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ABSTRACT

The generation of a valid computational mesh is an essential step in the solution of many complex scientific and
engineering applications. In this paper we present a new, robust algorithm, and several variants, for untangling
invalid quadrilateral meshes. The primary computational aspect of the algorithm is the solution of a sequence of
local linear programs, one for each interior mesh vertex. We show that the optimal solution to these local subproblems
can be guaranteed and found efficiently. We present experimental results showing the effectiveness of this approach
for problems where invalid, or negative area, elements can arise near highly concave domain boundaries or boundaries

with sharp corners.
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1. INTRODUCTION

The generation of a valid, high quality computa-
tional mesh is an essential, although often difficult,
step in the numerical solution of partial differen-
tial equations on complex problem domains. Much
work has been done on the development and im-
plementation of algorithms to improve the qual-
ity of a mesh through topological changes, such
as edge or face flipping [7, 14, 15], alone or in
combination with geometric changes, such as ver-
tex smoothing [2, 5, 19]. These approaches usu-
ally demand that the initial mesh be valid; how-
ever, recent work has begun to consider the prob-
lem of recovering a valid mesh from a topologi-
cally correct mesh that contains inverted, or neg-
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Figure 1. Example showing Laplacian smoothing creating an invalid quadrilateral mesh

ative area, elements [4, 12, 17]. Such elements
can arise either during the initial generation of a
mesh or during the subsequent modification of a
valid mesh through dynamic mesh techniques such
as Lagrangian (moving mesh) discretization tech-
niques or adaptive mesh refinement. In this pa-
per, we extend a method developed for untangling
simplicial meshes [12] to quadrilateral meshes and
discuss how this new approach can be extended
for use with hexahedral meshes. We begin by
reviewing the local mesh smoothing approaches,
both heuristic and optimization-based, that moti-
vate our approach.

Local mesh smoothing methods operate on one
mesh vertex at a time to improve mesh quality in
a neighborhood of that vertex. Each adjustable,
or free, vertex is geometrically repositioned ac-
cording to information at the incident vertices or
elements—ideally the vertex’s new position will
improve the quality of the mesh according to some
metric such as aspect ratio or element condition
number [16]. To achieve an overall improvement
in mesh quality, some number of sweeps over the
free vertices of the mesh are performed.

The simplest, most computationally inexpensive,
and commonly used local mesh smoothing tech-
nique is Laplacian smoothing. With this method
the free vertex is moved to the geometric center of
its incident vertices [9, 18]. A distinct disadvan-
tage with this method is that it is not guaranteed
to improve element quality. In fact, it is possible to
create inverted elements as is illustrated in Figure
1. The figure on the right shows the results of one
hundred passes of Laplacian smoothing applied to
the initial mesh shown on the left. The shaded
quadrilateral elements near the concave boundary
have been pulled outside of the computational do-
main and inverted.

In contrast, optimization-based approaches to
mesh smoothing aim to place the free vertex in
a location that optimizes some measure of mesh
quality. A number of approaches have been con-
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sidered; each is differentiated by the particular
choices of mesh quality metric and optimization
technique. For example, several researchers have
used mesh quality metrics that measure element
or node quality a prior: using geometric criteria,
e.g., [6, 16], and a few have used a posteriori met-
rics that incorporate information from the appli-
cation solution, e.g., [3]. The optimization tech-
niques used have targeted improvement of either
the average element quality, e.g., [16] or the ex-
tremal element quality, e.g., [12, 20]. Convergence
of the local subproblem to the optimal solution
can often be theoretically guaranteed [1, 12]; thus,
these approaches are more robust than Lapla-
cian smoothing but have a greater computational
cost. To reduce the overall computational cost
of these methods without sacrificing robustness,
a number of approaches that combine Laplacian
and optimization-based smoothing [10, 20, 21] or
that combine variants of optimization-based ap-
proaches [11] have been developed.

The convergence results for these optimization-
based approaches typically hold only when start-
ing with a valid initial mesh. If elements in the
local submesh are inverted, the level sets of the
objective function are often no longer convex [12],
and the methods fail. To address this situation, re-
cent work has been done to develop optimization-
based untangling approaches for both simplicial
[11, 12] and quadrilateral and hexahedral [17, 4]
meshes.

