TBR Analysis in Reverse-Mode Automatic
Differentiation

Laurent Hascoét ® Uwe Naumann ? Valérie Pascual @

2 Projet Tropics, INRIA, Sophia-Antipolis, France

b Mathematic and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439, USA

Abstract

The automatic generation of adjoints of mathematical models that are implemented
as computer programs is receiving a increased attention in the scientific and engi-
neering communities. Reverse-mode automatic differentiation is of particular inter-
est for large-scale optimization problems. It allows the computation of gradients at
a small constant multiple of the cost for evaluating the objective function itself, that
is independent of the number of input parameters. Source-to-source transformation
tools for automatic differentiation are available to generate adjoint codes based on
the adjoint version of every statement that can be built by applying simple dif-
ferentiation rules. Therefore, a reversal of the control flow of the original program
becomes necessary. To guarantee correctness, certain values that are computed and
overwritten in the original program must be made available in the adjoint program.
They can be determined by performing a static data flow analysis, the so-called
TBR analysis. Overestimation of this set must be kept minimal to get efficient ad-
joint codes. For many real-world applications the applicability of source-to-source
transformation tools for automatic differentiation cannot be achieved without this
efficiency.

1 Automatically Generated Adjoints

We consider a computer program P evaluating a vector function y = F(x),
where F': IR™ — IR™. Usually, P implements the mathematical model of some
underlying real-world application and it is referred to as the original code.

P is assumed to decompose into a sequence of scalar assignments of the form

vj = Soj(vk)k<j7] -]-7 e 7p+m7 (]-)

Preprint submitted to Elsevier Science 20 April 2004

with each variable v; assigned only once. Each ¢, is some intrinsic (i.e., math-
ematical) function or elementary arithmetic operation provided by the pro-
gramming language that P is written in. Among the v;, the last m represent
the output variables y € IR™. Similarly the n inputs x € IR™ are represented
by variables vj, for k = 0,...,1—n. We say that a value v; depends in a differ-
entiable way, or depends, on vy, and we write vy < v; or k < j, iff the partial
derivative of v with respect to v; is defined. For example, in the assignment
x(i)=axb(i+j), with x, a, and b of type real, the left-hand side x (i) depends
on a and b(i+j), but not on i nor j. Here, <* denotes the transitive closure
of the relation <. Furthermore, we assume that the local partial derivatives

0p; . o
Cji — af](vk)k<] J 617"'7p+m7 t =<7, (2)

are jointly continuous in some neighborhood of their arguments vy, k < j. For
example,

0x (1)
Oa

=b(i+j) for =x(i)=axb(i+j).

With these assumptions, we can use automatic differentiation (AD) [?,7,?] to
create an augmented version of P that computes and combines these local
partial derivatives according to the chain rule, returning some derivatives of
F. In particular, the reverse mode of AD (see, for example, [?, Section 3.3])
computes adjoints Ty for all intermediate and input variables v, according to
the recurrence

U= Y Cr-U, k=p,...,1-n (3)
Jik<j
Initializing Upt1, ..., Vptm to ¥, we obtain in vy, ..., 7i_p, the “transposed Ja-

cobian matrix times vector” product X = F'(x) -y at complexity O(m). Thus,
gradients of a single output variable with respect to all inputs are obtained
at a computational cost that is a small multiple of the cost of running the
original code (see cheap gradient principle in [?]).

Considering equation (3), we observe that the adjoints are computed in reverse
order from £ = p down to 1 — n. Thus, the local partial derivatives c;, must
be made available in reverse order as well. Their values depend, however,
on the values of the input and intermediate variables vy, where the latter
are computed for £ = 1,...,p in the original code. Since computer programs
usually overwrite variables, some v, may have been lost when they are required
by the derivatives. To recover these values, one can either (A) store the values
required by the local partial derivatives on a so-called tape before they are
overwritten and retrieve them whenever required in the adjoint code [?] or
(B) recompute them “from scratch” when they become required in the adjoint
code [?]. In both cases, we will say that these values have to be recorded
(TBR). Obviously, approach (A) may lead to enormous memory requirements
for large-scale application programs, whereas (B) may result in a quadratic

computational complexity. Sophisticated implementations of approach (B) can
reduce this cost by reusing values of variables that become available during
the computation of other required values [?]. Often a combination of the store
and recompute strategies is employed to achieve reasonable trade-offs between
memory use and execution time. See, for instance, the checkpointing schemes
[?7]. Whatever the approach, its efficiency would strongly benefit from the
knowledge about whether some value is actually to be recorded. This is the
purpose of the TBR analysis described in this paper.

