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The history of science is in part a history of its tools, and some of today’s most important 
tools are concerned with computation and communication. Driven by increasingly 
complex problems and by advances in understanding and technique, and powered by the 
emergence of the Internet and by Moore’s Law increases in computer performance, 
today’s science is as much based on computation, data analysis, and collaboration as on 
the efforts of individual experimentalists and theorists. 
 
Given such developments, it should not be surprising that despite continued exponential 
technological improvements, computation, storage, and communication resources fail to 
keep up with demand. A PC in 2001 is (literally) as fast as a supercomputer of 1990—but 
while in 1990 biologists were happy to run a single molecular structure computation, now 
they want to screen thousands of drug candidates. A PC now can have 100 gigabytes 
(GB) of storage, as much as an entire 1990 supercomputer center—but physicists are 
engaged in projects that will produce multiple petabytes of data per year by 2005. Wide 
area networks often now operate at 155 megabits per second (Mb/s), three orders of 
magnitude faster than the state-of-the-art 56 Kb/s that connected U.S. supercomputer 
centers in 1985, but scientists are demanding 10s of Gb/s so that they can collaborate 
with colleagues across the world on the analysis of petabyte datasets. 
 
What many term the “Grid” offers a potential means of addressing these obstacles to 
progress [3]. This new class of infrastructure and tools layers on today’s Internet and 
Web to enable large-scale sharing of resources within distributed, often loosely 
coordinated groups—what are sometimes termed virtual organizations [5]. By providing 
scalable, secure, high-performance mechanisms for discovering and negotiating access to 
remote resources, Grid technologies promise to make it possible for scientific 
collaborations to share resources on an unprecedented scale, and for geographically 
distributed groups to work together in ways that were previously impossible [12, 13]. 
 
The concept of distributed resource sharing is certainly not new. For example, in 1965, 
the designers of the Multics operating system envisioned a computer facility operating as 
a utility, “like a power company or water company” [15], while in 1968, J. C. R. 
Licklider and Robert Taylor wrote of the computer as a communications device and 
described Grid-like scenarios [11]. Since then, much work has been devoted to 
developing distributed systems, with mixed success. Yet I, and my many colleagues 
working on Grids, believe that a combination of technology trends and research advances 
make it now feasible to realize the Grid vision and to put in place both a new 



international scientific infrastructure and new tools based on that infrastructure that can, 
together, meet the challenging demands of 21st Century science. 
 
In this article, I review the technology trends that motivate the Grid, explain the types of 
resource sharing enabled by Grids and their significance for science, and identify key 
supporting technologies. 
 
Technology Trends 
A useful metric for the rate of technological change is the average time period during 
which speed or capacity doubles—or, more or less equivalently, halves in price. For 
storage, networks, and computing, these periods are around 12, 9, and 18 months, 
respectively. The different time constants associated with these three exponentials have 
significant implications. 

 
The annual doubling of data storage capacity, as measured in bits per unit area, has 
already reduced the cost of a commodity terabyte (1012 bytes) disk farm to less than 
US$10,000, and can allow major physics experiments to plan multi-petabyte (1015 byte) 
data archives—and allow simulation scientists in such areas as climate and astrophysics 
to think of archiving petabyte-scale outputs from high-resolution reference simulations. 
In consequence, large archival datasets are emerging as major community resources in 
many disciplines. 
 
These data volumes place increased demands on our analysis capabilities. Dramatic 
improvements in microprocessor performance mean that the lowly desktop or laptop is 
now a powerful computational engine in its own right. Nevertheless, computational 
capabilities are falling behind relative to storage, “only” doubling every 18 months and so 
“only” increasing by a single order of magnitude every 5 years. It is becoming infeasible 
to assemble at a single location the computational resources needed for large-scale 
analysis. 
  
The solution to these problems lies in the yet more dramatic changes taking place in 
networking. Spurred by innovations such as doping [14] and the demands of the Internet 
economy [9], the performance of wide area networks doubles roughly every 9 months—
i.e., increases by two orders of magnitude every 5 years. For example, within the U.S., 
the NSFnet connected the NSF supercomputer centers by a then-unprecedented 56 Kb/s 
backbone in 1985; in 2002, the centers will be connected by the 40 Gb/s TeraGrid 
network (www.teragrid.org): six orders of magnitude improvement in 17 years. 
 