In this paper, we extend the mesh untangling ap-
proach presented in [12] to quadrilateral meshes.
We review the solution techniques used for sim-
plicial meshes in §2 and show how they can be
applied to quadrilateral meshes in §3. We develop
several variants of the algorithm and discuss the
convergence guarantees and solution uniqueness in
each case. In §4, we demonstrate the effectiveness
of our approach in untangling inverted elements
near concave boundaries. We close by offering con-
cluding remarks in §5.



2. SIMPLICIAL MESH UNTANGLING

To correct inverted triangles and tetrahedra, we
recently developed an optimization based ap-
proach to simplicial mesh untangling [12]. An un-
tangled simplicial mesh is a mesh whose elements
all have positive area, for the case of triangles,
or volume, for the tetrahedral case. As with the
smoothing algorithms, the untangling technique
solves a local optimization problem for each in-
terior vertex by moving the geometric position of
this vertex to maximize a quality metric. Given
the position of vertex v, x, the quality metric used
for untangling is based on the areas (or volumes)
of the elements T; that contain this vertex. We
define the quality metric for each element, as a
function of the vertex position, to be

QTi,U(X) = A(TZ)’ (1)

where A(T;) is the area (or volume) of element T;.
If the number of elements adjacent to the vertex
is n, the objective function to be maximized is

fo(x) = min Qr,.(x). (2)

1<i<n

We note that given the positions of the other ver-
tices in the element, T, the area A(T') can be ex-
pressed as a function of the Jacobian of the ele-
ment [16].

In both two and three dimensions, A(T;) is a lin-
ear function of the free vertex position x. We use
this fact to pose the optimization problem as a
linear programming problem which we solve using
the computationally efficient and robust simplex
method [13]. In practice the optimization prob-
lem is solved in two steps. First, a phase one linear
programming problem is solved to determine a fea-
sible point. Second, the actual optimization prob-
lem is solved using the feasible point as the initial
point. The linear program has been solved when
all of the elements have an area (volume) greater
than or equal to the current minimum value and
the complementarity condition has been satisfied.
More details on this method can be found in [12].

These problems can always be solved if the local
subproblem is well-posed. We define a well-posed
local subproblem to be one in which 1) the inci-
dent vertices (i.e., all vertices that are adjacent to
v in the mesh) do not all lie in a lower-dimensional
subspace and 2) no two incident vertices are co-
located at the same point in space. When the

subproblem is not well-posed, we deal with these
special cases in the following ways. If the vertices
all lie in a lower-dimensional subspace, the opti-
mal solution is to place the free vertex anywhere in
this subspace, resulting in zero volumes for all the
elements. In this case, the linear programming
approach is not used to solve the subproblem in
this sweep through the mesh. If the vertices are
co-located in space, there is a simplex of zero area
(volume) regardless of the position of the free ver-
tex. If this situation occurs, one of the co-located
vertices is removed from the local submesh and the
untangling method is restarted with the reduced
incident vertex set. The co-located vertex is not
removed from the global mesh problem, just from
the current local submesh.

To guarantee convergence of a well-posed local
optimization problem, we proved that the level
sets of the objective function given in equation
(2) are convex and closed on the entire domain
in both two and three dimensions [12]. Because
the level sets are convex, any local maximum of
f(x) is a global maximum. Thus, any optimiza-
tion algorithm guaranteed to find a local maxi-
mum (such as the linear programming approach
described above) is guaranteed to determine the
global maximum for the local subproblem. This
approach therefore converges to the global max-
imum of the local subproblem from any starting
point for the free vertex.

In [12], we presented results for this mesh un-
tangling algorithm for both two- and three-
dimensional simplicial meshes. The algorithm was
often able to create valid meshes in fewer than 10
sweeps through the mesh. Although the meshes
were valid, the untangling procedure results in
meshes of extremely poor quality—minimum an-
gles of 1073 degrees were typical. Therefore, we
followed the mesh untangling procedure with three
passes of combined Laplacian/optimization-based
smoothing [10] to improve element quality. Our re-
sults showed severely tangled meshes required sig-
nificantly more sweeps to untangle the mesh and
decreased the effectiveness of the mesh smoothing
passes. To reduce the costs of the mesh untan-
gling procedure, we experimented with combin-
ing the optimization-based approach with Lapla-
cian smoothing and found that these approaches
resulted in higher quality meshes at lower com-
putational cost than optimization-based untan-
gling used alone. The best performing method
used three sweeps of Laplacian smoothing followed
by the optimization-based untangling technique.
Based on these results, in the following section we
consider the problem of extending this approach
to the problem of untangling quadrilateral meshes.



