Mathematical Programming manuscript No.
(will be inserted by the editor)

Uwe Naumann

On Optimal Jacobian Accumulation for Single
Expression Use Programs

the date of receipt and acceptance should be inserted later

Abstract. ADIFOR and ADIC, the widely used software tools for Automatic Differentia-
tion, use assignment-level reverse mode to compute local gradients of scalar assignment. This
pre-accumulation often results in very efficient forward-mode derivative code. Scalar assign-
ments belong to the class of Single Expression Use (SEU) programs. There, the values of
all intermediate variables are read exactly once. Based on several theoretical results, we de-
rive an algorithm for generating optimal Jacobian code for SEU programs. The number of
floating-point operations performed during the accumulation of the Jacobian is minimized.

Key words. Single Expression Use Programs, Accumulation of Jacobian Ma-
trices, Minimal Number of Arithmetic Operations

1. Introduction

We use a scalar assignment to introduce the theory required to prove the results
of this paper. Consider y=exp(x(2)*x(1)*sin(x(1))), where y is a scalar and x
is a vector in IR” with n = 2. Its structure can be visualized as a directed acyclic
graph (dag) with integer vertices, as shown on the
left side of Figure 1. This corresponds to a de-
composition of the statement into a so-called code
list

v(3)=sin(x(1));
v(4)=x(1)*v(3);
v(8)=x(2)*v(4);
v(8)=exp(v(5))

(ac+b)ef

by assigning the results of all elemental functions
w;j, j = n+1,...,q, (here j = 3,...,6 and
@; € {exp, sin, *}) to unique intermediate variables
(e.g., v(3),...,v(8)). Suppose one is interested in
the gradient of y with respect to the input vector x evaluated at some point
x = xg. Tools for Automatic Differentiation (AD) [8] can generate derivative
code for computing this gradient by changing the semantics of the statement.

Fig. 1. Linearized dag

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Av., Argonne, IL 60439, e-mail: naumann@mcs.anl.gov

2 Uwe Naumann

Forward Mode AD Reverse Mode AD

v(3)=sin(x(1)) v(8)=sin(x(1))

- v(4)=x(2)*x(1)
e

d_v(4)=d_x(2)*x(1)+x(2) *d_x(1) y=e>(1gsz(i))
v(56)=v(4)*v(3) a_v(d)=y*a_y

- a_v(4)=x(2)*a_v(5)
s;:iii;%5¥§4)*V(3)+V(4)*d'V(3) a_v(3)=x(1)*a_v(4)

- a_x(2)=v(4)*a_v(5)
d_y=y*d_v(5) a_x(1)=v(3)*a_v(4)+cos(x(1))*a_v(3)

Fig. 2. Derivative Codes

Instead of computing the function value y = f(x) the transformed statement
evaluates the inner product (f’,dx) in forward mode or the product a_y - f
when reverse mode is used [8, Chapter 3]. The vector f’ € IR" denotes the gra-
dient of y with respect to x. Furthermore, d_x € IR" and a_y € IR. The derivative
codes resulting from applying AD to the example assignment are displayed in
Figure 2. The values

N Jp;)
avig)=))
i: v(i) is argument of ¢;

and

av(k) = Z 8?:(01;) ~a-v(i)

i: v(k) is argument of ¢;