This doubling of network performance relative to computer speed every 18 months has 
already changed how we think about and undertake collaboration. With at least one 
additional order of magnitude differential expected over the next five years, 
communication becomes essentially “free,” instead of prohibitively expensive, as in the 
past. We can—indeed must—imagine new ways of working and doing business that are 
communication intensive: pooling computational resources, streaming large amounts of 
data from databases or instruments to remote computers, linking sensors with each other 
and with computers and archives, and connecting people, computing, and storage in 



collaborative environments that avoid a need for travel [8]. More succinctly: how can we 
squander bandwidth to do better science? 
 
What is a Grid? 
If communication is unlimited and free, then we are not restricted, when solving 
problems, to local resources. For example, when running a colleague’s simulation code, I 
need not install it locally but can run it remotely, on my colleague’s computer. When 
applying this code to datasets maintained at other locations, I need not obtain copies of 
those datasets myself (not so long ago, I would have requested tapes), but can have the 
remote code access those datasets directly. If I wish to repeat the analysis many hundreds 
of times, on different datasets, I may call upon the collective computing power of my 
research collaboration—or purchase cycles from a cycle provider. And when I obtain 
interesting results, I can review the large output datasets with remote colleagues in rich 
collaborative environments. 
 
While these scenarios vary considerably in their complexity, there is a common thread: in 
each case, I use remote resources to do things that I cannot easily do “at home.” Now 
while high-speed networks are often necessary for such remote resource use, they are far 
from sufficient. Remote resources are typically owned by others, exist within different 
administrative domains, run different software, and are subject to different security and 
access control policies. These issues characterize a Grid and historically have made 
distributed computing difficult. In order to access remote resources, I must first discover 
that they exist, then negotiate access to them (to be practical, this step cannot involve 
using the telephone!), then configure my computation to use them effectively—and I 
must do all these things without compromising my own security or the security of the 
resources on which I am computing. I may also be called upon to pay for resources. 
Today’s Internet and Web technologies address basic communication requirements, but 
do not provide uniform mechanisms for such critical tasks as creating and managing 
services on remote computers, for supporting “single sign on” to distributed resources, 
for transferring large datasets at high speeds, or for forming large distributed virtual 
communities and maintaining information about the existence, state, and usage policies 
of community resources. 
 
In brief, Grid systems and technologies provide the infrastructure and tools that make 
large-scale, secure resource sharing possible and straightforward. An infrastructure is a 
technology that we can take for granted when performing our activities. Thus the road 
system enables us to travel by car, the international banking system allows us to transfer 
funds across borders, and Internet protocols allow us to communicate with virtually any 
electronic device. To be useful, an infrastructure technology must typically be broadly 
deployed, which means in turn that it must be simple—or extraordinarily valuable. For 
example, the set of protocols that must be implemented within a device to allow Internet 
access is small: people have constructed matchbox-sized Web servers. A Grid 
infrastructure needs to provide more functionality than the Internet on which it builds, 
providing new services that address end-to-end issues of authentication, resource 
discovery, and resource access—but it must also remain simple. And of course we must 
not forget the need for the resources that “power the Grid,” by supporting, for example, 



high-speed data movement, caching of large datasets, and on-demand access to 
computing. 
 
Tools build on infrastructure services to support new modes of working. Internet and 
Web tools include browsers for accessing remote Web sites, email programs for handling 
email, and search engines for locating Web pages. Grid tools are concerned with resource 
discovery, data management, scheduling of computation, security, and so forth. For 
example, Figure 1 illustrates tools that support so-called “Data Grid” applications, which 
harness storage, computing, and networks to support distributed access to, and analysis 
of, large datasets. Building on Grid infrastructure services, Data Grids provide services 
for virtual data management (keeping track of where data products are located and, if 
these data products are generated via analysis routines, whether or not the data products 
are actually materialized), planning the often complex series of computations and data 
movements required to satisfy a user request, and managing those computations and data 
movements. 
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Figure 1: Principal elements of a petascale data grid, as envisioned within the NSF-
funded Grid Physics Network project (GriPhyN: www.griphyn.org). GriPhyN R&D is 
complemented by the work of the EU DataGrid (www.eu-data-grid.org), DOE-funded 
Particle Physics Data Grid (PPDG: www.ppdg.net), and DOE-funded Earth Systems Grid 
(www.earthsciencegrid.org) projects. 
 
Resource sharing in scientific communities 
The instances of resource sharing provided above give a flavor for what Grid computing 
is about. However, the implications for the working scientist go far beyond these simple 
scenarios, as I illustrate with five examples representing different usage modalities. 
 



