

The Grid: A New Infrastructure for 21st Century Science

Grid technologies promise to transform the practice of science and engineering,
by enabling large-scale resource sharing and coordinated problem solving within

farflung communities

Ian Foster

The history of science is in part a history of its tools, and some of today’s most important
tools are concerned with computation and communication. Driven by increasingly
complex problems and by advances in understanding and technique, and powered by the
emergence of the Internet and by Moore’s Law increases in computer performance,
today’s science is as much based on computation, data analysis, and collaboration as on
the efforts of individual experimentalists and theorists.

Given such developments, it should not be surprising that despite continued exponential
technological improvements, computation, storage, and communication resources fail to
keep up with demand. A PC in 2001 is (literally) as fast as a supercomputer of 1990—but
while in 1990 biologists were happy to run a single molecular structure computation, now
they want to screen thousands of drug candidates. A PC now can have 100 gigabytes
(GB) of storage, as much as an entire 1990 supercomputer center—but physicists are
engaged in projects that will produce multiple petabytes of data per year by 2005. Wide
area networks often now operate at 155 megabits per second (Mb/s), three orders of
magnitude faster than the state-of-the-art 56 Kb/s that connected U.S. supercomputer
centers in 1985, but scientists are demanding 10s of Gb/s so that they can collaborate
with colleagues across the world on the analysis of petabyte datasets.

What many term the “Grid” offers a potential means of addressing these obstacles to
progress [3]. This new class of infrastructure and tools layers on today’s Internet and
Web to enable large-scale sharing of resources within distributed, often loosely
coordinated groups—what are sometimes termed virtual organizations [5]. By providing
scalable, secure, high-performance mechanisms for discovering and negotiating access to
remote resources, Grid technologies promise to make it possible for scientific
collaborations to share resources on an unprecedented scale, and for geographically
distributed groups to work together in ways that were previously impossible [12, 13].

The concept of distributed resource sharing is certainly not new. For example, in 1965,
the designers of the Multics operating system envisioned a computer facility operating as
a utility, “like a power company or water company” [15], while in 1968, J. C. R.
Licklider and Robert Taylor wrote of the computer as a communications device and
described Grid-like scenarios [11]. Since then, much work has been devoted to
developing distributed systems, with mixed success. Yet I, and my many colleagues
working on Grids, believe that a combination of technology trends and research advances
make it now feasible to realize the Grid vision and to put in place both a new

international scientific infrastructure and new tools based on that infrastructure that can,
together, meet the challenging demands of 21st Century science.

In this article, I review the technology trends that motivate the Grid, explain the types of
resource sharing enabled by Grids and their significance for science, and identify key
supporting technologies.

Technology Trends
A useful metric for the rate of technological change is the average time period during
which speed or capacity doubles—or, more or less equivalently, halves in price. For
storage, networks, and computing, these periods are around 12, 9, and 18 months,
respectively. The different time constants associated with these three exponentials have
significant implications.

The annual doubling of data storage capacity, as measured in bits per unit area, has
already reduced the cost of a commodity terabyte (1012 bytes) disk farm to less than
US$10,000, and can allow major physics experiments to plan multi-petabyte (1015 byte)
data archives—and allow simulation scientists in such areas as climate and astrophysics
to think of archiving petabyte-scale outputs from high-resolution reference simulations.
In consequence, large archival datasets are emerging as major community resources in
many disciplines.

These data volumes place increased demands on our analysis capabilities. Dramatic
improvements in microprocessor performance mean that the lowly desktop or laptop is
now a powerful computational engine in its own right. Nevertheless, computational
capabilities are falling behind relative to storage, “only” doubling every 18 months and so
“only” increasing by a single order of magnitude every 5 years. It is becoming infeasible
to assemble at a single location the computational resources needed for large-scale
analysis.

The solution to these problems lies in the yet more dramatic changes taking place in
networking. Spurred by innovations such as doping [14] and the demands of the Internet
economy [9], the performance of wide area networks doubles roughly every 9 months—
i.e., increases by two orders of magnitude every 5 years. For example, within the U.S.,
the NSFnet connected the NSF supercomputer centers by a then-unprecedented 56 Kb/s
backbone in 1985; in 2002, the centers will be connected by the 40 Gb/s TeraGrid
network (www.teragrid.org): six orders of magnitude improvement in 17 years.