In [12], we note that although the solution to each
local subproblem is unique, the vertex positions
following a sweep depend on the order vertices are
processed and are not unique.

3. QUADRILATERAL MESH UNTANGLING

The criteria for a valid, untangled quadrilateral el-
ement is that the angles formed by the two edges
incident to each quadrilateral vertex be less than
180 degrees. This criteria is equivalent to the
quadrilateral element being convex. We do not al-
low quadrilateral elements with positive area but
vertex angles greater than 180 degrees because,
for linear finite-element basis functions, the Jaco-
bian mapping of such an element to the canonical
quadrilateral will be singular within the element.
For a quadrilateral mesh to be valid, or untangled,
each element in the mesh must be untangled.

We assume that any initial mesh has a valid
boundary. That is, quadrilateral element bound-
ary vertices (with both incident edges on domain
boundaries) do not form an angle greater than 180
degrees. The algorithms we consider do not mod-
ify boundary vertices, only the geometric locations
of the interior mesh vertices.

Figure 2. A valid quadrilateral element decomposed
into four valid triangular elements

3.1 A triangle decomposition for guadrilaterals

The algorithms we present in this section are based
on a construction that decomposes a quadrilateral
element into triangles. For example, in Figure 2
we show how the quadrilateral gupc4 can be de-
composed into four triangular elements Ty, Type,
Thed, and T.4,. We associate each of these trian-
gles with the quadrilateral vertex that has two of

the triangle’s edges incident to it. Thus, we la-
bel the four triangles above as Ty, Tj, T, and Ty
respectively.

The key observation is that the quadrilateral el-
ement is valid, or untangled, if and only if each
triangle in this decomposition is valid. Thus, we
can employ the same area metric used for untan-
gling a simplicial mesh for quadrilaterals by ap-
pling it to each triangle in this decomposition.
Note that this approach is easily extended to hexa-
hedral elements—the hexahedral decomposition is
to associate a tetrahedron with each of the eight
vertices of the hexahedron.

Given an invalid quadrilateral mesh, the approach
we employ is the same as that used with simplicial
meshes. We sweep over the set of interior vertices,
solving a local optimization problem based on the
geometric location of each vertex. We note that
changing the geometric location of one vertex of
a quadrilateral changes only three of the triangles
in the triangle decomposition detailed above—the
area of the triangle associated with the vertex op-
posite the free vertex will not change as none of
its three vertices are moved. Only the triangles
associated with the free vertex and its two ad-
jacent vertices in the quadrilateral are affected.
For example, if vertex a in Figure 2 is the free
vertex, triangles T,, Ty, and Ty will be affected
by a change in its location; 7. will remain un-
changed. Given the quadrilateral ¢ and a vertex
in the quadrilateral v, we denote this three-vertex

set as V2 (v) = {v,adj, (v)}.

3.2 Quality metrics for untangling
wuadrilaterals

Based on the triangle decomposition and the ver-
tex sets defined above, we consider two quality
metrics: the three-triangle metric and the interior-
triangle metric. Given a vertex v in quadrilateral
q and the areas, A(T,), of the triangles associated
with any quadrilateral vertex, v/, we define these
metrics as follows

three-triangle metric (3T): This metric is given
by the minimum area of the three triangles
affected by the position x of the vertex wv:
gw(x) = minv’EVq3(U) A(Tyr).
interior-triangle metric (IT): This metric con-
siders only the area of the interior triangle

Ty: Qé,u (X) = A(TU)'

We note an additional motivation for the use of
these triangle areas as a metric for the quadri-
lateral. For the standard linear, isoparametric



Figure 3. Example showing the nonuniqueness of the three-triangle method

finite element basis functions for the quadrilat-
eral, we have that the determinant of the Jaco-
bian (the mapping to the canonical quadrilateral
element) evaluated at each element vertex is equal
to the area of the triangle centered at that vertex.
Clearly, in the evaluation of the finite element, is is
important that the Jacobian remain positive, and
if all these triangle areas are all positive then the
Jacobian will be positive on the entire element.