Science portals. We are accustomed to negotiating a steep learning curve when installing 
and using a new software package. Science Portals reduce barriers to the use of advanced 
problem solving methods by allowing sophisticated packages to be invoked remotely, 
from Web browsers or other simple, easily downloadable “thin clients.” Packages can 
themselves run on suitable computers within a Grid. Such portals are currently being 
developed in biology, fusion, computational chemistry, and other disciplines. 

 
Distributed computing. High-speed workstations and networks can make the personal 
computers and clusters of an organization or scientific collaboration, in the aggregate, a 
substantial computational resource. Such resources are being are being exploited within 
biology, with Entropia Inc.’s FightAIDSAtHome system harnessing more than 30,000 
computers to analyze AIDS drug candidates. In computational mathematics, 
mathematicians recently solved a long-open problem in numerical optimization, NUG30 
by pooling resources across the U.S. and Italy. They were able to bring an average of 
630—and a maximum of 1006—computers to bear for a week, delivering a total of 
42,000 CPU-days. Future improvements in network performance and Grid technologies 
will increase the range of problems for which such aggregated computing resources are 
applicable. 
 
Large-scale data analysis. Many interesting scientific problems require the (often 
compute-intensive) analysis of large amounts of data. Here, the ability to harness 
distributed compute and storage resources can be of great value. Furthermore, the 
naturally parallelism inherent in many data analysis procedures makes it feasible to use 
distributed resources efficiently. For example, analysis of the many petabytes of data to 
be produced by future high energy physics experiments will require the harnessing of 
tens of thousands of processors and hundreds of terabytes of disk space for holding 
intermediate results. For various technical and political reasons, assembling these 
resources at a single location appears impractical. Yet the collective institutional and 
national resources of the hundreds of institutions participating in those experiments can 
provide these resources. These communities can, furthermore, share more than just 
computers and storage: by federating databases, they can also share analysis procedures 
and computational results. 
 
Computer-in-the-loop instrumentation. Scientific instruments such as telescopes, 
microscopes, X-ray sources, and sensor nets generate raw data streams that are today 
either interpreted visually or archived for subsequent batch processing. Yet quasi-real-
time analysis can greatly enhance an instrument’s capabilities. For example, consider an 
astronomer using a radio telescope array to study solar flares. The deconvolution and 
analysis algorithms used to process the data and detect flares are computationally 
demanding, and solar flares vary in seconds. If the astronomer can call upon substantial 
computing resources (and sophisticated software) in an on-demand fashion, she can use 
automated detection techniques to “zoom in” on solar flares as they occur. 
 
Collaborative work. Researchers often want also to aggregate human expertise. 
Collaborative problem formulation, data analysis, and the like become important 
applications in Grid environments. For example, an astrophysicist interested in 



collaborative analysis of large datasets wants to be able to fly through, invoke automatic 
feature detection algorithms on, annotate, and discuss the results of large (multi-terabyte) 
simulation datasets—in collaboration with colleagues around the world. 
  
While these examples illustrate selected aspects of the Grid problem, real applications 
will frequently contain aspects of several of these—and other—scenarios. For example, 
our radio astronomer might also want to look for similar events in an international 
archive, discuss results with colleagues during a run, and/or invoke distributed computing 
runs to evaluate alternative “what if” scenarios. 
 
The architecture of Grid infrastructure 
Close to a decade of focused technology R&D and application experimentation (see Box 
1) has produced considerable consensus on Grid technology requirements and 
architecture, and in particular the importance of standard protocols as a means of 
achieving interoperability among different Grid resources and services, and hence 
constructing large-scale Grid systems; and standard application programming interfaces 
(APIs) to facilitate the construction of Grid components and applications. (Protocols 
define the content and sequence of message exchanges used to request remote operations, 
and are vital to interoperability; APIs 
define standard interfaces to code 
libraries, thus allowing code 
components to be reused.) 
 
In addition, recent work is revealing 
close relationships between the 
concerns and technologies of science 
and commercial computing: see Box 2. 
 
Protocols and APIs can be categorized 
according to the role that they play in a 
Grid system (Figure 2). At the lowest 
level, the Fabric, we have the physical 
devices or resources that Grid 
participants want to share and access, 
including computers, storage systems, 
catalogs, networks, and various forms 
of sensor. 
 