This doubling of network performance relative to computer speed every 18 months has
already changed how we think about and undertake collaboration. With at least one
additional order of magnitude differential expected over the next five years,
communication becomes essentially “free,” instead of prohibitively expensive, as in the
past. We can—indeed must—imagine new ways of working and doing business that are
communication intensive: pooling computational resources, streaming large amounts of
data from databases or instruments to remote computers, linking sensors with each other
and with computers and archives, and connecting people, computing, and storage in

collaborative environments that avoid a need for travel [8]. More succinctly: how can we
squander bandwidth to do better science?

What is a Grid?
If communication is unlimited and free, then we are not restricted, when solving
problems, to local resources. For example, when running a colleague’s simulation code, I
need not install it locally but can run it remotely, on my colleague’s computer. When
applying this code to datasets maintained at other locations, I need not obtain copies of
those datasets myself (not so long ago, I would have requested tapes), but can have the
remote code access those datasets directly. If I wish to repeat the analysis many hundreds
of times, on different datasets, I may call upon the collective computing power of my
research collaboration—or purchase cycles from a cycle provider. And when I obtain
interesting results, I can review the large output datasets with remote colleagues in rich
collaborative environments.

While these scenarios vary considerably in their complexity, there is a common thread: in
each case, I use remote resources to do things that I cannot easily do “at home.” Now
while high-speed networks are often necessary for such remote resource use, they are far
from sufficient. Remote resources are typically owned by others, exist within different
administrative domains, run different software, and are subject to different security and
access control policies. These issues characterize a Grid and historically have made
distributed computing difficult. In order to access remote resources, I must first discover
that they exist, then negotiate access to them (to be practical, this step cannot involve
using the telephone!), then configure my computation to use them effectively—and I
must do all these things without compromising my own security or the security of the
resources on which I am computing. I may also be called upon to pay for resources.
Today’s Internet and Web technologies address basic communication requirements, but
do not provide uniform mechanisms for such critical tasks as creating and managing
services on remote computers, for supporting “single sign on” to distributed resources,
for transferring large datasets at high speeds, or for forming large distributed virtual
communities and maintaining information about the existence, state, and usage policies
of community resources.

In brief, Grid systems and technologies provide the infrastructure and tools that make
large-scale, secure resource sharing possible and straightforward. An infrastructure is a
technology that we can take for granted when performing our activities. Thus the road
system enables us to travel by car, the international banking system allows us to transfer
funds across borders, and Internet protocols allow us to communicate with virtually any
electronic device. To be useful, an infrastructure technology must typically be broadly
deployed, which means in turn that it must be simple—or extraordinarily valuable. For
example, the set of protocols that must be implemented within a device to allow Internet
access is small: people have constructed matchbox-sized Web servers. A Grid
infrastructure needs to provide more functionality than the Internet on which it builds,
providing new services that address end-to-end issues of authentication, resource
discovery, and resource access—but it must also remain simple. And of course we must
not forget the need for the resources that “power the Grid,” by supporting, for example,

high-speed data movement, caching of large datasets, and on-demand access to
computing.

Tools build on infrastructure services to support new modes of working. Internet and
Web tools include browsers for accessing remote Web sites, email programs for handling
email, and search engines for locating Web pages. Grid tools are concerned with resource
discovery, data management, scheduling of computation, security, and so forth. For
example, Figure 1 illustrates tools that support so-called “Data Grid” applications, which
harness storage, computing, and networks to support distributed access to, and analysis
of, large datasets. Building on Grid infrastructure services, Data Grids provide services
for virtual data management (keeping track of where data products are located and, if
these data products are generated via analysis routines, whether or not the data products
are actually materialized), planning the often complex series of computations and data
movements required to satisfy a user request, and managing those computations and data
movements.