Section 2 gives an intuitive description of the principles behind TBR analysis.
Section 3 contains general introductory comments on data flow analysis. Sec-
tions 4 and 5 present the formal specifications of activity and TBR analyses,
using the formalism of data flow equations. Section 6 concludes with a case
study and some experimental measurements.

2 The Principle of TBR Analysis

The left column of figure 1 shows an example original code, which is the body
of a subroutine that uses values from an array x to compute new values of
x. The right column of figure 1 shows the corresponding adjoint code, which
implements equation (3).

Notice that the control flow of the adjoint code is reversed from the control
flow of the original code. This reversal can be achieved in various ways, which
are outside the scope of this paper. Here, we count the number of iterations
of loops into an integer COUNT and execute the adjoint loops the same num-
ber of times, but in reverse order. Similarly for conditionals, each time the
original control flow merges, we remember where the control comes from, and
this indicates where the adjoint control flow must go to. The PUSH(w) (resp.
POP(w)) subroutine pushes (resp. pops) the value of variable w onto (resp.
from) a stack that implements the tape. A similar tactic is implemented in
our AD tool TAPENADE [?].

Since the adjoint code requires values from the execution of the original code,
which may have been overwritten in the meantime, the adjoint code is preceded
by a copy of the original code, augmented with instructions that store values
on the tape before they get overwritten. We call this augmented original code
the forward sweep, shown in the middle column of figure 1. Symmetrically,
the adjoint code is augmented with instructions that retrieve these values
when they are required (see approach (A) above). The forward sweep may
precede immediately the adjoint code, as in the joint program reversal mode
[?7, Chapter 12], or at some previous time, as in the split mode. TBR, analysis
[?] observes that not all values need be stored during the forward sweep. One

Original Code Forward Sweep Adjoint Code
1=0;j=10;a=3.14159 i=0;j=10;a=3.141569 POP (COUNT)
COUNT=0 while (COUNT>0) {
while (check(j)) { while (check(j)) { COUNT=COUNT-1
if (max(i,j)>7) { if (max(i,j)>7) { POP(j)
PUSH(x (1)) POP(i)
x(1)=j+sin(x (1)) x(1)=j+sin(x (1)) POP(test)
PUSH(true) if (test) {
} else { } else { POP(x(i))
PUSH(x(j)) x(i)=
x(j)=j*cos(x(j))+a x(j)=j*cos(x(j))+a cos(x(1))*x(1)
PUSH(false) } else {
} } POP(x(3))
PUSH(i) a=a+x(j)
i=i+1 i=i+1 x(j)=
PUSH(j) -j*sin(x(j))*x(j)
j=j-1; a=a/2 j=j-1; a=a/2 }
COUNT=COUNT+1 }
} ¥
PUSH(COUNT)

Fig. 1. Original code, forward sweep, adjoint code

must store only the values that are effectively required in the adjoint code and
will be overwritten during the rest of the forward sweep.

Before describing TBR analysis, we must first introduce the notion of active
variables. The user of AD often requests only the derivatives of some of the
outputs y (the “dependent”’ variables yp), with respect to some of the inputs
x (the “independent” variables x1). Let us use the term “variable” for a scalar
component of an instance of some program variable present in the original code.
A static analysis can detect, for any intermediate variable v in the original
code, whether 9z € x; : x <* v and dy € yp : v <* y. In that case, v is called
an active variable. Otherwise, the derivative of v will be neither computed nor
used by the adjoint code, because it is either useless or trivially null. This will
make the differentiated program simpler and more efficient. Section 4 gives
the data-flow equations that define this activity analysis.

Consider now an original instruction v = ¢(u), where u = {u1,ug, ..., up,}
denotes the set of scalar arguments of ¢. This instruction generates a set of
adjoint statements in the adjoint code that involve o, @;, and g—qf’i(u). Activity
matters: if v is not active, there will be no adjoint statement, and if some u;
is not active, the adjoint statements will involve neither u; nor g—i(u). The
values required by the remaining adjoint statements are the arguments u of

the local partial derivatives %‘%(u), plus the arguments of possible indices of

the u; and v, when these variables are array references. Precise rules are given
in section 5.