Given one of these metrics, (4,4, the function that
we wish to maximize for each interior vertex v con-
tained by the n quadrilaterals ¢q1,qs2,...,qn 18

fo(x) = min Qg (x). (3)

1<i<n

Each of the triangle area functions is a linear func-
tion of x. Therefore, as with the case of the metric
for a simplicial element [12], this local subproblem
can be posed as a linear programming problem
for both the three-triangle and interior-triangle
metrics. We again employ the simplex method
for a robust means to solve these local optimiza-
tion problems—the simplex method guarantees us
a optimal value for the quality metric for a well-
posed problem. Based on this approach for solving
the local subproblems, the basic untangling algo-
rithm for a quadrilateral mesh is the algorithm
given in Figure 4.

‘While the mesh is invalid do
For each interior vertex v do
Solve the linear program for z*
which optimizes fg(x);
Ty — X7
enddo
enddo

Figure 4. A basic untangling algorithm

3.3 A tradeoff between the two quadrilateral
metrics

Given a valid boundary, the three-triangle metric
is positive for each interior vertex if and only if
the quadrilateral mesh is valid. However, an un-
tangling algorithm based solely on this metric has
several drawbacks. The three-triangle method is
not guaranteed to produce a unique vertex posi-
tion given apparently well-posed initial quadrilat-
erals. In addition, the experimental results de-
scribed in the next section demonstrate that the
meshes generated using solely this metric are of
poor quality.

First, we give an example demonstrating that the
three-triangle method is not guaranteed to pro-
duce unique optimal vertex position. Note, how-
ever, that even though it is not unique, the opti-
mal value for the metric is well defined from the
linear programming formulation. Consider the ex-
ample given in Figure 3. The initial mesh and
level sets for the three-triangle objective function
are shown in the two leftmost figures. The level
sets, although convex everywhere, show a region
where equivalent solutions can exist. Two such
solutions are shown in the rightmost two figures;
in both cases, the final minimum triangle area is
.025 units. In this example, the two solutions are
obtained by simply reversing the input order of
the elements to the simplex method.

Our results show that the interior-triangle method
generally works well in practice; however, it is
not theoretically guaranteed to untangle a local
submesh. Consider the simple example in Fig-
ure 5. The initial submesh contains an inverted,
“bow-tie” quadrilateral with a non-convex angle.
The solution of the interior-triangle method is
shown in the central submesh. The vertex location
that maximizes the minimum areas in the interior-
triangle method falls outside the feasible region,
and the quadrilateral with the non-convex angle
remains an inverted “bow-tie” element. The solu-
tion given by the three-triangle method is shown in



aaaaaaaaaaaaaaaaaaa

Figure 5.

the rightmost submesh. The three angles affected
by the vertex position in the invalid element are
all now valid—the remaining invalid angle would
have to fixed via the solution of the subproblems
associated with the other three vertices. Note that
the placement of the free vertex in this case is very
close to one of the incident vertices which results
in the remaining quadrilaterals being valid but of
exceptionally poor quality.

In general, we have found that the three-triangle
method tends to produce valid meshes with poor
quality elements. Such elements can lead to ill-
conditioning in the simplex method which in turn
creates numerical difficulties in the solution pro-
cess. If the vertices become co-located, they are
randomly perturbed in an attempt to form a non
degenerate problem. If the simplex method still
fails to solve the problem, the free vertex location
is unchanged in this sweep through the mesh.

3.4 A hybrid appreach that cembines the tws
metrics

It is evident that an algorithm based only on
the three-triangle or interior-triangle metric is not
guaranteed to be effective. As a result, we have
developed a hybrid approach to try to take ad-
vantage of the relative strengths of the two met-
rics. As the interior-triangle metric appears to ul-
timately produce better quality meshes, we com-
pute an initial step based on this metric. This
step does not ensure that the modified quadrilat-
erals will be valid. Therefore, we use a hybrid
method, denoted IT — LS, that starts with the
step generated by the interior-triangle metric and,
if necessary, performs a simple back-tracking pro-
cedure to find a point such that the three-triangle
metric is positive. Specifically, if x* is the new po-
sition given by the solution of the interior-triangle
metric and the starting position of the vertex is
x, the hybrid step xj is specified by a constant
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Example showing the tendency of the three-triangle method to create ill-conditioned meshes and the
failure of the interior-triangle method to create a valid mesh

a,0<a<]1, by

xg = x+ a(x” — x).