Virtual Data Tools
Request Planning and

Scheduling Tools
Request Execution
Management Tools

Transforms

Distributed resources
(code, storage,
computers, and network)

Resource
Management

Services

Resource
Management

Services

Security and
Policy

Services

Security and
Policy

Services

Other Grid
Services

Other Grid
Services

Interactive User Tools

Production Team

Individual Investigator Other Users

Raw data
source

Figure 1: Principal elements of a petascale data grid, as envisioned within the NSF-
funded Grid Physics Network project (GriPhyN: www.griphyn.org). GriPhyN R&D is
complemented by the work of the EU DataGrid (www.eu-data-grid.org), DOE-funded
Particle Physics Data Grid (PPDG: www.ppdg.net), and DOE-funded Earth Systems Grid
(www.earthsciencegrid.org) projects.

Resource sharing in scientific communities
The instances of resource sharing provided above give a flavor for what Grid computing
is about. However, the implications for the working scientist go far beyond these simple
scenarios, as I illustrate with five examples representing different usage modalities.

Science portals. We are accustomed to negotiating a steep learning curve when installing
and using a new software package. Science Portals reduce barriers to the use of advanced
problem solving methods by allowing sophisticated packages to be invoked remotely,
from Web browsers or other simple, easily downloadable “thin clients.” Packages can
themselves run on suitable computers within a Grid. Such portals are currently being
developed in biology, fusion, computational chemistry, and other disciplines.

Distributed computing. High-speed workstations and networks can make the personal
computers and clusters of an organization or scientific collaboration, in the aggregate, a
substantial computational resource. Such resources are being are being exploited within
biology, with Entropia Inc.’s FightAIDSAtHome system harnessing more than 30,000
computers to analyze AIDS drug candidates. In computational mathematics,
mathematicians recently solved a long-open problem in numerical optimization, NUG30
by pooling resources across the U.S. and Italy. They were able to bring an average of
630—and a maximum of 1006—computers to bear for a week, delivering a total of
42,000 CPU-days. Future improvements in network performance and Grid technologies
will increase the range of problems for which such aggregated computing resources are
applicable.

Large-scale data analysis. Many interesting scientific problems require the (often
compute-intensive) analysis of large amounts of data. Here, the ability to harness
distributed compute and storage resources can be of great value. Furthermore, the
naturally parallelism inherent in many data analysis procedures makes it feasible to use
distributed resources efficiently. For example, analysis of the many petabytes of data to
be produced by future high energy physics experiments will require the harnessing of
tens of thousands of processors and hundreds of terabytes of disk space for holding
intermediate results. For various technical and political reasons, assembling these
resources at a single location appears impractical. Yet the collective institutional and
national resources of the hundreds of institutions participating in those experiments can
provide these resources. These communities can, furthermore, share more than just
computers and storage: by federating databases, they can also share analysis procedures
and computational results.

Computer-in-the-loop instrumentation. Scientific instruments such as telescopes,
microscopes, X-ray sources, and sensor nets generate raw data streams that are today
either interpreted visually or archived for subsequent batch processing. Yet quasi-real-
time analysis can greatly enhance an instrument’s capabilities. For example, consider an
astronomer using a radio telescope array to study solar flares. The deconvolution and
analysis algorithms used to process the data and detect flares are computationally
demanding, and solar flares vary in seconds. If the astronomer can call upon substantial
computing resources (and sophisticated software) in an on-demand fashion, she can use
automated detection techniques to “zoom in” on solar flares as they occur.

Collaborative work. Researchers often want also to aggregate human expertise.
Collaborative problem formulation, data analysis, and the like become important
applications in Grid environments. For example, an astrophysicist interested in

collaborative analysis of large datasets wants to be able to fly through, invoke automatic
feature detection algorithms on, annotate, and discuss the results of large (multi-terabyte)
simulation datasets—in collaboration with colleagues around the world.

While these examples illustrate selected aspects of the Grid problem, real applications
will frequently contain aspects of several of these—and other—scenarios. For example,
our radio astronomer might also want to look for similar events in an international
archive, discuss results with colleagues during a run, and/or invoke distributed computing
runs to evaluate alternative “what if” scenarios.