Going back to our example in figure 1, we can check the following sets of
required values:

Reg(x()=j+sin(x(1))) = {x}U{i}u{i} = {x,i}
Req(x(j)=j*cos(x(j))+a) = {x,jt U {j} U{i} ={x.j}

Knowing these required sets, TBR analysis follows the flow of the original
code, looking for overwritings of these values. When a required value is over-
written, TBR analysis inserts a PUSH instruction just before the overwriting
and symmetrically restores the value with a POP instruction before it is re-
quired in the adjoint code. For both statements above, the original value of
an element of x is required by the adjoint. Without array region analysis (see
section 3) any component of x must be recorded when overwritten. The in-
dices i or j are also required. But the overwriting occurs later, and so does
the PUSH/POP pair. On the other hand, a, although repeatedly overwritten, is
in no Req set and therefore need not be recorded.

3 Data Flow Analyses

Data flow analyses extract information from the text of programs about prop-
erties of run-time values. Data flow analyses are static, which means they are
done at compilation time, without knowledge of data or behavior at run time.
Hence, most static analyses are undecidable, that is, there always exists a par-
ticular program for which the result of the analysis is uncertain. Therefore,
to obtain safe results, conservative owverapproximations of the computed in-
formation are generated. For instance, such approximations are made when
analyzing the activity or the TBR status of some individual element of an
array. Static and dynamic array region analyses [?] provide very good approx-
imations. Otherwise, we make a coarse approximation, in which the activity
(resp. “requiredness”) of one element implies the activity (resp. “required-
ness”) of the whole array.

Data flow analysis depends on the internal representation of programs, as
discussed in classical literature on compiler theory (see, in particular, [?]). The
most appropriate description appears to be in terms of data flow equations,
defined on call graphs of control flow graphs (or simply flow graphs), which we
have selected for TAPENADE.

e The call graph is a directed graph with one node for each subroutine or
function of the program, and an arrow from node A to node B iff A possibly

calls B. Recursion leads to cycles in the call graph.

e A subroutine or function is represented by a flow graph. There is one flow
graph per node in the call graph. A flow graph is a directed graph, whose
nodes are basic blocks [?]. Arrows in the flow graph represent the flow of
control, that is, the possible destinations of the execution pointer after com-
pletion of a basic block. At run time, a test located at the end of the basic
block decides on the direction of control flow.

At the lowest level, the individual instructions are represented simply as ab-
stract syntax trees. To each basic block is associated a symbol table that gives
access to properties of variables, constants, function names, type names, and
so on. Symbol tables are nested to implement scoping.

Data flow analyses must be carefully designed to avoid or control combina-
torial explosion. The classical solution is to choose a hierarchical model. In
this model, information, or at least a computationally expensive part of it, is
synthesized. Specifically it is computed bottom up, starting on the lowest (and
smallest) levels of the program representation and then recursively combined
at the upper (and larger) levels. Consequently, this synthesized information
must be made independent of the context (i.e. the rest of the program). When
the synthesized information is built, it is used in a final pass, essentially top
down and context dependent, that propagates information from the “extremi-
ties” of the program (its beginning or end) to each particular subroutine, basic
block, or instruction. This is the approach we use for both activity and TBR
analyses.

Each data flow analysis is described concisely by data flow equations. In their
most general form, these equations apply to unstructured flow graphs [?], be-
cause real programs have unstructured flow graphs in general. On the other
hand, these general equations can be specialized to structured flow graphs,
that is, cleanly nested loops and conditionals, yielding structured data flow
equations. The latter may be applicable to a smaller class of program but are
usually more efficient and also more illustrative.

4 Activity Analysis

As explained in section 2, activity analysis detects the variables for which a
derivative must be computed, namely, all v such that 4z € x; : £ <* v and
Jy € yp : v <* y. Therefore, given the set x; of independent input variables,
and the set yp of dependent output variables, both sets provided by the end-
user, activity analysis must do two tasks:

e Forward from the beginning of the program, it must propagate the set of

all variables that possibly depend on some independent input.
e Backward from the end of the program, it must propagate the set of all
variables on which some dependent output possibly depends.

Those are two static interprocedural data flow analyses. Therefore, we must
control combinatorial explosion by selecting appropriate synthesized (i.e., bot-
tom-up) information.

4.1 Differentiable Dependency Analysis

Classically, the bottom-up analysis that we need here is the differentiable
dependency analysis, which computes, for each particular structure (i.e., in-
struction, basic block, or subroutine) all pairs of values (vy.v,), vy just before
the structure and v, just after the structure, such that v, <* v,. We call this
set Dep. It can be implemented very efficiently as an array of Booleans, but we
willfocus on sets for the present description. We are going to give the data-flow
equations that compute Dep at each level of the program representation.