Above this, the Connectivity and Resource layers define the “neck” in the Grid protocol 
hourglass: the protocols that (like the Internet Protocol) must be implemented 
everywhere, and that can be used to implement different application behaviors. The 
Connectivity layer defines core communication and authentication protocols required for 
Grid-specific network transactions. Communication protocols enable the exchange of 
data between resources; authentication protocols build on communication services to 
provide cryptographically secure mechanisms (discussed below in more detail) for 
verifying the identity of users and resources. The Resource layer builds on these 

The neck of the
hourglass: resource &
connectivity protocols

Figure 2: A schematic view of Grid architecture 



communication and authentication protocols to define protocols for the secure initiation, 
monitoring, and control of sharing operations on individual resources: for example, 
secure access to remote computers for the purpose of initiating, monitoring, and 
controlling computations, so that a program can be run on any of a number of different 
computer systems. The Globus ToolkitTM1 (www.globus.org; and see Box 3) is a 
commonly used source of Connectivity and Resource protocols and APIs. 
 
The Collective layer contains protocols, services, and APIs that implement interactions 
across collections of resources. Because Collective components build on the narrow 
Resource and Connectivity layer “neck” in the protocol hourglass, they can implement a 
variety of sharing behaviors without placing new requirements on resources. Examples of 
Collective services include directory and brokering services, for resource discovery and 
allocation; monitoring and diagnostic services; data replication services; and membership 
and policy services for keeping track of who in a community is allowed to access 
resources. 
 
Finally, user applications are constructed in terms of, and by calling upon, services 
defined at any other layer. For example, a high energy physics analysis application that 
needs to execute several thousands of independent tasks, each taking as input some set of 
files containing events, might proceed by: 

• obtaining necessary authentication credentials (Connectivity layer protocols: see 
below); 

• querying an information system and replica catalog to determine availability of 
computers, storage systems, and networks, and the location of required input files 
(Collective services); 

• submitting requests to appropriate computers, storage systems, and networks to 
initiate computations, move data, and so forth (Resource protocols); and, finally 

• monitoring the progress of the various computations and data transfers, detecting 
and responding to failure conditions, and notifying the user when all are 
completed (Resource protocols). 

 
Many of these capabilities can be encapsulated in tools that automate the more complex 
tasks—for example, the Condor-G system from the University of Wisconsin 
(www.cs.wisc.edu/condor). 
 
Authentication, authorization, and policy 
Authentication, authorization, and policy are among the most challenging issues in Grids, 
so I provide some brief technical details to illustrate the types of concern that arise. 
 
“Traditional” security technologies are concerned primarily with securing client-server 
interactions, in which a client (user) and server need to mutually authenticate (i.e., verify 
each other’s identity) and the server needs to determine whether it wishes to authorize 
requests issued by the client. Sophisticated technologies have been developed for 
performing these basic operations and for guarding against and/or detecting various 
                                                 
1 Globus Project and Globus Toolkit are trademarks of the University of Chicago and University of 
Southern California. 



forms of attack. We use these technologies when we access a remote computer using the 
popular “Secure Shell” utility or access a secure ecommerce web site. 
 
In Grid environments, the situation is more complex. The distinction between client and 
server tends to disappear (a Grid is what is sometimes termed a peer-to-peer system), 
because an individual resource can act as a “server” one moment (as it receives a request) 
and a “client” another (as it issues requests to other resources). For example, when I 
request that a simulation code be run on a colleague’s computer, I am the client and the 
computer is a server. But a few moments later, that same code and computer act as a 
client, as they issue requests—on my behalf—to other computers to access input datasets 
and/or to run subcomputations. A number of interesting requirements arise in this 
context. 
 

 
Figure 3: The authentication and authorization steps involved when a user uses Grid services to 
authenticate (1) and to request that subcomputations (processes) be started at two sites A and B (2), 
which then communicate with each other (4) and also read files located at a third site, C (5).  

 
Single sign on. A single computation may access many resources and it is generally 
unacceptable to require that the user re-authenticate (by, for example, typing in a 
password) on each occasion. Instead, a user should be able to authenticate once and then 
assign to the computation the right to operate on their behalf, typically for a specified 
period of time. This capability is achieved via the creation of a proxy credential that the 
computation can use to authenticate, as the user, with remote resources. For example, in 
Figure 3, the program run by the user (the User Proxy) uses a proxy credential to 
authenticate twice, with so-called GRAM (“Grid Resource Access and Management”) 
services at sites A and B. These services handle requests to create new processes. 