The architecture of Grid infrastructure
Close to a decade of focused technology R&D and application experimentation (see Box
1) has produced considerable consensus on Grid technology requirements and
architecture, and in particular the importance of standard protocols as a means of
achieving interoperability among different Grid resources and services, and hence
constructing large-scale Grid systems; and standard application programming interfaces
(APIs) to facilitate the construction of Grid components and applications. (Protocols
define the content and sequence of message exchanges used to request remote operations,
and are vital to interoperability; APIs
define standard interfaces to code
libraries, thus allowing code
components to be reused.)

In addition, recent work is revealing
close relationships between the
concerns and technologies of science
and commercial computing: see Box 2.

Protocols and APIs can be categorized
according to the role that they play in a
Grid system (Figure 2). At the lowest
level, the Fabric, we have the physical
devices or resources that Grid
participants want to share and access,
including computers, storage systems,
catalogs, networks, and various forms
of sensor.

Above this, the Connectivity and Resource layers define the “neck” in the Grid protocol
hourglass: the protocols that (like the Internet Protocol) must be implemented
everywhere, and that can be used to implement different application behaviors. The
Connectivity layer defines core communication and authentication protocols required for
Grid-specific network transactions. Communication protocols enable the exchange of
data between resources; authentication protocols build on communication services to
provide cryptographically secure mechanisms (discussed below in more detail) for
verifying the identity of users and resources. The Resource layer builds on these

The neck of the
hourglass: resource &
connectivity protocols

Figure 2: A schematic view of Grid architecture

communication and authentication protocols to define protocols for the secure initiation,
monitoring, and control of sharing operations on individual resources: for example,
secure access to remote computers for the purpose of initiating, monitoring, and
controlling computations, so that a program can be run on any of a number of different
computer systems. The Globus ToolkitTM1 (www.globus.org; and see Box 3) is a
commonly used source of Connectivity and Resource protocols and APIs.

The Collective layer contains protocols, services, and APIs that implement interactions
across collections of resources. Because Collective components build on the narrow
Resource and Connectivity layer “neck” in the protocol hourglass, they can implement a
variety of sharing behaviors without placing new requirements on resources. Examples of
Collective services include directory and brokering services, for resource discovery and
allocation; monitoring and diagnostic services; data replication services; and membership
and policy services for keeping track of who in a community is allowed to access
resources.

Finally, user applications are constructed in terms of, and by calling upon, services
defined at any other layer. For example, a high energy physics analysis application that
needs to execute several thousands of independent tasks, each taking as input some set of
files containing events, might proceed by:

• obtaining necessary authentication credentials (Connectivity layer protocols: see
below);

• querying an information system and replica catalog to determine availability of
computers, storage systems, and networks, and the location of required input files
(Collective services);

• submitting requests to appropriate computers, storage systems, and networks to
initiate computations, move data, and so forth (Resource protocols); and, finally

• monitoring the progress of the various computations and data transfers, detecting
and responding to failure conditions, and notifying the user when all are
completed (Resource protocols).

Many of these capabilities can be encapsulated in tools that automate the more complex
tasks—for example, the Condor-G system from the University of Wisconsin
(www.cs.wisc.edu/condor).

Authentication, authorization, and policy
Authentication, authorization, and policy are among the most challenging issues in Grids,
so I provide some brief technical details to illustrate the types of concern that arise.

“Traditional” security technologies are concerned primarily with securing client-server
interactions, in which a client (user) and server need to mutually authenticate (i.e., verify
each other’s identity) and the server needs to determine whether it wishes to authorize
requests issued by the client. Sophisticated technologies have been developed for
performing these basic operations and for guarding against and/or detecting various

1 Globus Project and Globus Toolkit are trademarks of the University of Chicago and University of
Southern California.

forms of attack. We use these technologies when we access a remote computer using the
popular “Secure Shell” utility or access a secure ecommerce web site.

In Grid environments, the situation is more complex. The distinction between client and
server tends to disappear (a Grid is what is sometimes termed a peer-to-peer system),
because an individual resource can act as a “server” one moment (as it receives a request)
and a “client” another (as it issues requests to other resources). For example, when I
request that a simulation code be run on a colleague’s computer, I am the client and the
computer is a server. But a few moments later, that same code and computer act as a
client, as they issue requests—on my behalf—to other computers to access input datasets
and/or to run subcomputations. A number of interesting requirements arise in this
context.