For an individual instruction, there are two main cases: assignments and sub-
routine calls. We will examine subroutine calls when we deal with the inter-
procedural aspect. First let us focus on assignments. After an assignment, the
assigned variable depends on all variables that occur in differentiable posi-
tions in the right-hand side. This set (call it DP) is given by the following
constructive definition:

€1 0p €2 ‘ 90(61) ‘ 61[i] ‘ v ‘C

H
DP(eapr): | DP(e1) U DP(es) | DP(er) | DP(er) | {v} | 0

Above we have ¢ € {sin,exp,tan,...}, op € {+,—,*,...}. Here, v denotes
a single variable, and ¢ stands for some constant value. All other variables
not occurring on the left-hand side of an assignment remain unchanged. They
depend just on themselves. When dealing with arrays, we must overestimate
Dep as follows: if the left-hand side is an array reference and some reference
to the same array occurs on the right-hand side, then we must recognize the
fact that the array variable may depend on itself.

For a basic block, Dep is built by composition “x” of the Dep set of each
instruction. More generally, for any two structures S; and Sy executed in
sequence, Dep(Sy;Ss) = Dep(Sy) x Dep(Ssy), where “x” is defined by

(vp <" v,) € Dy X Dy <= Fu,(vp <* v) € D1 A (v <" v,) € Ds.

For a subroutine, Dep is built on its flow graph. Strictly speaking, it represents

the solution of the data flow equations that are solved iteratively on the whole
(possibly unstructured) flow graph. For each basic block in the flow graph,
we introduce InDep (resp. OutDep) as the dependencies from the entry of
the subroutine to the entry (resp. exit) of the basic block. Clearly InDep on
the subroutine entry is the identity (every variable depends on itself only),
while OutDep on the subroutine exit is exactly the desired set Dep of the
subroutine. In general, for any basic block, InDep and QutDep are related
by the data flow equations shown in figure 2. Practically, these equations are

‘\/’ L

‘/\5 OutDep(B) = Dep(B) x InDep(B)

Fig. 2. General data flow equations for differentiable dependency analysis

solved iteratively on the flow graph. As for any iterative algorithm, a proof of
termination is required, which we shall just sketch here: The idea of the proof
is that the InDep and QutDep sets are initialized to (), and the successive,
iterative values of these sets are strictly growing, inside a finite domain that
has a maximum element (when each variable depends on every variable).

In the special case of structured flow graphs, the data flow equations can be
specialized into structured data flow equations, shown in figure 3. They com-
pute the Dep sets bottom up on the structured flow graph, which is certainly
more efficient, but less general, than solving the unstructured equations. In
particular, the fixpoint iteration is local to single loops.

Dep(B) = Dep(Bsy) x Dep(By)
— Dep(B) = Dep(By) U Dep(Bs)
— Dep(B) = Dep(By) x (Dep(By) U Id)*

Fig. 3. Structured data flow equations for the differentiable dependency analysis

Subroutine calls are handled at the call graph level. For an individual instruc-

tion that is a call to subroutine S, the set of dependencies of the instruction
is basically Dep(S). There is, however, a technical step of translating the vari-
able names, as the name space of S differs from that of the calling subroutine.
Now, the set Dep of each subroutine can be computed as soon as the Dep sets
of all subroutines possibly called inside it have been computed. Consequently,
when the call graph is acyclic, the Dep sets of each subroutine are computed
by a bottom-up sweep. Otherwise they must be computed iteratively. This
iterative computation does not pose any fundamental problems. For the sake
of brevity, we shall not describe it here.

4.2 Varied and Useful Variables

To terminate activity analysis, one uses the result of the differentiable depen-
dency analysis to propagate two data flow sets through the program:

e The Varied variables are variable instances v such that dr € xp,x <* v.
InVary (resp. OutVary) denotes the set of varied varbiables just before (resp.
after) a given program structure. By definition x are the varied variables
at the program entry. The data flow equations describe the propagation of
this information forward on the program flow.

e The useful variables are instances of variables v such that dy € yp,v <* v.
InUseful (resp. OutUseful) denotes the set of useful variables just before
(resp. after) a given program structure. Here, yp are the useful variables at
the program exit. Again, data flow equations describe the propagation of
this information backward on the program flow.

Both analyses run top down on the call graph. Solutions must be obtained
iteratively if the call graph contains cycles. For an acyclic call graph, subrou-
tines are analyzed top down in a compatible order obtained by topological
sorting. This approach ensures that all calls to subroutine S are analyzed
before looking at S itself.