(4)

The step length « is chosen using a line search pro-
cedure based on bisection that determines a point
for which the the three-triangle quality metric en-
sures a valid mesh. Note that the search direction
given by the interior-triangle method is not neces-
sarily a descent direction with respect to the three-
triangle metric. If it is not a descent direction, we
return the vertex to its original location and do
not update it during the current sweep through
the mesh.

In the experimental section that follows, we use
this hybrid step as the basis of two combined al-
gorithms.

Combined algorithm 1 (CA1): 1f  the  three-
triangle quality metric is negative for the
vertex v, use the step computed from this
metric. Otherwise, use the hybrid step.

Combined algorithm 2 (CA2): Always use the
hybrid step; however, if the mesh is not im-
proved using the hybrid step, return the ver-
tex to its original location and use the step
computed by the three-triangle metric.

Both of these combined algorithms ultimately rely
on the three-triangle quality metric; therefore, the
overall local mesh quality cannot decrease with the
selected step. Thus, each local subproblem is guar-
anteed to converge when these combined methods
are used.

4. NUMERICAL EXPERIMENTS

To analyze the effectiveness of our optimization-
based untangling techniques, we devised a suite of



test cases based on the arc mesh shown in Figure
1. Although it i1s a simple geometry, the concave
boundary in the arc and the regular structure of
the mesh results in a difficult test case for mesh un-
tangling routines [17]. Furthermore, experiments
with both structured and unstructured mesh gen-
eration schemes in CUBIT [8] showed that test
cases containing mapped, logically regular meshes
are more difficult to untangle than unstructured
meshes. We therefore focus our numerical experi-
ments on this type of mesh.

Our experiments consist of three types of prob-
lems: randomly perturbed meshes, smoothly
folded meshes such as the mesh shown in the right
image of Figure 1, and meshes in geometries with
sharp corners. In each case we design a suite of test
cases consisting of increasingly difficult problems
to highlight different aspects of the optimization
algorithms. In all cases, we report the number of
sweeps through the mesh as well as the computa-
tional time required required to untangle the mesh
on a Linux 1686 processor.

We use the following notation to denote each of
the various algorithms studied.

e Lap: Laplacian smoothing
o 3T the three-triangle metric only
e [T: the interior-triangle metric only

e [T-LS: the hybrid step that uses the interior-
triangle metric with the line search procedure

e (A[l: combined algorithm 1 from Section 3
e (A2 combined algorithm 2 from Section 3

o [L(3)/CA2: three passes of Laplacian smooth-
ing followed by combined algorithm 2

o [L(10)/CA2: ten passes of Laplacian smooth-
ing followed by combined algorithm 2

4.1 Untangling Randomly Perturbed Interior
Nodes

In our first set of experiments, we randomly per-
turb all interior vertices of the arc mesh shown
in Figure 1 by a distance of H=1, 2, 4, and 8§
times the average element edge length. The re-
sulting initial meshes contain 256, 288, 301, and
312 inverted elements, respectively. In Table 1,
we give results reporting the number of sweeps,
Sy, the cost per vertex in seconds, 7, and the to-
tal time in seconds, 7, required to untangle the
mesh for each of the algorithms described above.
If the algorithm is unable to untangle the mesh

in 500 sweeps through the mesh, we denote this
by a line in Table 1. For six of the techniques,
we show typical resulting meshes for the H = 4
case in Figure 6. We note that the untangling
algorithms are designed to create walid quadri-
lateral meshes and have no motivation to create
high-quality valid meshes. Further improvements
in each mesh could be obtained by following the
untangling procedure with one or more passes of
optimization-based mesh improvement algorithms

[20].

For all approaches, it is clear that as H increases,
creating valid elements becomes more difficult and
generally requires more sweeps through the mesh.
Laplacian smoothing is able to untangle the mesh
only if H is small and the overlap is not se-
vere. For the H = 2, 4 and 8 cases, Lapla-
cian smoothing fails to untangle the mesh. In
these cases, elements are drawn below the con-
cave boundary before the main body of the mesh
can be successfully untangled. The most expen-
sive approaches are those that depend heavily on
the three-triangle metric: in particular 3T and
CA1l. The ill-conditioning caused by colocated
vertices (see the leftmost mesh in the top row in
Figure 6) causes slow and sporadic convergence
as H increases. The interior-triangle metric, al-
though it is not theoretically guaranteed to untan-
gle the mesh is successful in all cases and results in
fairly good quality meshes as is evidenced by the
middle mesh in the top row of Figure 6. Adding
the line search procedure to the interior-triangle
metric significantly improves its performance for
the most severely perturbed case. Furthermore, it
does not impact the quality of the resulting mesh
as shown in the rightmost mesh of the top row in
Figure 6.