Figure 3: The authentication and authorization steps involved when a user uses Grid services to
authenticate (1) and to request that subcomputations (processes) be started at two sites A and B (2),
which then communicate with each other (4) and also read files located at a third site, C (5).

Single sign on. A single computation may access many resources and it is generally
unacceptable to require that the user re-authenticate (by, for example, typing in a
password) on each occasion. Instead, a user should be able to authenticate once and then
assign to the computation the right to operate on their behalf, typically for a specified
period of time. This capability is achieved via the creation of a proxy credential that the
computation can use to authenticate, as the user, with remote resources. For example, in
Figure 3, the program run by the user (the User Proxy) uses a proxy credential to
authenticate twice, with so-called GRAM (“Grid Resource Access and Management”)
services at sites A and B. These services handle requests to create new processes.

Mapping to local security mechanisms. Different sites may employ different local
security solutions (e.g., “Kerberos” and “Unix” in Figure 3). A Grid security
infrastructure needs to map to these local solutions at each site, so that local operations
performed can proceed with appropriate privileges. Hence, for example, in Figure 3,
processes execute under a “local id” and, at site A, are assigned a Kerberos ticket, a
credential used by the Kerberos system for authorization.

Delegation. The creation of a proxy credential is a form of delegation [6], an operation of
fundamental importance in Grid environments. A computation that spans many resources
creates subcomputations that may themselves generate requests to other resources and
services, perhaps creating additional subcomputations, and so on. For example, in Figure
3, the two subcomputations (processes) created at sites A and B subsequently both
communicate with each other and access files at sites C. Authentication operations, and
hence further delegated credentials (the “Restricted Proxies”), are involved at each stage,
as resources determine whether to grant requests and computations determine whether
resources are trustworthy. Yet the further these delegated credentials are disseminated,
the greater the risk that they will be acquired and misused by an adversary. These
delegation operations and the credentials that enable them must be carefully managed.

Community authorization and policy. In a large community, the policies that govern who
can use which resources for what purpose cannot be based directly on individual identity:
it is infeasible for each resource to keep track of community membership and privileges.
Instead, resources (and users) need to be able to express policies in terms of other criteria,
for example group membership, which can be expressed in terms of possession of a
cryptographic credential (a capability) issued by a trusted third party. For example, in the
scenario depicted in Figure 3, the file server at site C must know explicitly whether or not
this particular user is allowed to access a particular file. A community authorization
system allows this policy decision to be delegated to a community representative.

Current Status and Future Directions
We now have considerable consensus on Grid architecture principles and the
technologies required for basic Grid operations, with in particular the community based,
open source Globus Toolkit being applied by most major Grid projects and also seeing
significant industrial adoption. Major science communities accept that this technology is
important for their future. Numerous government funded R&D projects are variously
developing core technologies, deploying production Grids, and/or applying Grid
technologies to challenging applications (see http://www.mcs.anl.gov/~foster/grid-
projects for a list of major projects). Industrial interest is growing: for example, a total of
12 companies announced support for the Globus Toolkit in late 2001. Progress has been
made on organizational fronts: the Global Grid Forum (www.gridforum.org) is a
significant force for standards setting and community development, with over 1000
people on its mailing lists. Its thrice-yearly meetings attract hundreds of attendees from
some 200 organizations. The International Virtual Data Grid Laboratory is being
established as an international Grid system (Figure 4).

It is commonly observed that people overestimate the short-term impact of change but
underestimate long-term effects [10]. It will surely take longer than some expect before
Grid concepts and technologies transform the practice of science, engineering, and
commerce, but the combination of exponential technology trends and R&D advances
noted in this article are real and will ultimately have dramatic impacts. In a future in
which computing, storage, and software are no longer objects that we possess, but
utilities to which we subscribe, the most successful scientific communities are likely to be
those that succeed in assembling and making effective use of appropriate Grid
infrastructures—and thus accelerating the development and adoption of new problem
solving methods within their discipline.