At the flow graph level, both analyses run similarly. The data flow equations
are shown in figure 4 for unstructured flow graphs and in figure 5 for some
sample structured flow graphs. The InVary set of the entry basic block is
initialized to be the possibly varied variables with respect to some calling
context. Similarly, the OutUseful set of the exit basic block is initialized as
the possibly useful variables. For consistency, we overload the operator x as
follows:

v, € Sx Dep(B) & Fu, €5 (v, <") € Dep(B);

v, € Dep(B) xS & FJu,€S: (v, <" wpy) € Dep(B).

InVary(B) = U OutVary(P)

.\K / P predecessor of B

OutVary(B) = InVary(B) x Dep(B)
‘/\6 OutUseful(B) = U InUseful(S)

S successor of B

InUseful(B) = Dep(B) x OutUseful(B)

Fig. 4. General data flow equations for activity analysis

InVary(By) = InVary(By) = InVary(B)
OutVary(B) = OutVary(B;) U OutVary(B,)

- OutUseful(By) = OutUseful(By) = OutUseful(B)

InUseful(B) = InUseful(B,) U InUseful(Bs)

InVary(B,) = InVary(B) x (IdUDep(B))

_) OutVary(B) = OutVary(B;)
|
(]

OutUseful(By) = (IdUDep(B)) x OutUseful(B)
InUseful(B) = InUseful(By)

Fig. 5. Ezamples of structured data flow equations for activity analysis

Finally, at the instruction level, the two important cases are as follows:

e For a simple assignment I, we have
OutVary(I) = InVary(l) x Dep(I)

InUseful(I) = Dep(I) x OutUseful(I).
e For a subroutine call instruction 7 : call S(...), we have
OutVary(I) = InVary(I) x Dep(S)

InUseful(I) = Dep(S) x OutUseful(I).
In general, a subroutine S can be called at different points in the program or
in different contexrts. The information on varied and useful variables must be
generated such that it represents the union of all these local results. Conse-
quently, the current varied and useful variables are added to the respective
summaries for all calling contexts of .S:

InVary(S) = InVary(S) U InVary(I)
OutUseful(S) = OutUseful(S) U OutUseful(I).

10

5 TBR Analysis

As defined in section 2, TBR analysis determines the set of values to be
recorded, namely, the values that are effectively required in the adjoint code
and will be overwritten during the remainder of the forward calculation. Thus,
TBR analysis follows the flow of the original code, propagating the set of vari-
ables whose current value is required in the adjoint code, and flags assignments
that overwrite such a variable, so that its value will be recorded. As before,
we identify a bottom-up analysis in order to control combinatorial explosion.

5.1 Bottom-Up TBR Analysis

For each structure S of the program, we synthesize a summary of the effect
of this structure on TBR propagation. Concretely, this effect is composed of
two parts:

e The killed variables, those that are certainly completely overwritten inside
the given structure. We denote this set as Kill(S).

e The required variables, those whose current value will be required in the
adjoint of the given structure. We denote this set as Req(S).

Data flow equations are used to compute these two pieces of information.

For an individual instruction, let us again focus on assignments. Subroutine
calls will be treated later, when we look at interprocedural TBR, analysis. As
defined in section 2, the Req set of an assignment is empty if the assigned
value is not active. Otherwise, a variable is required for the adjoint of an in-
struction v = ¢(u) if it appears in g—z_(u), i =1,...,n4, or, in other words,
if it appears in an expression e of ¢(u) that is an argument of a nonlinear
operation whose result a is active, for example sin(e) or exa. Furthermore,
variables occurring in the indices of the u; and v are required whenever the
latter are array references. This requirement leads us to the operational rules
below, expressed recursively on the structure of the syntax tree. VARS is sim-
ply the set of all variables occurring in an expression. The rules for the killed
variables are simpler, with just a special case for arrays: if array region anal-
ysis is not performed, an assignment to one array cell does not kill the array.
Notice also that, since the right-hand side of an assignment is executed before
the left-hand side is written, variables killed by the left-hand side are actually

erased from the Req set.

