this limit.  This has

some formal appeal in favor of SPAM regarding the potential accuracy, but it has little
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practical value in most situations because D is usually too coarse of an approximation to

H for this formal difference to be significant.  On the other hand, because SPAM requires

the iterative solution of this eigenvalue equation, it would generally be expected to

require more effort than either IIGD or the DPR methods.  It also should be mentioned

that in the limit D→H, the RQII expansion vector, the GJD expansion vector, and the

IIGD expansion vector are all the same – they are all slightly different implementations

of RQII.

In the other limit, with a diagonal D approximating the matrix H, the GJD and the

IIGD expansion vector are still equivalent – they are slightly different implementations of

the same approximate inverse iteration.  Both of these expansion vectors are orthogonal,

by design and by construction, to the reference vector x, in contrast to the DPR update

vector, which is not orthogonal and must be explicitly orthogonalized before being added

to the expansion vector subspace.  Multiplying Eq. B15 from the left by (D–ρ1)-1 allows

the SPAM expansion vector to be written as

( 1 + (D – ρ1)-1((D – H)    – Q[n] (D – H) Q[n] – ε )) δδδδSPAM    = δδδδIIGD B16

In the first SPAM iteration Q[0]=1 and the only difference between δδδδSPAM and δδδδIIGD is the

ε term on the LHS of Eq. B16.  On subsequent iterations, there is also the (D–H)

contributions that contribute.  In general, the SPAM expansion vector is different from

the IIGD expansion vector, the DPR expansion vector, and the Lanczos expansion vector.

As the iterations proceed, the SPAM describes the eigenpair of interest more and more

accurately.  By contrast, the preconditioner used in the IIGD method, and in the DPR

method, remain fixed in form and varies only because of ρ.

In addition to the differences in the form of Eq. B16, another significant

difference is in the definition of the reference vector x.  In all of the other methods, x is

taken to be the current approximate eigenvector within the subspace X[n].  But in the

SPAM method, it is defined as x=X[n]c[n] where c is the set of coefficients of the level-0

vectors from the diagonalization within the [n0,n1] subspace.  In the other methods

described above, the expansion vector coefficients are “frozen” as the new expansion

vector is computed, whereas in the SPAM method, these coefficients are “relaxed” to

their optimal value as the new expansion vector is computed.  The last significant

difference is that the update vector is orthogonal to the reference vector x in the GJD and
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IIGD methods, whereas the δδδδSPAM update vector, like the Lanczos expansion vector δδδδL, is

orthogonal to the entire X[n] subspace.
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Figure 1

Outline of the Davidson Method

Generate an initial vector x1

MAINLOOP: DO n =1

Compute and save  wn = Hxn

Compute the n-th row and column of 〈H〉:  〈H〉1:n,n = wn
T X[n]

Compute the subspace eigenvector and value: (〈H〉 – ρ)c = 0

Compute the residual:  r=W1:nc1:n – ρ X1:nc1:n

Check for convergence using |r|, c, ρ, etc.

IF (converged) THEN

EXIT MAINLOOP

ELSE

Generate a new expansion vector xn+1 from r, ρ, v=Xc, etc.

ENDIF

ENDDO MAINLOOP
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Figure 2

Outline of the SPAM Method

Generate an initial vector x1

Set wtype1=1  ! Start the iterations with approximate products

Set n0=0; n=1

MAINLOOP: DO

Compute and save wn = H(wtypen, n0) xn

Compute the n-th row and column of 〈H〉:  〈H〉1:n,n = wn
T X[n]

Compute the subspace eigenvector and value: (〈H〉 – ρ)c = 0

Compute the residual:  r=W1:nc1:n – ρ X1:nc1:n

Check for convergence using |r|, c, ρ, etc.

IF (converged .AND. wtypen.EQ.0) then

EXIT MAINLOOP ! Final convergence is achieved

ELSEIF (converged .AND. wtypen≠0) then

Contract x X c cn n n n n n n0 1
0 0 01 1 1+ ← +( ) +( ) +( ): : :/

Set n0←n0+1; n= n0

Set wtypen=0  !  The next product will be exact

ELSE

Set n←n+1

Generate a new expansion vector xn from r, ρ, v=Xc, etc.