BOX 1: Historical Origins
While Grid concepts date to the earliest days of computing, much current Grid research
and development owes it genesis to pioneering work conducted on early experimental
high-speed networks, such as the U.S. Gigabit testbeds established in the early 1990s [1].
For example, on the Casa network that connected four laboratories in California and New
Mexico, Paul Messina and his colleagues developed and demonstrated early
“metacomputing” applications, coupling massively parallel and vector supercomputers

Tier0/1
Tier2

 10+ Gbps
2.5 Gbps
622 Mbps
Other link

Tier3

Figure 4: Initial sites involved in the International Virtual Data Grid Laboratory (www.idgl.org)

for computational chemistry, climate modeling, and other scientific applications. On
Blanca, which connected sites in the midwest, Charlie Catlett and his colleagues did early
work oriented toward multimedia digital libraries and demonstrated the potential of
distance visualization. Two other testbeds investigated remote instrumentation. The
gigabit testbeds also experimented with wide area communication libraries and high
bandwidth communication protocols. Similar testbeds were created elsewhere, for
example in Germany.

Within the U.S. at least, the event that moved Grid concepts out of the network laboratory
and into the consciousness of ordinary scientists was the I-WAY experiment [2]. Led by
Tom DeFanti and Rick Stevens, this ambitious effort linked 11 experimental networks to
create, for a week in November 1995, a national high-speed network infrastructure that
connected resources at 17 sites across the U.S. and Canada (Figure 5). Some 60
application demonstrations, spanning the gamut from distributed computing to virtual
reality collaboration, showed the potential of high-speed networks. The I-WAY also saw
the first attempt to construct a unified software infrastructure for such systems, namely
the I-Soft system developed by myself and others that provided single sign, unified
scheduling, and other services that allowed the I-WAY to be treated, in some important
respects, as an integrated infrastructure.

Figure 5: The I-Way network constructed in November 1995, showing the principal
networks and sites connected.

BOX 2: Commercial Grids and the Open Grid Services Architecture
Grid concepts are becoming increasingly relevant to commercial information technology
(IT). With the rise of ebusiness and IT outsourcing, enterprise applications no longer run
exclusively within the friendly confines of an enterprise central computing facility.
Instead, they must operate on heterogeneous collections of resources that may span
multiple administrative units within a company as well as various external networks and
service providers. In commerce as in science and engineering, we face the same need to
deliver quality of service within dynamic virtual organizations.

One consequence of this convergence of interests is a growing interest in the integration
of previously distinct commercial and Grid technologies. For example, the Open Grid
Services Architecture [4] proposed by the Globus Project and IBM’s Open Service
Architecture group integrates Grid mechanisms into the Web services architecture that is
at the core of major industrial distributed computing technologies such as Microsoft’s
.NET, IBM’s Websphere, and Sun’s Java 2 Enterprise Edition (J2EE) [7].

Web services define standards for defining, and invoking operations on, remote services:
in particular, the Web Service Description Language (WSDL) for describing Web
services, the Simple Object Activation Protocol (SOAP), a remote procedure call
protocol for invoking services, and UDDI, Universal Description, Discovery, and
Integration, for defining directories that can be used to discover specific services. Grid
protocols and services address complementary issues relating, for example, to the secure
and reliable creation and management of dynamic service instances—as is required for
remote computing and resource sharing scenarios such as those described in this article.

The Open Grid Service Architecture leverages these two technologies to define, among
other things, standard behaviors (and WSDL interfaces) for a “Grid service”: a Web
service that can be created dynamically and that supports security, lifetime management,
manageability, and other functions required in Grid scenarios. These features are being
incorporated into the Globus Toolkit, and will likely also appear in commercial products.

Box 3: The Globus Toolkit
The Globus Toolkit (www.globus.org) is a community-based, open-architecture, open-
source set of services and software libraries that support Grids and Grid applications. The
Toolkit includes software for security, information infrastructure, resource management,
data management, communication, fault detection, and portability. It is packaged as a set
of components that can be used either independently or together to develop applications.
Components include:

• the Grid Security Infrastructure (GSI), which addresses Grid security concerns
reviewed in the text, providing in particular a single-sign-on, run-anywhere
authentication service, with support for delegation of credentials to
subcomputations, local control over authorization, and mapping from global to
local user identities;

• the Grid Resource Access and Management (GRAM) protocol and service, which
provides remote resource allocation and process creation, monitoring, and
management services;

• the Meta Directory Service (MDS), an extensible Grid information service that
provides a uniform framework for discovering and accessing system
configuration and status information such as compute server configuration,
network status, or the locations of replicated datasets; and

• Data Grid-specific technologies, including a replica catalog, for locating copied of
data; GridFTP, a high-speed data movement protocol; and reliable replica
management tools.