11

Kill(T[expl=b) := ()

Kill(x=b) = {x}

Req(a=exp) := if exp active then (Reg(a)UReq(exp))\Kill(a=exp) else ()
(and a must be recorded if it belongs to Req(exp))

Req(sin(a)) := VARS(a)

Req(ax*b) := (if a active then VARS(b)U Reg(a) else () U
(if b active then VARS(a)U Req(b) else ()

Req(a+Db) := Reg(a) U Req(Db)

Req(T[index]) := Req(T) U VARS(index)

Req(variable) =0

Req(constant) =0

For a subroutine, Req and Kill are built jointly on the flow graph and solved
iteratively. The corresponding data flow equations are shown in figure 6. For
a basic block, these sets are jointly defined by composition of the inside in-
struction sets, just like the composition defined in figure 7 for the sequence
of basic blocks. For each basic block, we introduce InReq (resp. OutReq) and
InKill (resp. OutKill), the required and killed variables from the entry of the
subroutine to the entry (resp. ezit) of the basic block. Clearly InReq and InKill
on the subroutine entry are (), and OutReq and OutKill on the subroutine exit
are exactly the desired Req and Kill sets of the subroutine. Figure 6 essentially
states that a variable is required after basic block B if it is required on at least
one path leading to B and is not killed in B, or else if it is required inside
B. Termination of the iterative solution process is granted by the fact that
the computed sets are growing with respect to set inclusion and that they are
bounded by the finite set of all variables in the program.

InReq(B) = U OutReq(P)

\X / P predecessor of B
InKill(B) = OutKill(P)
)

P predecessor of B

g/\a OutReq(B) = (InReq(B) \ Kill(B)) U Reg(B)
OutKill(B) = InKill(B) U Kill(B)

Fig. 6. General data flow equations for bottom-up TBR analysis
For structured flow graphs, the data flow equations can be specialized as shown
in figure 7.
At the call graph level, the Req and Kill sets of a call to a subroutine S are

equal to Req(S) and Kill(S). This implies one bottom-up sweep for acyclic call
graphs.

12

T
I Req(B) = (Req(B,) \ Kill(By)) U Regq(Bs)
T Kill(B) = Kill(Bs) U Kill(By)

6
/.\ Req(B)

!
” Kill(B)

! 1
eq(B)
6 ” C. Kill(B)

Fig. 7. Structured data flow equations for bottom-up TBR analysis
5.2 Top-Down TBR Analysis

Req(B1) U Req(Bs)
Kill(B,) N Kill(By)

Req(By)
Kill(By)

To terminate TBR analysis, we propagate the required variables along the pro-
gram control flow. This is a top-down sweep on the program, which uses the
results of the previous bottom-up phase. Two sets are computed and prop-
agated for each program structure: InReq (resp. OutReq) is the set of the
variables whose value, before (resp. after) the current structure, is possibly
required by the adjoint of previous instructions. Each time an individual in-
struction overwrites a required value (i.e. a variable present in the InReq set),
we flag the overwritten value as “to be recorded”.

At the call graph level, subroutines are analyzed top down, in an order ob-
tained by topological sorting. This approach ensures that a called subroutine
is analyzed after all of its calling sites have been analyzed. Thus the data flow
equations for the subroutine call, given below, ensure that the InReq of all
calling contexts are accumulated into the InReq of the called subroutine itself.
The InReq of the top subroutine is initialized to ().

At the flow graph level, data flow equations for the TBR analysis are shown
in figure 8. Figure 9 shows specialized data flow equations for some sample
structured flow graphs. The InReq set of the entry basic block is initialized to
the InReq of the subroutine itself.

o\x / InReq(B) = U OutReq(P)
©)

P predecessor of B

‘/\ OutReq(B) = (InReq(B) \ Kill(B)) U Reg(B)

Fig. 8. General data flow equations for top-down TBR analysis

13

/.\ InReq(B) = InReq(Bs) = InReq(B)
%
! ! OutReq(B) = OutReq(By) U OutReq(By)

-8

Fig. 9. Examples of structured data flow equations for top-down TBR analysis

—0

InReq(B,) = InReq(B) U Req(B)

©®

OutReq(B) = (InReq(B) \ Kill(B)) U Req(B;)

o—

Observe that, unlike for dependencies (figure 3), the structured data flow
equations for the loop are not iterative and therefore can be solved at low cost
with no fixpoint. This result was demonstrated in [?]. Here we reformulate the
proof in the present formalism. The general data flow equations from figure 8,
specialized to the structured loop of figure 9, are

InReq(By) = InReq(B) U OutReq(B);
OutReq(By) = (InReq(By) \ Kill(By)) U Req(By).