 
Mapping to local security mechanisms. Different sites may employ different local 
security solutions (e.g., “Kerberos” and “Unix” in Figure 3). A Grid security 
infrastructure needs to map to these local solutions at each site, so that local operations 
performed can proceed with appropriate privileges. Hence, for example, in Figure 3, 
processes execute under a “local id” and, at site A, are assigned a Kerberos ticket, a 
credential used by the Kerberos system for authorization. 
 
Delegation. The creation of a proxy credential is a form of delegation [6], an operation of 
fundamental importance in Grid environments. A computation that spans many resources 
creates subcomputations that may themselves generate requests to other resources and 
services, perhaps creating additional subcomputations, and so on. For example, in Figure 
3, the two subcomputations (processes) created at sites A and B subsequently both 
communicate with each other and access files at sites C. Authentication operations, and 
hence further delegated credentials (the “Restricted Proxies”), are involved at each stage, 
as resources determine whether to grant requests and computations determine whether 
resources are trustworthy. Yet the further these delegated credentials are disseminated, 
the greater the risk that they will be acquired and misused by an adversary. These 
delegation operations and the credentials that enable them must be carefully managed. 
 
Community authorization and policy. In a large community, the policies that govern who 
can use which resources for what purpose cannot be based directly on individual identity: 
it is infeasible for each resource to keep track of community membership and privileges. 
Instead, resources (and users) need to be able to express policies in terms of other criteria, 
for example group membership, which can be expressed in terms of possession of a 
cryptographic credential (a capability) issued by a trusted third party. For example, in the 
scenario depicted in Figure 3, the file server at site C must know explicitly whether or not 
this particular user is allowed to access a particular file. A community authorization 
system allows this policy decision to be delegated to a community representative. 
 
Current Status and Future Directions 
We now have considerable consensus on Grid architecture principles and the 
technologies required for basic Grid operations, with in particular the community based, 
open source Globus Toolkit being applied by most major Grid projects and also seeing 
significant industrial adoption. Major science communities accept that this technology is 
important for their future. Numerous government funded R&D projects are variously 
developing core technologies, deploying production Grids, and/or applying Grid 
technologies to challenging applications (see http://www.mcs.anl.gov/~foster/grid-
projects for a list of major projects). Industrial interest is growing: for example, a total of 
12 companies announced support for the Globus Toolkit in late 2001. Progress has been 
made on organizational fronts: the Global Grid Forum (www.gridforum.org) is a 
significant force for standards setting and community development, with over 1000 
people on its mailing lists. Its thrice-yearly meetings attract hundreds of attendees from 
some 200 organizations. The International Virtual Data Grid Laboratory is being 
established as an international Grid system (Figure 4). 



 
It is commonly observed that people overestimate the short-term impact of change but 
underestimate long-term effects [10]. It will surely take longer than some expect before 
Grid concepts and technologies transform the practice of science, engineering, and 
commerce, but the combination of exponential technology trends and R&D advances 
noted in this article are real and will ultimately have dramatic impacts. In a future in 
which computing, storage, and software are no longer objects that we possess, but 
utilities to which we subscribe, the most successful scientific communities are likely to be 
those that succeed in assembling and making effective use of appropriate Grid 
infrastructures—and thus accelerating the development and adoption of new problem 
solving methods within their discipline. 
 
BOX 1: Historical Origins 
While Grid concepts date to the earliest days of computing, much current Grid research 
and development owes it genesis to pioneering work conducted on early experimental 
high-speed networks, such as the U.S. Gigabit testbeds established in the early 1990s [1]. 
For example, on the Casa network that connected four laboratories in California and New 
Mexico, Paul Messina and his colleagues developed and demonstrated early 
“metacomputing” applications, coupling massively parallel and vector supercomputers 
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Figure 4: Initial sites involved in the International Virtual Data Grid Laboratory (www.idgl.org) 



for computational chemistry, climate modeling, and other scientific applications. On 
Blanca, which connected sites in the midwest, Charlie Catlett and his colleagues did early 
work oriented toward multimedia digital libraries and demonstrated the potential of 
distance visualization. Two other testbeds investigated remote instrumentation. The 
gigabit testbeds also experimented with wide area communication libraries and high 
bandwidth communication protocols. Similar testbeds were created elsewhere, for 
example in Germany. 
 