For each component, the Toolkit both defines protocols and APIs and provides open
source reference implementations in C and (for client side APIs) Java. A tremendous
variety of higher-level services, tools, and applications have been implemented in terms
of these basic components. Some of these services and tools are distributed as part of the
Toolkit, while others are available from other sources. The NSF-funded GRIDS Center
(www.grids-center.org) maintains a repository of components.

The Globus Toolkit is a product of the Globus Project, led by myself and Carl Kesselman
at the University of Southern California’s Information Sciences Institute. Steve Tuecke
plays an important role as the Chief Architect at Argonne National Laboratory. Many
other project participants and collaborators, listed at www.globus.org, have made major
contributions. In addition, a number of companies are now starting to offer commercial
support for the Toolkit.

Acknowledgements: I am grateful to David Abramson, Paul Avery, Fabrizio Gagliardi,
Tony Hey, Satoshi Matsuoka, and Harvey Newman for their comments on a draft of this
article. My research is supported, in part, by grants from the U.S. Department of Energy,
National Science Foundation, DARPA, NASA, and Microsoft.

Biographical note: Ian Foster is a senior scientist and associate division director in
Argonne National Laboratory’s mathematics and computer science division, professor in
the University of Chicago’s department of computer science, and senior fellow in the
Argonne-Chicago Computation Institute. He serves on the advisory boards of several
companies, including Entropia, Inc.

References
1. Catlett, C. In Search of Gigabit Applications. IEEE Communications Magazine

(April). 42-51. 1992.
2. DeFanti, T., Foster, I., Papka, M., Stevens, R. and Kuhfuss, T. Overview of the I-

WAY: Wide Area Visual Supercomputing. International Journal of
Supercomputer Applications, 10 (2). 123-130. 1996.

3. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

4. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Argonne
National Laboratory, 2002, www.globus.org/research/papers/physiology.pdf.

5. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 15 (3). 200-222. 2001.
www.globus.org/research/papers/anatomy.pdf.

6. Gasser, M. and McDermott, E., An Architecture for Practical Delegation in a
Distributed System. In Proc. 1990 IEEE Symposium on Research in Security and
Privacy, (1990), IEEE Press, 20-30

7. Graham, S., Simeonov, S., Boubez, T., Daniels, G., Davis, D., Nakamura, Y. and
Neyama, R. Building Web Services with Java: Making Sense of XML, SOAP,
WSDL, and UDDI. Sams, 2001.

8. Kleinrock, L. The Latency/Bandwidth Tradeoff in Gigabit Networks; Gigabit
Networks are Really Different! IEEE Communications Magazine, 30 (4). 36-40.
1992.

9. Leiner, B.M., Cerf, V.G., Clark, D.D., Kahn, R.E., Kleinrock, L., Daniel C.
Lynch, Postel, J., Roberts, L.G. and Wolff, S. A Brief History of the Internet.
2000. http://www.isoc.org/internet-history/brief.html.

10. Licklider, J.C.R. Libraries of the Future. MIT Press, 1965.
11. Licklider, J.C.R. and Taylor, R.W. The Computer as a Communication Device.

Science and Technology (April). 1968. http://memex.org/licklider.pdf.
12. National Research Council National Collaboratories: Applying Information

Technology for Scientific Research. National Academy Press, Washington, DC,
1993.

13. Teasley, S. and Wolinsky, S. Scientific Collaborations at a Distance. Science, 292.
2254-2255. 2001.

14. Thomas, G.A., David A. Ackerman, Prucnal, P.R. and Cooper, S.L. Physics in the
Whirlwind of Optical Communications. Physics Today, 53 (9). 2000.

15. Vyssotsky, V.A., Corbat , F.J. and Graham, R.M., Structure of the Multics
Supervisor. In Fall Joint Computer Conference, (1965).
http://www.multicians.org/fjcc3.html