As expected Laplacian smoothing is the most com-
putationally efficient method and is a factor of 6
and 8.5 faster on a cost per vertex basis than the
IT and 3T methods, respectively. The 3T method
is more expensive than the I'T method due to the
larger linear program solved at each vertex. The
IT-LS cost per vertex falls between the IT and 3T
metrics; it solves the smaller linear programming
problem, but has additional costs associated with
the line search procedure. The total cost, 7, 1s
directly proportional to the number of iterations
required to untangle the mesh, and the IT and
IT-LS methods outperform the 3T method in all
cases.

Both of the algorithms that strategically combine
the 3T and IT-LS methods, CA1 and CA2, suc-
cessfully untangle all test cases. CA1, which uses
the 3T method more liberally, is subject to the
same ill-conditioning problems as 3T used alone as



Table 1. The number of sweeps, Si7, cost per vertex, 7,, and total cost, 7;, to untangle the perturbed meshes

H=1 H=2 H=4 H=s
Method Su ‘ 7o (8) ‘ 7t (s) Su ‘ 7o (8) ‘ 7t (s) Su ‘ 7o (8) ‘ 7t (s) Su ‘ Ty (8) ‘ 7 (s)
Lap 3 1.13e-5 011 - - - - - - - - -
3T 29 | 9.70e-5 911 26 9.66e-5 814 178 9.84e-5 5.67 109 9.83e-5 3.47
1T 3 7.05e-5 .068 8 7.08e-5 184 14 7.12e-5 323 29 7.17e-5 674
IT-LS 5 7.91e-5 128 6 7.82e-5 152 15 7.81e-5 .379 16 7.86e-5 .407
CA1l 18 | 8.11e-5 .480 26 8.17e-5 698 38 8.21e-5 1.03 79 8.18e-5 2.13
CA2 6 7.94e-5 176 8 7.95e-5 .237 14 8.04e-5 421 18 8.12e-5 .543
L(3)/CA2 3 1.12e-5 011 3+3 4.59e-5 .089 3+6 5.85e-5 171 3419 | 7.39-5 527
L(IO)/CA2 3 1.15e-5 011 1042 | 2.32e-5 .091 1043 | 2.72e-5 115 1046 | 3.70e-5 .193

2
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[t
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Figure 6. Untangled meshes for the H = 4 case: top row left to right: 3T, IT, and IT-LS, bottom row left to

right: CA1, CA2, and L(10)/CA2

is evident by the relatively high number of sweeps
required to untangle the test cases. CA2, which
uses the 3T method sparingly, is more consistent
than CA1 and performs similarly to the IT-LS
method used alone. The untangled meshes for
CA1l and CA2 are shown in the two leftmost im-
ages in the bottom row of Figure 6. The tendency
of the 3T method to colocate vertices is clearly
seen in both cases. The cost per vertex in each
of these methods falls between the IT-LS and 3T
methods, with the heavier use of the 3T method
evident in the slightly higher cost of the CA1 al-
gorithm.

In the last two rows of Table 1, we show the
results of preceding CA2 with three and ten

sweeps of Laplacian smoothing, respectively. In all
cases, Laplacian smoothing significantly reduces
the number of optimization iterations, and conse-
quently both the cost per vertex and total cost re-
quired to untangle the mesh. In particular, 7, for
the L(10)/CA2 method for the H =4 and H = 8
cases is only 2.5 and 3 times more expensive, re-
spectively, than Laplacian smoothing used alone.
The mesh untangled with the L(10)/CA2 method
is shown in the rightmost figure in the bottom row
of Figure 6. This mesh clearly has the best qual-
ity, and Laplacian smoothing, although it can not
be used alone, is highly recommended as a pre-
conditioner for the optimization-based untangling
methods.