Set wtypen=1  !  The next product will be approximate

ENDIF

ENDDO MAINLOOP
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Figure 3

Outline of the MultiLevel SPAM Method

Generate an initial vector x1

Set wtype1=MaxSpamLevel  ! Start with approximate products

Set n0:MaxLevel=0; n=1

MAINLOOP: DO

Compute and save wn = H(wtypen, n0:MaxLevel) xn

Compute the n-th row and column of 〈H〉:  〈H〉1:n,n = wn
T X[n]

Compute the subspace eigenvector and value: (〈H〉 – ρ)c = 0

Compute the residual:  r=W1:nc1:n – ρ X1:nc1:n

Check for convergence using |r|, c, ρ, etc.

IF (converged .AND. wtypen.EQ.0) THEN

EXIT MAINLOOP ! Final convergence is achieved

ELSEIF (converged .AND. wtypen≠0) then

Contract x X c ck k n k n k n← : : :/  ! contract wtypen vectors

Reset n, nwtype, nwtype-1

Set wtypen←wtypen–1  !  one step more accurate

ELSE

Set n←n+1

Generate a new expansion vector xn from r, ρ, v=Xc, etc.

Set wtypen= MaxSpamLevel    ! most approximate level

ENDIF

ENDDO MAINLOOP
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Table I

Comparison of DPR and SPAM Convergence

Iteration
DPR

SPAM

Fixed Tolerance

SPAM

Dynamic Tolerance

[n0] |r| [n0,n1] |r| [n0,n1] |r|

1 [1] 1.13E+00 [0,1] 1.13E+00 [0,1] 1.13E+00
2 [2] 3.23E-01 [0,2] 3.23E-01 [0,2] 3.23E-01
3 [3] 1.05E-01 [0,3] 1.05E-01 [0,3] 1.05E-01

4 [4] 2.73E-02 [0,4] 2.73E-02 [0,4] 2.73E-02
5 [5] 5.41E-03 [0,5] 5.41E-03 [0,5] 5.41E-03

6 [6] 8.66E-04 [0,6] 8.66E-04 [0,6] 8.66E-04
7 [7] 1.16E-04 [0,7] 1.16E-04 [0,7] 1.16E-04

8 [8] 1.35E-05 [0,8] 1.35E-05 [1,0] 1.40E-04
9 [9] 1.37E-06 [0,9] 1.37E-06 [1,1] 2.11E-05

10 [10] 1.24E-07 [0,10] 1.24E-07 [1,2] 2.78E-06
11 [11] 1.02E-08 [0,11] 1.02E-08 [1,3] 3.47E-07

12 [12] 7.59E-10 [0,12] 7.59E-10 [1,4] 7.97E-08
13 [1,0] 7.12E-05 [1,5] 2.13E-08

14 [1,1] 4.34E-06 [1,6] 7.30E-09
15 [1,2] 2.06E-07 [2,0] 7.35E-09

16 [1,3] 1.69E-08
17 [1,4] 6.30E-09

18 [2,0] 6.28E-09

Nproduct [12] [2,16] [2,13]

Convergence trajectories of the lowest root of the banded test matrix with N=10,000,

W0=64, and ∆=0.75.  For the SPAM calculations, W1=32.  The convergence criterion is

|r|<10–8.
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Table II

Comparison of SPAM convergence

|r|<10–5 |r|<10–8

[W] ||H(1)–H(0)||
nmax Nproduct nmax Nproduct

[64,64] 0.0 9 [1,9] 12 [1,12]
[64,56] 1.608⋅10–7 9 [1,9] 10 [2,12]
[64,48] 1.614⋅10–6 9 [1,9] 9 [2,12]
[64,40] 1.612⋅10–5 8 [2,9] 8 [2,12]
[64,32] 1.611⋅10–4 7 [2,9] 8 [2,12]
[64,24] 1.609⋅10–3 6 [2,9] 7 [3,15]
[64,16] 1.602⋅10–2 6 [3,11] 7 [4,16]
[64,8] 1.605⋅10–1 6 [4,12] 7 [6,17]
[64,1] 1.203⋅100 9 [9,9] 12 [12,12]
[64,0] 1.604⋅100 9 [9,9] 12 [12,12]

Convergence of the lowest root of the banded test matrix with N=10,000 and ∆=0.75.