Within the U.S. at least, the event that moved Grid concepts out of the network laboratory 
and into the consciousness of ordinary scientists was the I-WAY experiment [2]. Led by 
Tom DeFanti and Rick Stevens, this ambitious effort linked 11 experimental networks to 
create, for a week in November 1995, a national high-speed network infrastructure that 
connected resources at 17 sites across the U.S. and Canada (Figure 5). Some 60 
application demonstrations, spanning the gamut from distributed computing to virtual 
reality collaboration, showed the potential of high-speed networks. The I-WAY also saw 
the first attempt to construct a unified software infrastructure for such systems, namely 
the I-Soft system developed by myself and others that provided single sign, unified 
scheduling, and other services that allowed the I-WAY to be treated, in some important 
respects, as an integrated infrastructure. 
 
 

 
Figure 5: The I-Way network constructed in November 1995, showing the principal 
networks and sites connected. 
 
 
 
 
 



BOX 2: Commercial Grids and the Open Grid Services Architecture 
Grid concepts are becoming increasingly relevant to commercial information technology 
(IT). With the rise of ebusiness and IT outsourcing, enterprise applications no longer run 
exclusively within the friendly confines of an enterprise central computing facility. 
Instead, they must operate on heterogeneous collections of resources that may span 
multiple administrative units within a company as well as various external networks and 
service providers. In commerce as in science and engineering, we face the same need to 
deliver quality of service within dynamic virtual organizations. 
 
One consequence of this convergence of interests is a growing interest in the integration 
of previously distinct commercial and Grid technologies. For example, the Open Grid 
Services Architecture [4] proposed by the Globus Project and IBM’s Open Service 
Architecture group integrates Grid mechanisms into the Web services architecture that is 
at the core of major industrial distributed computing technologies such as Microsoft’s 
.NET, IBM’s Websphere, and Sun’s Java 2 Enterprise Edition (J2EE) [7]. 
 
Web services define standards for defining, and invoking operations on, remote services: 
in particular, the Web Service Description Language (WSDL) for describing Web 
services, the Simple Object Activation Protocol (SOAP), a remote procedure call 
protocol for invoking services, and UDDI, Universal Description, Discovery, and 
Integration, for defining directories that can be used to discover specific services. Grid 
protocols and services address complementary issues relating, for example, to the secure 
and reliable creation and management of dynamic service instances—as is required for 
remote computing and resource sharing scenarios such as those described in this article. 
 
The Open Grid Service Architecture leverages these two technologies to define, among 
other things, standard behaviors (and WSDL interfaces) for a “Grid service”: a Web 
service that can be created dynamically and that supports security, lifetime management, 
manageability, and other functions required in Grid scenarios. These features are being 
incorporated into the Globus Toolkit, and will likely also appear in commercial products. 
 
Box 3: The Globus Toolkit 
The Globus Toolkit (www.globus.org) is a community-based, open-architecture, open-
source set of services and software libraries that support Grids and Grid applications. The 
Toolkit includes software for security, information infrastructure, resource management, 
data management, communication, fault detection, and portability. It is packaged as a set 
of components that can be used either independently or together to develop applications. 
Components include: 

• the Grid Security Infrastructure (GSI), which addresses Grid security concerns 
reviewed in the text, providing in particular a single-sign-on, run-anywhere 
authentication service, with support for delegation of credentials to 
subcomputations, local control over authorization, and mapping from global to 
local user identities; 

• the Grid Resource Access and Management (GRAM) protocol and service, which 
provides remote resource allocation and process creation, monitoring, and 
management services; 



• the Meta Directory Service (MDS), an extensible Grid information service that 
provides a uniform framework for discovering and accessing system 
configuration and status information such as compute server configuration, 
network status, or the locations of replicated datasets; and 

• Data Grid-specific technologies, including a replica catalog, for locating copied of 
data; GridFTP, a high-speed data movement protocol; and reliable replica 
management tools. 

 
For each component, the Toolkit both defines protocols and APIs and provides open 
source reference implementations in C and (for client side APIs) Java. A tremendous 
variety of higher-level services, tools, and applications have been implemented in terms 
of these basic components. Some of these services and tools are distributed as part of the 
Toolkit, while others are available from other sources. The NSF-funded GRIDS Center 
(www.grids-center.org) maintains a repository of components. 
 
The Globus Toolkit is a product of the Globus Project, led by myself and Carl Kesselman 
at the University of Southern California’s Information Sciences Institute. Steve Tuecke 
plays an important role as the Chief Architect at Argonne National Laboratory. Many 
other project participants and collaborators, listed at www.globus.org, have made major 
contributions. In addition, a number of companies are now starting to offer commercial 
support for the Toolkit. 
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