4.2 Untangling a Smoothly Folded Mesh

Meshes that have been smoothly folded by apply-
ing Laplacian smoothing near convex boundaries
or sharp corners are particularly challenging test
cases for mesh untangling algorithms. In these
cases, the inverted elements neighbor each other
and the algorithm must work in an iterative pro-
cess to pull the inverted elements back inside the
concave boundary. For example, using Laplacian
smoothing on the arc mesh shown in Figure 1 un-
til the mesh has converged and no node movement
is observed results in a smoothly folded mesh con-
taining 103 inverted elements. We apply each of
the five optimization algorithms to this test case
and report the results in Table 2. As before we
give the number of sweeps required to untangle the
mesh, Sy, number of calls to the untangle routine,
Cy, and total cost, 7, to untangle the folded mesh.
We do not give the cost per call, 7, as those values
are essentially the same as those given in Table 1.

Table 2. The number of sweeps, Sy, number of calls
to the untangle routine, Cy, and total cost, 7;, to
untangle the folded arc mesh

Method || Sv | Cv | n(s) |

3T 114 | 36936 | 3.43
IT 48 | 15552 1.10
IT-LS 69 | 22356 1.74
CAl 85 | 27540 | 2.23
CA2 67 | 23995 1.90

Each optimization algorithm can successfully un-
tangle the folded mesh, although the number of
sweeps required is typically significantly higher
than was required for the randomly perturbed
meshes. In particular, even for the most severely
perturbed case which initially contains three times
more inverted quadrilaterals, more iterations were
required to untangle the folded mesh. Another
interesting aspect of this test case is that in all
cases the number of inverted elements is slightly
increased during the initial untangling passes as
more tangled elements are created near the corners
of the folded region. Thus, allowing only mono-
tonically increasing improvement in the elements
during untangling would fail in this test case.

It is important to have a means to assess the lim-
its of the untangling algorithms. To quantify this
assessment, we have designed a test problem gen-
erator that creates problems that are increasingly

difficult to untangle as a function of a parameter
fr. The problems are formed by starting with
a regular quadrilateral mesh for an annulus with
inner radius 1.0 and outer radius 2.0. We then ro-
tate the outer boundary by an angle #z. This rota-
tion forces the quadrilaterals to become increasing
skewed until, after a critical angle, it is impossible
for all the quadrilaterals to be convex. This criti-
cal angle depends on the number of elements used
in the radial and axial directions. An example of
the imitial mesh for g = 45° is shown in the left
of Figure 7.

Using these initial meshes, we solved two se-
quences of test problems using the combined al-
gorithm CA2. The initial mesh in each sequence
was generated by increasing the angle of rotation
from 0° until it was no longer possible to untangle
the mesh in less than 100 untangling passes. For
each angle of rotation, we perturbed the mesh in
two different ways prior to employing the untan-
gling algorithm. For the first sequence, a random
perturbation of length scale H = 1 was used fol-
lowed by 10 passes of Laplacian smoothing. This
results in a smoothly folded mesh, a typical ex-
ample of which is shown in the center of Figure 7
for #r = 45°. For the second sequence, a random
perturbation of the vertices with a length scale
H = 1 was used without any following Laplacian
smoothing. An example of the resulting untangled
meshes is shown in the right of Figure 7.

The results for these two test problem sequences
are shown in Figure 8. The upper graph showns
the number untangling passes required to untan-
gle the perturbed meshes as a function of the angle
of rotation fg. In the lower graph, the number of
inverted elements in the initial perturbed meshes
is shown. As our previously discussed results
have indicated, the meshes that have been Lapla-
cian smoothed provide consistently more difficult
meshes to untangle, although the initial number of
inverted elements is much fewer. What is surpris-
ing about these results is the fact that it is possible
to untangle the annulus mesh with outer boundary
rotated by an angle of greater than 120°. It is not
apparent how to generate a mesh with this con-
straint with convex quadrilaterals a priori, with-
out using the untangling algorithm.

4.3 Untangling Meshes in Geometry with
Sharp Corners

To illustrate the effectiveness of the various meth-
ods in a geometry with sharp corners, our final test
case sequence uses a mesh generated for the arc ge-
ometry from Figure 1 intersecting with a trapezoid
to create sharp corners at the points of intersec-
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tion. This geometry and the initial mapped mesh
are shown in the leftmost image of Figure 9. Us-
ing this mesh as our starting point, we create three
test cases. First, we randomly perturb the mesh
nodes a distance of H = 1 and apply the five al-
gorithms directly to the perturbed mesh. Second,
we randomly perturb the mesh as before and apply
ten passes of Laplacian smoothing which creates
11 nonconvex quadrilaterals. Third, we randomly
perturb the mesh as before and apply Laplacian
smoothing until convergence which results in 14
nonconvex quadrilaterals located near the inter-
section corners; this mesh is shown in the center

of Figure 9.