are propagated forward for j =n+1,...,¢ and backward fork =¢—1,...,1,
respectively. Following the standard notation as in [8], we write 1 < jif v(i) is an
argument of ¢;. Furthermore, we define P; = {i :1i < j} and S5 = {k: j < k}.
The gradient f’ can be obtained either by executing the code generated by
forward mode AD twice for d_x equal to (0,1) and (1,0) or by simply setting
ay equal to 1 in the adjoint code generated using the reverse mode of AD.
In general, the complexity of computing the whole gradient in forward mode
is O(n), whereas the same task can be completed in reverse mode at a small
constant multiple of the cost for evaluating the function itself [8, Rule 4]. This
result is exploited by the AD tools ADIFOR 2.0 [2] and ADIC 1.1 [10]. Both tools
use the forward mode to transform programs for evaluating a vector function
F: IR®» = IR™ into derivative code for computing products Y = F'- X € R
of the Jacobian F’ and a so-called seed matriz X € IR™*!. At the statement level
these tools can perform a reverse mode accumulation of the local gradient, thus
saving a significant number of floating-point operations (flops). For example,
when accumulating F itself without exploiting a possible structural sparsity
(see [7], [16], and [4] for other approaches) X must be equal to the identity in
IR"™. In forward mode the number of flops performed for our example assignment
(which is assumed to be part of the evaluation program for F) would be 7n (6n
multiplications and n additions), where the number of edges in the dag is equal
to 6. Assignment-level reverse-mode preaccumulation of the local gradient would

On Optimal Jacobian Accumulation for Single Expression Use Programs 3

fe(b+ca)

e(b+ca)

1 2 1 2

Fig. 3. Vertex Elimination Sequence (3,4,5)

take 5 multiplications and 1 addition followed by a vector-matrix product that
would cost 2n multiplications and n additions. Here we assume that the trivial
multiplication of y with one is not performed in the code on the right of Figure 2,
which yields a_v(5)=y. In many real-world applications n tends to become very
large [11,17,20], which makes the improvements in the number of flops approach
a factor of 3.

Automatic Differentiation is based on the idea that the numerical values of
the local partial derivatives

(v(i)) € R (1)

Ci =

ov(i)

of all elementary functions with respect to its arguments can be computed at the
current point xg and that they can be attached to the corresponding edges in the
dag. In our example a = ¢31 = cos(v(1)), b = ¢ca1 =sin(v(1)), ¢ = ca3 = v(1),
d=cs2=v(4),e=c54=v(2),f = c54 = exp(v(5)) = v(6). The gradient can
be computed by using either forward or reverse mode, as shown in Figure 2 or
by applying elimination techniques [14] to this linearized version of the dag. For
example, the elimination of all intermediate vertices (3,4, and 5) transforms the
dag into the directed complete bipartite graph K, ; shown on the right side of
Figure 1. The graphs resulting from the elimination of vertex 4 followed by 5
and 3 are displayed in Figure 4. When eliminating j, new edges are introduced
connecting the predecessors of j with its successors. A new edge (i, k) is labeled
with the product of the labels of (j, k) and (¢, 7). If either ¢; ; or ¢;; or both
are trivial, that is equal to 1 or —1, then the multiplication is not performed
explicitly. Parallel edges are merged, and the corresponding edges labels are
added. For example, c¢61 = c61 + ¢6,3 - ¢31 When eliminating 3 in the second
graph in Figure 4. Finally, j is removed together with its incident edges. The
number of scalar multiplications involved in the elimination of j is referred to
as the Markowitz degree of j, and it is equal to |P;||S;|. Here, |.| denotes the
cardinality of a set. The number of additions is equal to the number of edges
(i,k) € F that existed in G before the elimination of j and for which ¢ < j and
J=<k.

4 Uwe Naumann

fecatfeb

1 2 1 2

Fig. 4. Vertex Elimination Sequence (4,5,3)

The elimination of a vertex j is equivalent to the simultaneous front elimination
of all edges leading into it. Similarly, the elimination of j is equivalent to the
simultaneous back elimination of all edges emanating from it. An edge (4, j) is
front eliminated by connecting ¢ with all successors of j. For all successors & of
J, the new edges (i, k) are labeled with ¢x; = ¢x j¢; . If (4, k) existed before,
then cp i = ¢k + ¢k j¢;i. The edge (7, 7) is removed after this. The number of
multiplications required to front eliminate (¢, j) is equal to |S;|. An addition is
performed for all (4, k) that existed in G before the elimination of (4, j) such
that j < k. Analogously, an edge (j, k) is back eliminated by connecting all
predecessors of j with k. For all predecessors 7 of j the new edge (i, k) is labeled
with e ; = ¢ex jej ;. Again, the label becomes ¢; ; = ¢x 5 + ¢ jeji if (4, k) existed
before. Finally, (4, k) is removed. The number of multiplications required to back
eliminate (j, k) is equal to | P;|. Additions are performed for all (i, k) that existed
in G before the elimination of (j, k) such that ¢ < j. Newly generated edges are
referred to as fill-in.