The ||H(1)–H(0)|| values are estimated from the residual norm bound.  The intermediate

convergence tolerance is adjusted dynamically.
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Table III

MultiLevel SPAM Convergence

Iteration

2-level SPAM

Dynamic Tolerance

3-level SPAM

Dynamic Tolerance

[n0,n1,n2] |r| [n0,n1,n2,n3] |r|

1 [0,0,1] 1.13E+00 [0,0,0,1] 1.13E+00
2 [0,0,2] 3.23E-01 [0,0,0,2] 3.22E-01
3 [0,0,3] 1.05E-01 [0,0,0,3] 1.08E-01
4 [0,0,4] 2.73E-02 [0,0,1,0] 1.53E-01
5 [0,0,5] 5.41E-03 [0,0,1,1] 4.00E-02
6 [0,1,0] 1.02E-02 [0,0,1,2] 1.05E-02
7 [0,1,1] 1.63E-03 [0,0,2,0] 1.05E-02
8 [0,1,2] 3.14E-04 [0,1,0,0] 1.35E-02
9 [0,1,3] 1.05E-04 [0,1,0,1] 6.15E-03
10 [0,2,0] 1.08E-04 [0,1,0,2] 1.37E-03
11 [1,0,0] 1.27E-04 [0,1,0,3] 4.17E-04
12 [1,0,1] 5.37E-05 [0,1,0,4] 5.65E-05
13 [1,0,2] 1.52E-05 [0,1,1,0] 3.25E-04
14 [1,0,3] 3.77E-06 [0,1,1,1] 5.63E-05
15 [1,0,4] 5.32E-07 [0,1,2,0] 5.63E-05
16 [1,0,5] 7.06E-08 [0,2,0,0] 5.64E-05
17 [1,1,0] 2.74E-07 [1,0,0,0] 8.87E-05
18 [1,1,1] 2.46E-08 [1,0,0,1] 2.57E-05
19 [1,1,2] 4.43E-09 [1,0,0,2] 6.78E-06
20 [1,2,0] 4.37E-09 [1,0,0,3] 2.46E-06
21 [2,0,0] 5.47E-09 [1,0,0,4] 5.15E-07
22 [1,0,1,0] 1.55E-06
23 [1,0,1,1] 2.56E-07
24 [1,0,1,2] 9.90E-08
25 [1,0,2,0] 9.72E-08
26 [1,1,0,0] 1.16E-07
27 [1,1,0,1] 4.43E-08
28 [1,1,0,2] 1.35E-08
29 [1,1,0,3] 3.89E-09
30 [1,1,1,0] 4.98E-09
31 [1,2,0,0] 5.02E-09
32 [2,0,0,0] 5.29E-09

Nproduct   [2,4,15]    [2,4,7,19]

Convergence trajectories of the lowest root of the banded test matrix with N=10,000,

W0=64, and ∆=0.75.  For the SPAM calculations, W1=32, W2=16, W3=8,.  The

convergence criterion is |r|<10–8.
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Table IV

Comparison of Various Expansion Vectors

Expansion Vector

Type

[W] nmax Nproduct

DPR [64] 12 [12]
IIGD/GJD [64] 12 [12]
Lanczos [64] 68 [68]
SPAM+DPR [64,0] 12 [11,21]
SPAM+IIGD [64,0] 12 [11,21]
SPAM+Lanczos [64,0] 28 [13,131]
SPAM+DPR [64,32,0] 7 [2,13,20]
SPAM+IIGD [64,32,0] 7 [2,13,20]
SPAM+Lanczos [64,32,0] 77 [2,14,289]

Convergence of the lowest root of the banded test matrix with N=10,000 and ∆=0.75. The

convergence criterion is |r|<10–8.
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Table V

Total Effort Model for Various SPAM Levels

[W] Nproduct nmax µ=1 µ=3⁄4 µ=1⁄2 µ=1⁄4 µ=1⁄10 µ=1⁄100

[64] [12] 12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

[64,32] [2,13] 7 1.2500 0.9792 0.7083 0.4375 0.2750 0.1775

[64,32,16] [2,4,15] 6 1.7500 1.1198 0.6458 0.3281 0.2125 0.1701

[64,32,16,8] [2,4,7,19] 5 2.6667 1.4128 0.6771 0.3112 0.2074 0.1701

[64,32,16,8,4] [2,4,7,11,22] 4 3.8333 1.7116 0.7083 0.3079 0.2069 0.1701

[64,32,16,8,4,2] [2,4,7,12,15,21] 4 5.0833 1.9775 0.7370 0.3087 0.2070 0.1701

[64,32,16,8,4,2,1] [2,4,7,10,15,18,23] 4 6.5833 2.1889 0.7383 0.3063 0.2068 0.1701

Convergence of the lowest root of the banded test matrix with N=10,000 and ∆=0.75.

