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Abstract

We describe the development and implementation of an e�cient
spectral element code for simulating transitional �ows in complex
three�dimensional domains� Critical to this e�ort is the use of ge�
ometrically nonconforming elements that allow localized re�nement
in regions of interest� coupled with a stabilized high�order time�split
formulation of the semi�discrete Navier�Stokes equations� Simula�
tions of transition in a model of an arteriovenous graft illustrate the
potential of this approach in biomechanical applications�

� Introduction

Simulation of transitional �ow in complex geometries poses signi�cant nu�
merical challenges� Even in simple geometries� such as plane�Poiseuille �ow�
the transition process can be more di�cult to simulate than turbulent �ow
at the same Reynolds number ��	
� Proper identi�cation of the point of
transition �in both physical and parameter space� calls for accurate rep�
resentation of the convective operator such that numerical dissipation and
dispersion do not overwhelm physical e
ects� Because small�scale struc�
tures are transported with minimal physical dissipation� accurate long�
time integration is required� These challenges can be e�ciently addressed
though the use of high�order methods in space and time� The presence of
small�scale structures also implies a need for signi�cant spatial resolution
in supercritical regions� which may be localized in space� Nonconforming
meshes allow for local re�nement in these regions without undue spatial
resolution throughout the domain�
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We consider a nonconforming spectral element method for solution of
the incompressible Navier�Stokes equations in lRd�

�u

�t
� u � ru � �rp �

�

Re
r�

u in �� r � u � � in �� ���

with prescribed boundary and initial conditions for the velocity� u� Here�
p is the pressure and Re � UL

�
the Reynolds number based on characteris�

tic velocity and length scales� Spatial discretization of ��� is based on the
lPN � lPN�� spectral element method �SEM� ���
� which uses compatible
velocity and pressure spaces that are free of spurious modes� This is cou�
pled with high�order operator splitting methods to yield a sequence of sym�
metric positive de�nite �SPD� subproblems to be solved at each timestep�
Convection�dominated problems are stabilized by using a recently devel�
oped �ltering procedure ��	
� The method attains exponential convergence
in space and second� or third�order accuracy in time�

The paper is organized as follows� Section � provides an overview of the
spectral element method and the time advancement scheme� Section � dis�
cusses the �lter�based stabilization� Section 	 describes the nonconforming
implementation� Simulation results for transitional �ow in an arteriove�
nous graft model are presented in Section �� and a brief conclusion is given
in Section ��

� Navier�Stokes Discretization

The temporal discretization of the Navier�Stokes equations is based on the
high�order operator�splitting methods developed in ��	
� The convective
term is expressed as a material derivative� which is discretized by using a
stable mth�order backward�di
erence scheme� m�� or �� For m�� we have

�un�� � 	�un��� ��u

��t
� S��u� �

where S��u� is the linear symmetric Stokes problem to be solved implicitly�
and �un�q is a velocity �eld that is computed as the explicit solution to a
pure convection problem over the interval �tn�q� tn
� The subintegration
of the convection term permits values of �t corresponding to convective
Courant numbers of ���� thus signi�cantly reducing the number of �expen�
sive� Stokes solves�

The Stokes discretization is based on the variational form Find ��u� p� �
XN � YN such that

�

Re
�r�u�rv�GL �

�

��t
��u�v�GL � �p�r � v�G � �f �v�GL� ���

�



�r � �u� q�G � ��

� �v� q� � XN � YN � The inner products ��� ��GL and ��� ��G refer to the
Gauss�Lobatto�Legendre �GL� and Gauss�Legendre �G� quadratures asso�
ciated with the spaces XN �� �ZN�H�

����

d and YN �� ZN��� respectively�

Here� ZN �� fv � L����jvj�k � lPN ��k�g� where L� is the space of square
integrable functions on �� H�

� is the space of functions in L� that vanish on
the boundary and whose �rst derivative is also in L�� and lPN ��k� is the
space of functions on element �k whose image is a tensor�product polyno�
mial of degree � N in the reference domain� �� �� ���� �
d� For d � �� a
typical element in XN is written

�u�xk�r� s��
��
�k

�
NX
i��

NX
j��

�ukijh
N
i �r�hNj �s� � ���

where �ukij is the nodal basis coe�cient� hNi � lPN is the Lagrange poly�

nomial based on the GL quadrature points� f�Nj g
N
j�� �the zeros of �� �

���L�
N ���� where LN is the Legendre polynomial of degree N �� and x

k�r� s�

is the coordinate mapping from �� to �k� For YN � a tensor�product form
similar to ��� is used� save that the interpolants are based on the G points
since interelement continuity is not enforced�

We assume that � � �Kk���
k and that� for the conforming case� �kl ��

��k� ��l for k 	� l is void� a single vertex� or an entire edge� For the noncon�
forming case� �kl may be a subset of either ��k or ��l but must coincide
with an entire edge of one of the elements� Function continuity ��u � H�� is
enforced by matching the Lagrangian basis functions on subdomain inter�
faces� The velocity space is thus conforming� even for the nonconforming
meshes� as described in Section 	�

Insertion of the SEM basis into ��� yields a discrete Stokes system to
be solved at each step�

H �u�DT pn � B f
n� D �u � �� �	�

Here� H � �
Re
A� �

�tB is the discrete equivalent of the Helmholtz operator�
� � �

Re
r� � �

�t�� �A is the discrete Laplacian� B is the �diagonal� mass
matrix associated with the velocity mesh� D is the discrete divergence
operator� and fn accounts for the explicit treatment of the nonlinear terms�
A �lter is applied to �u to yield the solution u

n at time level tn �� n�t�
Note that the Galerkin approach implies that the governing system in �	�
is symmetric and that the matrices H� A� and B are all symmetric positive
de�nite�

The Stokes system �	� is treated by an mth�order operator splitting
analyzed in ��	� ��
� The splitting is applied to the discretized system so
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that ad hoc boundary conditions are avoided� For m � �� one �rst solves

H �u � B f
n �DT pn� ���

which is followed by a pressure correction step

E�p � �D�u� �u � �u��tB��DT �p� O��t��� ���

where E �� �tDB��DT is the Stokes Schur complement governing the
pressure in the absence of the viscous term� For m � �� higher�order
extrapolation for p must be used in ����

To close this section� we summarize our Navier�Stokes time advance�
ment scheme� We begin with an explicit convective update involving sev�
eral steps small enough to satisfy the CFL condition� This is followed by
Jacobi�preconditioned conjugate gradient �PCG� solution of d Helmholtz
problems ���� which for largeRe and small �t are strongly diagonally domi�
nant and therefore well conditioned� Next� we solve the Poisson�like system
for the pressure ��� using PCG� The pressure preconditioner is based on
the overlapping Schwarz procedure of Dryja and Widlund ���
 and is de�
scribed in detail in ���� ��
� The pressure solve is the most computationally
intensive step� To accelerate convergence� we generate a high�quality ini�
tial guess for �p by computing its projection onto the space of previous
solutions ���
� Finally� we obtain the solution at time level n by �ltering
the intermediate velocity �eld�

u
n � F��u� ���

As described in the next section� the �lter provides stability in high�Reynolds
number applications�

� Filtering

One of principal attractions of spectral element methods is that� for smooth
solutions� the error decreases exponentially fast with increasing polynomial
degree N �see Table ��� However� spectral element methods can also be
highly e
ective in solving transport problems in which the solution is not
smooth� This property is illustrated by the convected�cone example of
Fig� �� which was introduced by Gottlieb and Orszag ���
� A unit�height
cone with a base�radius of ��� centered at �x� y��������� is subjected to
plane rotation in the domain � � ��� �
�� The solution is evolved according
to ut � c � ru � �� with periodic boundary conditions and convecting �eld
c � �y � ��� ��� x�� Figure � shows the results after a single revolution for
three spectral element discretizations� �K�N �� where K is the number of
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Figure �� Spectral element results for convected cone problem ���
 on �����
grids� �a� �K�N � � ����� ��� �b� ��	� 	�� �c� ���� ���

�square� elements� and N is the polynomial degree in each spatial direction�
Each case corresponds to a ��� �� grid� Time�stepping is based on third�
order Adams�Bashforth �AB�� with �t � ������� �Fourth�order Runge�
Kutta results are identical�� The low�order cases �N��� 	� show evidence of
signi�cant numerical dispersion� By contrast� the dispersion is diminished
for the moderately high�order case �N � ��� and the solution produces a
reasonable representation of the original cone� The minima for the three
respective cases are ���	� � ������� and ������� while the maxima are
��� �� ��	��� and ������

Unfortunately� Galerkin formulations su
er from well�known instabili�
ties in convection�dominated �ows when underresolved boundary layers are
encountered� A classic example is the one�dimensional steady convection�
di
usion problem ux � 	uxx � f � u�����u������ f��� The spectral
Galerkin formulation of this problem is Find u � lP�N such that

�ux � 	uxx � f� v� � � �v � lP�N �

where lP�N is the space of all polynomials of degree � N vanishing at 
�
and ��� �� is the standard L� inner�product on ���� �
� As shown by Canuto
��
� and illustrated in Fig� �� the spectral solution is unbounded as 	 � �
when N is even� As shown in Fig� �b� for large 	 �smooth solutions�� the
error is smaller for N � �� than for N � ��� However� as 	 � �� the error
grows without bound for N��� but remains bounded for N����

Ideally� one would like to retain the good transport properties illus�
trated in Fig� �� without the sensitivity to parameters exempli�ed in Fig� ��
Several proposed strategies for stabilizing convection�dominated problems
involve a reformulation of the Galerkin procedure� for example� Petrov�
Galerkin schemes �� 
� shifted grids ���
� the addition of bubble functions
��
� or the addition of higher�order derivative terms� such as in the spec�
trally vanishing viscosity method ���� ��
� Related to this last approach are
�ltering schemes ��� ��
� A signi�cant advantage of �ltering is that it can
be applied as a postprocessing step and therefore does not require changing
the underlying discretization or solver� In particular� solvers designed for
symmetric systems continue to be useful�
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Figure �� Spectral Galerkin results for steady advection�di
usion problem�
�a� uN �x� for N � ��� 	 � �������� �b� maximum pointwise error with
�� � �� and without �!�� �ltering for N � �� ��� and N � �� ����

As pointed out by Boyd ��
� a special basis is required for the SEM
in order to preserve interelement continuity� In ��	
� we introduced an
interpolation�based �ltering procedure that can be applied on an element�
by�element basis� The local operator is constructed as follows� Let IMN be
the matrix having entries�

IMN
�
ij
� hNj ��Mi ��

The action of IMN is to interpolate a Lagrange polynomial on ���� �
 from
the order�N GL points to the order�M GL points� �Mi � This operator is
stable both in L� and H� norms �that are natural norms for this problem�
as can be found in �	
 ����������� Similarly� the matrix "N�� �� INN��I

N��
N

de�nes a projector from lPN to lPN�� on ���� �
� The matrix that imple�
ments the one�dimensional �lter on ���� �
 is de�ned by

�F� �� 
"N�� � ��� 
�I �

In higher space dimensions� one uses the tensor�product form F� �� �F� 

� � �
 �F� within each element� The interpolation�based procedure ensures
that interelement continuity is preserved and� because the interpolation
error for smooth u is exponentially small as N ��� that spectral accuracy
is not compromised� Because the nodal basis points �Ni interlace �N��

i �
F� tends to dampen high�frequency oscillations� One can apply the �lter
intermittently rather than on each time step� However� we prefer to control
the �lter strength through the single parameter 
� which is typically taken
to be ����� Note that 
 � � corresponds to a full projection onto lPN���
e
ectively yielding a sharp cut�o
 in modal space� whereas � � 
 � � yields
a smoother decay� which is known to be preferable when �ltering ��� ��� ��
�

�



�a� �b�

Figure �� Vorticity contours from ��	 to �	 by 
�	�

 for shear�layer rollup
problem with ���	� Re � 
	�� �a� K � �
�� N � �� �b� K � �
�� N � 
��

Examples We illustrate the e
ect of the �lter on several example problems�
starting with the shear layer roll�up problem studied in ��
� Equation ��� is
solved on � �� ��� �
� with doubly periodic boundary conditions and initial
condition

u �

�
tanh���y � ������ for y � ���
tanh�������� y�� for y � ���

� v � ���� sin���x� �

which corresponds to a pair of nearly parallel shear layers of thickness
O������ For any �xed mesh� the initial shear layers are drawn thinner
until their thickness is below the resolvable scale� The problem is solved
by using the SEM on a �� � �� array of elements with N�	� �� ��� and
��� and timestep size �t � ����� Without �ltering �
���� the solution is
unstable for all N considered and blows up at t� � ���� With the �lter� the
simulation can continue inde�nitely� Filtered results �
����� at t � ��� are
shown in Fig� �� Further results are presented in ��	
�

As a second example� we examine the errors in computed growth rates
when the least stable eigenmode for the Orr�Sommerfeld equation is super�
imposed on plane Poiseuille channel �ow at Re � ����� following ���
� The
amplitude of the perturbation is ����� implying that the nonlinear Navier�
Stokes results can be compared with linear theory to about �ve signi�cant

Table �� Spatial and Temporal Convergence� Orr�Sommerfeld Problem
�t � ������� N � �� �nd�Order �rd�Order

N 
 � �� 
 � �� �t 
 � �� 
 � �� 
 � �� 
 � ��
� �����	 ����	� ����� ������ ������ ������ ������
 ������ ���� � ����� ����	� ����	� ������ ������
�� ����	� ������ ����� ���� � ���� � ������ �����	
�� ������ ������ ����� �����	 �����	 ���		� ������
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digits� The errors �see �	�� in ���
� at time t � �� given in Table � reveal
exponential convergence in N for both the �ltered and un�ltered cases� It
is also clear that O��t�� and O��t�� convergence is obtained for the �l�
tered case but that the un�ltered results are unstable for the third�order
scheme� In this case� the stability provided by the �lter permits the use of
higher�order temporal schemes� thereby allowing a larger time step for a
given accuracy�

Finally� we revisit the instability encountered in the example of Fig� �
by considering the e
ects of the �lter when the solution to the unsteady
convection�di
usion equation� ut� ux� 	uxx � f � u�����u������ f��� is
evolved to steady state� Discretization by the SEM in space and by Crank�
Nicholson and third�order Adams�Bashforth for the respective di
usive and
convective terms in time leads to the system

H�u � HRu
n � C�

��

��
un �

��

��
un�� �

�

��
un��� �Bf � un	� � F��u � ���

where H � ���A � �
�tB� and HR � ���

�A � �
�tB� are discrete Helmholtz

operators and C is the convection operator� The �xed point of ��� satis�es�
�	A� C �H�F��

� � I�
�
u � Bf � � �

The �t dependence in � � can be eliminated by assuming that � � CFL ��
�t��x � �tN��

For any Galerkin formulation� C is skew symmetric and therefore sin�
gular if the number of variables is odd �the spurious mode being LN �L���
The eigenvalues of �F��

� � I� are f�� �� � � �� �� �
���g �the nonzero eigenmode

being 
N �x� �� �N��
N
N��� �� � x��L�

N���x� � LN � LN���� By suppressing

the unstable mode� the stabilizing term� H�F��
� � I�� prevents � � from

blowing up as 	 � �� The dashed line in Fig� �b shows the e
ect of the
�lter for N � �� and ��� For moderate to large 	� the error behavior is
essentially the same as for the un�ltered case� while for small 	 the solution
is stable for each value of N �

We note that 
N corresponds to a single element in the �lter basis
suggested by Boyd ��
� One can easily suppress more elements in this
basis in order to construct smoother �lters� as suggested� for example� in
��� ��
� However� our early experiences and asymptotic analysis �	 � � in
� �� indicate that slight suppression of just the N th mode is su�cient to
stabilize the lPN � lPN�� method at moderate to high Reynolds numbers�
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� Nonconforming Spectral Elements

Element�by�element operator evaluation is central to the e�ciency of the
SEM because it allows the use of tensor�product forms� which reduce the
work and storage complexity from O�KN�d� to O�KNd	�� and O�KNd��
respectively ���
� The extension to nonconforming spaces preserves this
feature and essentially involves rede�ning in the interface operators that
impose the matching conditions across element interfaces� Here� we con�
sider the development of interpolation�based interface conditions that leave
the approximation spaces XN and Y N unchanged but allow for noncon�
forming meshes of the type illustrated in Fig� 	a� On the the noncon�
forming interface � we refer to the large element as the parent element�
the two �or more� smaller elements as children� and the interface between
them as a parent�child �PC� interface� We do not restrict the number of
child elements per PC edge� However� we insist that the union of the clo�
sure of the child faces constitutes the closure of the parent face� While
this restriction rules out con�gurations such as shown in Fig� 	b� it allows
us to preserve local �element�to�element� interactions� For similar reasons�
we also exclude con�gurations in which the endpoint of one PC interface
connects to the interior of another� as shown in Fig� 	c�

Much work has been done on nonconforming spectral element methods�
starting with the early work of Mavriplis ���
� Anagnostou et al� ��
� and
others ��� ���  
� Most of these have employed #mortar$ elements that in�
crease �exibility through the use of L��projection operators to enforce weak
continuity at the nonconforming interface� In particular� the #vertex�free$
mortar spaces of Ben Belgacem and Maday ��
 alleviate the restriction of
Fig� 	c� The conforming�space%nonconforming�mesh approach used here
was motivated by the results of R&nquist ���
� who reported spurious eigen�
values in the convection operator for certain combinations of convection and
nonconforming formulations� For brevity� in this article� conforming will

�

�a� �b� �c�

Figure 	� �a� Valid and �b�c� invalid nonconforming meshes in lR��

 



refer to conforming meshes �no hanging vertices�� and nonconforming will
refer to conforming spaces with nonconforming meshes� We further assume
that the polynomial degree N is the same in each spectral element�

To introduce the interface matching conditions� we begin by considering
enforcement of continuity of a function u�x�� x � � � lR� for the conform�
ing case� For isoparametricallymapped elements� the geometry within each
element is represented in a form similar to ���� that is�

x
k�r� s�

��
�k

�
NX
i��

NX
j��

x
k
ijh

N
i �r�hNj �s� � ����

Because the basis functions are Lagrangian� function continuity for u�x� is
enforced by simply equating coincident nodal values� that is�

x
k
ij � x

�k
���� �� ukij � u

�k
����� ����

If n is the number of distinct nodes on �� then ���� represents K�N���d�n
constraints on the set of local nodal values fukijg�

It is convenient for notational purposes to cast the constraint ���� in
matrix form� Let u � lRn denote the vector of nodal values associated with
a global numbering of the distinct nodes in all of �� as illustrated in Fig� �a�

Let uk � lR
N	��d denote the vector of local basis coe�cients associated
with �k�

uk ��
�
uk��� u

k
��� � � � � u

k
NN

�T
� k � �� � � � �K�

as illustrated in Fig� �b� and let uL be the K�N � ��d � � collection of
these local vectors� If u is to be continuous� then there exists a Boolean
connectivity matrix�Q� that maps the global form u to its local counterpart
uL such that ���� is satis�ed� The operation

uL � Qu ����

�a� �b�

� �
�

�
�

c c c

c c c

c c c
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Figure �� �a� Global and �b� local numbering for spectral element mesh�
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is referred to as a scatter from the global �u� to local �uL� vector� For
example� in Fig� � the global value u� is copied to local coe�cients u����
and u����� Note that for every global vector� u� there is a corresponding
local vector� uL� given by ����� The converse is not true because Q is not
invertible� However� we will frequently employ the closely related gather

operation

v � QTuL ����

and denote the output �v� with a di
erent notation from the input �uL��
Whereas the action of Q is to copy entries of u to uL� the action of QT

is to sum entries from corresponding nodes� In practice� the matrix Q
is never constructed� Rather� the actions of Q and QT are implemented
via indirect addressing �and message passing� in parallel implementations��
The combined gather�scatter operation '� �� QQT is often referred to as
direct sti�ness summation in the spectral element literature�

We illustrate the use of the above notation by considering an integral
that arises in the weak formulation of the Poisson equation� Assuming u�
v � H�� we have

Z
�

ru � rv dV �
KX
k��

Z
�k
ru � rv dV� ��	�

Restricting u and v to XN � inserting the SEM basis ���� and substituting
GL quadrature for integration� we obtainZ

�k
ru � rv dV � �vk�TAkuk� ����

where Ak is the local elemental sti
ness matrix and the approximation ���
results from substitution of quadrature for integration� An example of Ak

is given by the tensor�product form

Ak �
Lks
Lkr

� bB 
 bA� �
Lkr
Lks

� bA
 bB� �
for the case where �k is an Lkr � Lks rectangle� Here� bA and bB are the
respective sti
ness and mass matrices on ���� �
� with entries

bAij �
NX
l��

bDli�l bDlj � � � bDT bB bD�ij� bBij � �i�ij � �ij

Z �

��

hNi �r�dr�

where �i is the GL quadrature weight� bDij � hN �
j ��Ni � is the one�dimensional

derivative matrix� and �ij is the Kronecker delta� Substituting ���� into
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��	� yields

Z
�

ru � rv dV �
KX
k��

�vk�TAkuk � vTLALuL � vTQTALQu� ����

where AL �� block�diag�Ak� comprises the unassembled local sti
ness ma�
trices� Note that the �nal equality is a result of the interface matching
conditions� u� v � H��

Equation ���� illustrates how the matrix assembly process �Q� QT � is
decoupled from the local spectral element operators contained in AL� In
the nonconforming case� Q must be modi�ed at the PC interfaces� where
global nodal values are stored along the parent edge� Application of Q in�
volves interpolation of the associated Lagrange polynomial to nodal points
distributed along the corresponding child faces� To ease parallelism� we
implement this using the two�step process illustrated in Fig� �a� Data is
�rst copied from the parent data structure to the corresponding child edges�

copy
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Figure �� Schematic of �a� Q and �b� QT implementation�

��



This step may involve communication if the parent and child elements are
not on the same processor� After the copy� an interpolation operator� Jcp�
is locally applied to produce the desired nodal values on the child face�
This two�step procedure can be represented in matrix form as

Q � JL �Q�

where �Q is a Boolean matrix similar to the Q operator used in the con�
forming case� and JL is block�diagonal and comprises local matrices Jcp

that interpolate from ��p to ��p � ��c� The entries of Jcp are

�Jcp�ij � hNj ��cpi ��

where �cpi represents the mapping of the GL points from the child edge
to its parent� In lR�� the local interpolation operators mapping from the
parent to child face have the tensor�product form Jcps 
 Jcpr � Application
of QT follows in the reverse order� with summation replacing the copy� as
illustrated in Fig� �b�

For time advancement of the incompressible Navier�Stokes equations� it
is desirable to have a diagonal mass matrix ���
� If �i� �j are two elements

of the Lagrangian basis set spanning XN � the entries of the mass matrix for
the standard spectral element formulation are Bij �� ��i� �j�GL� Equiva�

lently� we have B � QTBLQ� where BL �� block�diag�Bk� comprises the
local mass matrices� For the two�dimensional case� an entry of Bk for a
nodal point xkpq is simply �p�qJ

k
pq � where J

k
pq is the Jacobian associated

with the mapping �� � �k� Diagonality of the mass matrix in the con�
forming case is assured because of the coincidence of the quadrature points
and the Lagrangian nodal points� In the nonconforming case� this property
does not hold because the nodal basis functions along the parent edge do
not coincide with the quadrature points along the child edge� However� a
diagonal �lumped� mass matrix �B can be recovered by setting

�b �� B�e � QTBL�eL ����

and then setting �Bij � �ij
�bi� Here� �e and �eL are the respective global and

local vectors containing all ones� Note that� because BL is diagonal� ����
amounts to applying QT to the local vector bL containing the entries of
BL� In ���
 it was shown that this mass lumping procedure is equivalent to
replacing the more accurate quadrature in the child elements by quadrature
at the nodal points along the parent edge�

Conditioning� The nonconforming discretization is particularly e
ective for
external �ow problems� In addition to reducing the number of gridpoints in
the far �eld� it allows one to avoid the creation of high�aspect ratio elements
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Figure �� K��� noncforming �left� and K �  � conforming �right� meshes
for cylinder problem�

that can lead to ill�conditioning ���
� This point is illustrated by the two�
dimensional meshes in Fig� �� which are used to solve the problem of start�
up �ow past a cylinder at Re � ����� following ���� ��
� The conforming
mesh �left� exhibits a few high�aspect ratio elements in the far �eld that
have been eliminated in the nonconforming mesh �right�� Table � shows
the number of Schwarz PCG iterations to reduce the pressure residual on
the �rst timestep by ���� for the case N � � and two successive quad�
re�nements of the meshes in Fig� �� The conforming case shows a marked
increase in iteration count with re�nement� In contrast� the nonconforming
case exhibits a nearly bounded iteration count that is lower in all cases
than that achieved by even the coarsest conforming mesh� We note that
the extension of the Schwarz method to the nonconforming case required
the development of a nonconforming coarse�grid operator� which was done
by allowingN to vary in the �Q�QT � routines and calling them with N � �
during assembly of the linear �nite elements that de�ne the coarse problem�

� Transitional Flow Example

We have used the techniques presented in the preceding sections to simu�
late several �ows at transitional Reynolds numbers� including hairpin vor�
tex formation in the wake of a hemispherical roughness element ���
� heat
transfer augmentation in grooved��at channel con�gurations� and� most
recently� transition in a model of an arteriovenous �AV� graft ���
�

An AV graft is constructed of synthetic material from an artery to a
vein to provide an access site for hemodialysis patients� AV grafts are