Substituting OutReq(B;) into the first equation gives the fixpoint definition
InReq(By) = InReq(B) U (InReq(By) \ Kill(B;)) U Req(By),

whose solution is the first data flow equation for structured loops:
InReq(B,) = InReq(B) U Req(B;). B

Similarly, OutReq(B) is equal to OutReq(B;) and
OutReq(B) = ((InReq(B) U Req(By)) \ Kill(By)) U Req(By),

which can be simplified to get the second data flow equation for structured
loops:

OutReq(B) = (InReq(B) \ Kill(By)) U Req(B;). B

Finally, at the level of instructions, the two important cases are as follows:
e For a simple assignment [: a=exp, we have
OutReq(I) = (InReq(I) \ Kill(I)) U Req(I)

and a must be flagged as “to be recorded” if it belongs to InReq(I).
e For a subroutine call I : call S(...), we have

OutReq(I) = (InReq(I) \ Kill(S)) U Req(S),

and we add the current required variables InReq(I) to the summary of re-

14

quired variables for all calling contexts of S:

InReq(S) = InReq(S) U InReq(I).

6 Case Study and Experimental Results

We have applied TAPENADE with and without TBR analysis to a variant of
the Bratu problem [?]. It models the thermal explosion of solid fuels, which
can be described by the system of differential equations

z(7)
g (1) + 5 - eTF=m =0,

where 7 € (—1,1) and z(—1) = z(1) = 0. The problem has been discretized
by using step size h as

Fy =iy — 23+ Tigy + W[fio1 + 10fi + fiy1]/12

for i =]_, .. ,10000, with To = T10001 — 0 and fz = S exp(xl/(l + tlL’Z))
Of interest are the derivatives of the component functions F; with respect
to the current state z; as well as the parameters s and ¢. The original code
implementing the discretized problem is shown in Appendix A. Appendix B
lists the source of the main loop of the adjoint code generated by TAPENADE
with TBR analysis. The values of the intermediate variables exp5, ..., exp10
resulting from the canonicalization of the input code must be pushed onto the
tape because their values are used nonlinearly in active terms inside the loop
body. For example, exp8 appears in hxh*prm(1) /1.2%exp8. Neither £ (i) nor
f(i-1) or £ (i+1) isinvolved in the computation of any local partial derivative.
This fact is recognized by the TBR analysis, and their values are not recorded.

With TBR analysis switched off, the value of all variables that appear on the
left-hand side of some assignments must be recorded. In particular, additional
push and pop statements have to be inserted for £f(i-1), f(i), and £(i+1).
This strategy is implemented, for example, in ADIFOR 3.0 [?] and Odyssée 1.7
[?7]. While it took 377 sec. to run the code in Appendix B on a 233 MHz
Pentium II (Linux) machine, the lack of TBR analysis increased the execution
time to 466 sec.

Further experimental implementations of the ideas formalized in this paper
showed even more promising reductions of the memory requirement when
following a pure “store all” strategy. In [?] TBR analysis was applied to a large
industrial thermal-hydraulic code developed at EDF-DER in France (70,000
lines, 500 subprograms, 1,000 parameters). The tape size could be decreased
by a factor of 5. The size of the standard tape generated by Odyssée 1.7 is
213,920 - 10° scalar values (or 1,711,360 MBytes if every value is a double),

15

whereas the optimized tape contains only 40486 - 10° scalar values (or 323, 888
MBytes).

Acknowledgments

Naumann was supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, U.S. Department of Energy, under Contract W-31-109-ENG-
38.

A Bratu Problem

subroutine bratu(dim,parmax,x,prm,F)

integer dim , parmax
C independent variables

double precision x(dim), prm(parmax)
C dependent variables

double precision F(dim)

integer i
double precision h

h = 2.0/(dim+1)
F(1) = -2%x(1)+h*h*prm(1)/12.0%(1+10*%exp(x(1)/(1.0+prm(2)*x(1))))
F(2) = x(1)+h*h*prm(1)/12.0*exp(x(1)/(1.0+prm(2)*x(1)))

do 1 i=2,dim-1
F(i-1) = F(i-1)+x(i)+h*h*prm(1)/12.0*%exp(x(i)/(1.0+prm(2)*x(i)))
F(i) = F(i)-2*x(i)+h*h*prm(1)/1.2*%exp(x(i)/(1.0+prm(2)*x(i)))
F(i+1) = x(i)+h*h*prm(1)/12.0*exp(x(i)/(1.0+prm(2)*x(i)))
1 continue