The results of this series of tests are given in Table
3. For this geometry only the 3T algorithm and
the two combined algorithms, CA1 and CA2, can
successfully untangle the mesh. The IT and IT-
LS methods failed in all cases because these algo-
rithms are unable to create a valid mesh near the
sharp corners of the geometry as was illustrated in
Figure 5. As before, preceding the optimization-
based algorithms with a small number of Lapla-
cian smoothing sweeps significantly reduces both
the number of sweeps through the mesh and the
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Figure 9. Example showing the arc geometry intersecting a trapezoid (left), the result of using Laplacian smoothing
to convergence (middle), and the L(10)/CA2 untangling algorithm (right)

Table 3. The number of sweeps, Sy, number of calls
to the untangle routine, Cy, and total cost, 7;, to
untangle the mesh with sharp corners

| Method || 5v | v |7 (9 ]

H=1, No Lap
3T 32 13920 1.39
CA1l 14 6090 515
CA2 5 2383 .200
H=1, Lap(10)
3T 7 3045 335
CA1l 3 1305 .104
CA2 4 1781 .193
H=1, Lap Converged
3T 6 2610 .235
CA1l 29 | 12615 1.02
CA2 6 2678 215

total time required to untangle the mesh compared
to the optimization-based techniques used alone.
The results of using the L(10)/CA2 algorithm to
untangle the mesh are shown in the rightmost im-
age of Figure 9. However, using Laplacian smooth-
ing until convergence did not result in a further im-
provement in time required to untangle the mesh,
and the CA1 algorithm was significantly penalized
by the additional nonconvex quadrilaterals

5. CONCLUSIONS

When faced with invalid quadrilateral elements,
algorithms that are designed for element quality
optimization are not appropriate because the un-
derlying objective functions are not convex. This
problem was solved for simplicial element meshes

by developing a metric for the local vertex sub-
problems that is convex for invalid elements and
can be efficiently solved as a linear program. In
this paper, we have extended this approach to
quadrilateral meshes by introducing a triangular
decomposition of quadrilateral elements into over-
lapping triangles that allows the use of similar,
area-based metrics. We have introduced two met-
rics, a three-triangle and an interior-triangle met-
ric, that have the convexity property. The result-
ing vertex subproblems based on these metrics can
again be solved as a linear program. Thus, the so-
lution to a well-posed subproblem is guaranteed
with the use of the simplex method.

Our experimental results indicate that the three-
triangle metric when used alone results in poorly
conditioned quadrilaterals. On the other hand,
the quadrilaterals produced with the interior-
triangle are generally well-conditioned; however,
there is no theoretical guarantee that they will
be valid as was illustrated by our test case with
sharp corners. Therefore, we have introduced a
hybrid method that uses the step produced by
the interior-triangle method and then employs a
line search based on backtracking, using the three-
triangle metric as an acceptance criteria. This
approach is guaranteed improve the mesh valid-
ity while at the same time improving the over-
all mesh quality. Experimental results for sets of
test problems confirm the success of the hybrid ap-
proach used in conjunction with the three-triangle
method, and, in particular, we recommend the use
of the CA2 algorithm preceded by a few passes
of Laplacian smoothing to untangle quadrilateral
meshes.

For future work we have noted that this same ap-
proach can be extended to hexahedral meshes—we
plan to pursue work in this direction. Similar work
for hexahedral mesh untangling has been pursued
by Knupp [17], and we will compare the results
obtained by the generalization of the approach de-



scribed in this paper to those obtained by using
his method. Finally, of central importance is the
question as to whether the solution of these local,
convex subproblems leads to a convergent global
method with a unique solution. The difficulty with
this problem is the observation that although the
local (single vertex) optimization problems are lin-
ear and convex, the global optimization problem
can easily seen to be nonlinear and nonconvex. It
would be interesting to resolve the issue of the
global convergence of this class of algorithms.
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