Table �� Iteration Count for Cylinder Problem
Conforming Nonconforming

K  � ��� �	�� �� ��� ����
iter �� ��� ��� �� �� ��

�	
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��
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Figure �� Symmetry�plane slice through nonconformig AV graft mesh�

unique in the vasculature in that their high �ow�rates� which are necessary
for e�cient hemodialysis� can result in transition to turbulence that is
often identi�ed by an audible or palpable thrill downstream of the graft�
This site is commonly associated with subsequent stenosis �narrowing� of
the vein and� ultimately� graft failure� Understanding the cause of graft
failure requires detailed knowledge of the hemodynamic environment in
the vicinity of the AV graft juncture�

For purposes of validation� our initial investigations have focused on the
end�to�side graft geometry illustrated in Fig� �� Using the image�to�mesh
translation procedure developed in ���
� we obtained the computational
mesh from an MRI scan of an upscaled Sylgard model ���� � in vivo scale�
used for LDA experiments ���
� The graft axis intersects the host vein axis
at an angle of ��� Poiseuille �ow is assumed at the graft and vein inlets�
The ratio of the graft to vein diameter is ������ and the ratio of the graft
to vein �ow�rate is  ��� The Reynolds number� Re� is based on the mean

Figure  � In�plane instantaneous velocity vectors at vein cross�sections lo�
cated �left� 	�	� and �right� 	��	 vein diameters downstream from the toe
of the graft�
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Figure ��� Coherent structures downstream of graft toe at Re������

�ow velocity and diameter at the graft inlet� The Reynolds number in the
downstream venous segment is thus Rev � ������ �Re�

Computations at Re����� were based on the nonconforming mesh of
Fig� �� with K � ���� and N � �� approximately ��������� velocity points�
Several features of the complex �ow �eld are revealed in Fig�  � which shows
instantaneous in�plane velocity vectors at two axial slices downstream of
the toe� First� there is signi�cant bilateral symmetry because of the sym�
metric geometry and in�ow conditions� The impact of nonsymmetric inlet
conditions has been studied by Sherwin et al� ���
� Second� we observe
a pair of large persistent vortices cutting across the horizontal midplane�
These are Dean vortices that are set up as the parabolic graft�inlet �ow
impinges on the graft hood and is de�ected downward� Third� there are
many small�scale features in the upper half� including a pair of strong
counter�rotating vortices near the vein wall at x � 	�	��

The small�scale structures are the result of the break�up of the shear
layer that is formed as the �ow enters the vein from the graft and separates
from the vein wall �see Fig� ���� As illustrated in Fig� ��� the break�up leads
to a sequence of periodically shed vortices that have a topology similar to
the hairpin vortices observed in ���
� These vortices are identi�ed by using
the �� criterion of Jeong and Hussain �� 
� The colors mapped onto the ��
isosurfaces represent pressure� For a � mm graft� the shedding frequency
is roughly ��� Hz� which is commensurate with both in vivo and in vitro
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measurements described in ���
�

We present in Fig� �� a comparison with the laser Doppler anemometry
measurements taken in the graft symmetry plane by Arslan ��
� The time�
averaged velocity vectors �uavg� reveal that both the experimental and
numerical models have roughly the same size recirculation zone� However�
the experimental pro�le recovers more quickly as the �ow moves down�
stream� The pro�les of the rms temporal �uctuations for the axial �urms�
and vertical �vrms� components clearly delineate regions of steady and un�
steady �ow� The spectral element method correctly predicts the axial and
vertical location of the transition onset� as indicated by the �rst nonzero
rms pro�les downstream of the toe� as well as the magnitude of the distur�
bance�

� Conclusion

We have presented a stabilized nonconforming spectral element formula�
tion capable of accurate simulations of transition in complex domains� We
have shown that the mesh geometry can have a signi�cant impact on the
conditioning of the underlying linear systems and that the nonconforming
discretization can lead to improved meshes and consequent reductions in
iteration count� Results for �ow in an AV graft illustrate the potential of
this approach for simulation of transition in complex geometries�

uavg

urms

vrms

- 0 . 4 0 . 4 1 . 2 2 2 . 8 3 . 6

0 5 m / s

- 0 . 4 0 . 4 1 . 2 2 2 . 8 3 . 6

0 0 . 5 m / s

- 0 . 4 0 . 4 1 . 2 2 2 . 8 3 . 6

0 0 . 5 m / s

Figure ��� Velocity distributions at Re � ����� LDA �left�� SEM �right��
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