The convergence criterion is |r|<10–8.
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Table VI

Convergence Results for Multiple Eigenvectors

Method [W] nmax Nproduct

DPR
One vector at a time [64] 21 [118]
Simultaneous/lowest [64] 42 [42]
Simultaneous/cycle [64] 28 [28]
Simultaneous/largest |rj| [64] 28 [28]

SPAM
One vector at a time [64,32] 17 [20,138]
Simultaneous/lowest [64,32] 42 [20,62]
Simultaneous/cycle [64,32] 36 [20,50]
Simultaneous/largest |rj| [64,32] 34 [20,52]

Convergence of the lowest 10 roots of the banded test matrix with N=10,000 and ∆=0.75.

The convergence criterion is |rj| <10–8.  The matrix-vector product counts are the totals

for all 10 roots.  The converged computed eigenvalues are: λ1=0.585510562346823,

λ2=1.723295074298214, λ3=2.808750052512915, λ4=3.867329659136034,

λ5=4.908652636212611, λ6=5.937892192171621, λ7=6.958397150707880,

λ8=7.972562750803514, λ9=8.982177511445222, λ10=9.988585488303615.
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Table VII

Interior Eigenpair Convergence

Method [W] nmax Nproduct

Root-homing, DPR expansion vector [64] 20 [20]
Root-homing, IIGD expansion vector [64] 16 [16]
Root-homing, SPAM+DPR expansion vector [64,32] 16 [2,25]
Root-homing, SPAM+IIGD expansion vector [64,32] 16 [2,19]
Vector-following, DPR expansion vector [64] 19 [18]
Vector-following, IIGD expansion vector [64] 20 [20]
Vector-following, SPAM+DPR expansion vector [64,32] 15 [2,24]
Vector-following, SPAM+IIGD expansion [64,32] 16 [2,22]

Convergence of an interior root of the banded test matrix with N=10,000 and ∆=0.75. The

convergence criterion is |r|<10–8.  In root-homing mode, ρref=10.0 and x1=e11.  In vector-

following mode, z=x1=e11 and vTz=0.7439.  In all cases, the converged eigenpair

corresponds to λ10=9.988585488303615.
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Table VIII

Perturbed-Tensor-Product Convergence Results for Multiple Eigenvectors

m=8 m=10
Method

nmax Nproduct Effort nmax Nproduct Effort

DPR
One vector at a time 40 [203] 1.000 26 [145] 1.000
Simultaneous/lowest 82 [82] 1.000 99 [99] 1.000
Simultaneous/cycle 94 [94] 1.000 94 [94] 1.000
Simultaneous/largest |r | 95 [95] 1.000 93 [93] 1.000

SPAM+DPR µ=4.9⋅10-4 µ=1.0⋅10-5

One vector at a time 42 [20,164] 0.099 26 [20,132] 0.138
Simultaneous/lowest 83 [19,87] 0.232 99 [20,104] 0.202
Simultaneous/cycle 86 [19,90] 0.203 94 [20,101] 0.213
Simultaneous/largest |r | 95 [19,99] 0.201 94 [20,99] 0.215

SPAM+IIGD µ=2.0⋅10-3 µ=4.0⋅10-5

One vector at a time 11 [20,20] 0.099 11 [20,20] 0.138
Simultaneous/lowest 20 [19,21] 0.232 20 [20,21] 0.202
Simultaneous/cycle 20 [19,21] 0.203 20 [20,21] 0.213
Simultaneous/largest |r | 20 [19,21] 0.200 20 [20,21] 0.215

Convergence summaries of the lowest 10 roots of the m=8 and m=10 perturbed-tensor-

product matrices described in the text.  The initial vectors in all cases are the eigenvectors

of the tensor-product matrices, which were computed as tensor-products of the

eigenvectors of the 4x4 component matrices.  The matrix-vector product counts are the

totals for all 10 roots.  For the m=8 calculations, N=65,536, β=10, and |rj|<10–1.  For the

m=10 calculations, N=1,048,576, β=100, and |rj|<100.
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Table IX