Figure 5 shows the dags resulting from the application of the edge elimi-
nation sequence [(1,4) front, (1,3) front, (5,6) back] to the dag of the example
assignment. Notice that in dags of SEU programs the back elimination of an edge
is always equivalent to the elimination of its source. This follows immediately
from all intermediate vertices having exactly one successor. Elimination tech-
niques in linearized computational graphs are discussed in detail in [15]. There
we prove both the structural and numerical correctness of the corresponding
graph transformations.

The computation of Jacobian matrices by vertex elimination was first pro-
posed in [9]. Regardless of the order in which the intermediate vertices are elim-
inated (there are 3! = 6 different ways in our example), one gets the same value
for the gradient of y with respect to x.! However, the number of flops performed
varies. For example, the elimination sequence illustrated in Figure 4 involves six
multiplications and one addition. Eliminating 3 followed by 5 and 4 decreases

L This follows immediately from the associativity of the chain rule in JR. Our discussion is
based on the assumption that the same is true for floating-point numbers. To our knowledge,
the actual implications for the stability of numerical algorithms have not been investigated so
far.

On Optimal Jacobian Accumulation for Single Expression Use Programs 5

Fig. 5. Edge Elimination Sequence [(1,4) front, (1,3) front, (5,6) back]

the number of multiplication by two. This process can be followed in Figure 3.
In fact, it represents the gradient computation that minimizes the number of
flops performed.

The remainder of this paper is structured as follows. Section 2 formalizes the
framework established in Section 1 and it gives a formulation of the combinatorial
optimization problem that is solved in Section 3 which represents the heart of the
paper. The proofs of several theoretical results lead to a deterministic polynomial
algorithm for solving the problem for SEU programs. A very efficient version of
it is derived for a significant special case. The paper concludes with a case study
in Section 4.

2. Formal Framework

We consider programs representing nonlinear vector functions mapping n inde-
pendent onto m dependent variables as y = F'(x), where x = (21,...,2,) € R"
and y = (y1,...,ym) € IR™. The objective is to transform the program into a
set of statements for computing the Jacobian matrix

Y . Oy
= Flx) = (3%’ (x0) i=1,...,m, j=1,..

of F' with respect to the n inputs for a given argument xy and using a minimal
number of flops. This problem is referred to as the Optimal Jacobian Accumu-
lation (OJA) problem? in [15].

As pointed out in Section 1, we assume that 7' can be decomposed into a

LN

sequence of assignments of the values of scalar elemental functions ¢; to unique

intermediate variables v;, j = n+41,...,n+p, or the dependent variables y; = v;,
where i =n+p+1,...,n+q and ¢ = p+ m. The resulting code list is given as
(R 2) v =¢j(vi)i<j (2)

2 In [15] we consider the number of fused multiply-add operations that is equivalent to the
number of multiplications. In the paper at hand, this restriction can be relaxed, as optimal
values for both the number of additions and the number of multiplications can be obtained
for SEU programs.

6 Uwe Naumann

where j = n+ 1,...,q. The transitive closure of the precedence relation < is
denoted by <T . All variables in F are numbered consistently according to
I:V —={1,...,q} where i <% j = Z(v;) < Z(vy).