F(dim-1) = F(dim-1)+x(dim)+h*h*prm(1)/12.0*%exp(x(dim)/ (1.0
* +prm(2) *x(dim)))

F(dim) = F(dim)-2*x(dim)

F(dim) = F(dim)+hxh*prm(1)/12.0*(1+10*exp(x(dim)/(1.0
* +prm(2) *x (dim))))

end

16

B Adjoint Bratu Problem (with TBR analysis)

SUBROUTINE BRATUCL(dim, parmax, x, xccl, prm, prmccl, f, fccl)
INTEGER dim, parmax
DOUBLE PRECISION f(dim), fccl(dim)
DOUBLE PRECISION prm(parmax), prmccl(parmax), x(dim), xccl(dim)
REAL*8 expl, expll, expllccl, expl3, expl3ccl, explccl, exp3,

+ exp3ccl, expb, expbccl, exp7, expr7ccl, exp9, exp9ccl
REAL*8 expl0O, explOccl, expl2, expl2ccl, expléd, expléccl, exp2,
+ exp2ccl, exp4, expdccl, exp6, expbccl, exp8, exp8ccl

DOUBLE PRECISION h
INTEGER adTo, i

DO i=2,dim-1
CALL PUSHREALS (exp5)
expb = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREALS8(exp6)
exp6 = EXP(expb)
f(i-1) = £(i-1) + x(i) + h * h * prm(1) / 12.0 * exp6
CALL PUSHREALS (exp7)
exp7 = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREALS8(exp8)
exp8 = EXP(exp7)
f(i) = £(1) - 2 * x(i) + h *x h *x prm(1) / 1.2 * exp8
CALL PUSHREALS (exp9)
exp9 = x(i) / (1.0+prm(2)*x(i))
CALL PUSHREAL8(exp10)
expl0 = EXP(exp9)
f(i+1) = x(i) + h * h * prm(1) / 12.0 * expl0
ENDDO
CALL PUSHINTEGER4(i - 1)

CALL POPINTEGER4 (adTo)
DO i=adTo,2,-1
explOccl = explOccl + h * h * prm(1) * fccl(i+1l) / 12.0
exp9ccl = exp9ccl + EXP(exp9) * explOccl
xccl(i) = xccl(i) + fccl(i+l) + (1 / (1.0+prm(2)*x(i)) - x(i)
+ * prm(2) / (1.0+prm(2)*x(i))**2) * exp9ccl
prmccl(l) = prmccl(l) + expl0 * h * h *x fccl(i+l) / 12.0
fccl(i+1) = 0.DO
CALL POPREALB8(exp10)
explOccl = 0.0

17

+

CALL POPREAL8(exp9)

prmccl(2) = prmccl(2) - x(i) * x(i) * exp9ccl / (1.0+prm(2)*x(
1)) *x2

exp9ccl = 0.0

exp8ccl = exp8ccl + h * h * prm(1) * fccl(i) / 1.2

exp7ccl = exp7ccl + EXP(exp7) * exp8ccl

exp6ccl = expbccl + h * h x prm(1) * fccl(i-1) / 12.0

expbccl = expbccl + EXP(expb) * exp6cecl

xccl(i) = xccl(i) + ((1 / (1.0+prm(2)*x(i)) - x(i) * prm(2) /

(1.0+prm(2) *x (i))**2) * exp7ccl - 2 * fccl(i) + fccl(i-1)) +
(1 / (1.0+prm(2)*x(1)) - x(i) * prm(2) / (1.0+prm(2)*x(i))x**
2) * expbccl

prmccl(l) = prmccl(l) + exp8 * h * h * fccl(i) / 1.2

CALL POPREALS8(exp8)

exp8ccl = 0.0

CALL POPREALS8(expT7)

prmccl(2) = prmccl(2) - x(i) * x(i) * exp7ccl / (1.0+prm(2)x*x(
1)) **2

exp7ccl = 0.0

prmccl(l) = prmccl(l) + exp6 * h * h * fccl(i-1) / 12.0

CALL POPREAL8(exp6)

expbccl = 0.0

CALL POPREALS8(exp5)

prmccl(2) = prmccl(2) - x(i) * x(i) * expbccl / (1.0+prm(2)*x(
1)) **2

expbccl = 0.0

ENDDQO

END

18

The submitted manuscript has been created by the University of Chicago as Oper-
ator of Argonne National Laboratory (”Argonne”) under Contract No. W-31-109-
ENG-38 with the U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works, distribute copies
to the public, and perform publicly and display publicly, by or on behalf of the
Government.

19