Eigenvalues of the Perturbed-Tensor-Product Matrices

m=8; N=65,536 m=10; N=1,048,576

β=0 β=10 β=0 β=100

λ1 13517.53848 13518.20621 194306.6355 194313.3266
λ2 17479.77431 17479.04546 248296.3451 248289.0640
λ3 17591.64848 17592.44787 249739.2683 249747.2806
λ4 17710.02377 17710.67916 251261.4363 251268.0025
λ5 17835.48382 17836.15370 252869.5615 252876.2711
λ6 17968.68428 17969.35303 254571.1364 254577.8342
λ7 18110.36428 18111.03326 256374.5505 256381.2504
λ8 18261.36016 18262.02920 258289.2285 258295.9287
λ9 18422.62196 18423.29105 260325.7948 260332.4955
λ10 21228.42326 21228.60963 262496.2714 262502.9724
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Table X

Convergence Summary for MRSDCI Calculations

CH2(
3B1) CH3(

2A2″)Convergence
Tolerance

Calculation
Type

nmax Nproduct nmax Nproduct

DPR 6 [6] 6 [6]|r|<10–3

SPAM 5 [4,7] 6 [5,9]
DPR 9 [9] 10 [10]|r|<10–5

SPAM 8 [7,12] 9 [9,14]
DPR 12 12 15 [15]|r|<10–7

SPAM 10 [10,16] 13 [13,18]

The SPAM calculations use the Bk hamiltonian for H(1).  N=2,036 and Nz=2 for the CH2

calculations; N=70,254 and Nz=188 for the CH3 calculations.  The initial vector in all

cases is the column of the unit matrix corresponding to the lowest diagonal element.
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Table XI

Convergence Summary for Rational-Function SCF Optimizations for Fe(CO)5

Nproduct “Outer” IterationsConvergence
Tolerance

Calculation
Type

Nproduct

Total
1 2 3 4

DPR [8] [3] [4] [1]|r|<10–3

SPAM [7,13] [2,3] [4,9] [1,1]
DPR [13] [3] [6] [3] [1]|r|<10–5

SPAM [10,20] [2,3] [4,9] [3,7] [1,1]
DPR [16] [3] [6] [6] [1]|r|<10–7

SPAM [13,33] [2,3] [4,9] [6,20] [1,1]
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Table XII

Convergence Summaries for Ill-Conditioned Eigenproblems

k = 1:5 k = (N-4):N

∆ λN/λ1 [m] λ2-λ1 nmax Nproduct ek λN-λN-1 nmax Nproduct ek

1.01 2.1E4 [∞] 1.0E-02 19 [19] 5.2E-13 2.1E+02 13 [13] 3.3E-15

[∞,16] 23 [10,39] 6.7E-13 14 [5,14] 3.3E-15

[∞,16,12] 21 [10,18,68] 6.7E-13 16 [5,10,30] 3.3E-15

(1.01)-1 2.1E4 [∞] 4.8E-05 27 [27] 1.9E-13 9.9E-03 13 [13] 4.4E-16

[∞,16] 29 [11,54] 1.8E-14 14 [5,14] 2.2E-16

[∞,16,12] 43 [12,23,152] 1.9E-14 16 [5,10,27] 5.5E-16

1.05 1.5E21 [∞] 5.0E-02 – – 2.6E+4 7.0E+19 12 [12] 2.7E-14

[∞,16] – – 2.6E+4 12 [5,12] 2.6E-14

[∞,16,12] – – 2.6E+4 13 [5,10,21] 2.7E-14

(1.05)-1 1.5E21 [∞] 3.4E-23 – – 1.5E+5 4.8E-02 12 [12] 1.0E-15

[∞,16] – – 1.5E+5 12 [5,12] 6.7E-16

[∞,16,12] – – 1.5E+5 13 [5,10,12] 6.7E-16

For all matrices N=1000,α=0.1, and the final convergence criteria are set to guarantee

that Sin(ψk)≤ 10–8.  The matrix-vector product counts are for all five computed eigenpairs.

The relative errors ek are the maximum for the five computed eigenvalues.
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