Since the differentiation of F' is based on the differentiability of its elemental
functions, it will be assumed that the ¢;, j =n+1,..., ¢, have jointly continu-
ous partial derivatives

0 .
Cj,i5%¢j(vk)k<j , =<1, (3)

on open neighborhoods P; C IR, n; = |{i|i < j}|, of their domain. In this case
the numerical values of all ¢;; can be computed in parallel with the function
value F(xg) at the current argument by a single evaluation of F. W.l.o.g., we
assume that the ¢;; are non-trivial. A dag G = (V, E) with V = {i : v; € F'}
and (i,7) € Fif { < j can be associated with F. Tts vertex set V. = X UZUY is
such that X = {1,...,n}, Z={n+1,....,n+pl,and Y = {n+p+1,...,n+q}.
We assume G to be linearized in the sense that the c;; are attached to their
corresponding edges, that is, (7, j) is labeled with ¢; ;. The linearized dag is also
referred to as the c-graph [14].

In c-graphs of programs whose intermediate values are read exactly once, all
intermediate vertices have exactly one successor. This property is crucial for the
derivation of the main results in this paper. Often the elemental functions are
at most binary, which implies a stronger result and a more efficient algorithm.

Methods for accumulating Jacobian matrices of general vector functions by
applying elimination methods to c-graphs are discussed in [15]. Vertexr [9], edge
[13], [8], and face [15] elimination techniques are used to minimize the number
of flops involved in the computation of the Jacobian. This represents a complex
combinatorial optimization problem [14] that is conjectured to be NP complete
[9], [3]. We show in Section 3 that in the context of SEU programs it is sufficient
to consider vertex elimination as described in Section 1. The Jacobian can be
computed by eliminating the p intermediate vertices in the corresponding c-
graph G. There are p! different vertex elimination orderings and possibly several
out of them minimize the overall flops count. The labels on the edges of the
resulting directed complete bipartite graph K, ,, represent the entries of the
Jacobian matrix as shown in [9].

Memory access patterns may play an important role in minimizing the over-
all run time of a derivative code. The consideration of all factors influencing
the generation of efficient derivative code results in an even more complicated
combinatorial optimization problem. Its solution depends strongly on the com-
putational platform [18] and offers a variety of interesting research topics. We
consider the investigation of the OJA problem as a very important part of the
research in efficient derivative code generation.

On Optimal Jacobian Accumulation for Single Expression Use Programs 7

3. Optimal Jacobian Accumulation for SEU Codes

To derive an algorithm for accumulating Jacobians of SEU codes efficiently, we
require additional terminology. For A, B C V, AN B = @, an A-B-separating
(vertex) set Sa p is a subset of V for which S4 g N A = @ and whose removal
separates A from B, that is, in the graph induced by
V'\ Sa,p there is no path connecting any vertex in B

! with a vertex in A. For example, {4,5} is a {6}-{1,2}-
separating set in the example dag in Figure 1. For a given
5 intermediate vertex j € {n+1,...,n+ p} we denote a
7 minimal {j}-{1, ..., n}-separating set by P;. Similarly,
(7)p5 we denote a minimal {n+p+1,..., n—i—q}—{ﬁ—separating
set by S;. Obviously, the size of any minimal {n + p +
@ps’ 1,...,n+ q}-{j}-separating set is equal to one for SEU
codes and for all j € {n+1,...,n+ p}. For example,
(7>Xs {4} is.a minimal {6}-{3}-separating set in Figure 1. The
— same is true for {5}.
Fig. 6. Lemma 1 The following result states a lower bound for the

number of occurrences of some local partial derivative
as a factor in the final derivative code. This result applies to the computation of
Jacobian matrices in general. Later we show that this lower bound can actually
be reached for SEU codes. Thus, we can derive an algorithm for solving the OJA
problem for SEU codes deterministically.

Lemma 1. For s <t the value min(|Ps|,|S¢|) is a lower bound for the number
of scalar floating point multiplications tnvolving the local partial derivative cq
as a factor.

Proof. By the chain rule
Ive _ Ov I
8Xt a 3pt 8Xt

ge = (4)
where p; € Rl is the vector of all predecessors of ¢ in G. In other words, the
row vector

3vt

— = ¢ cey, Ct
8pt (P PPy

)ER'Ptl

contains the local partial derivatives of v; with respect to its predecessors. These
values are attached as labels to all edges leading into ¢ in G. The components
of x; are all those v; for which i € X and i <T ¢. Focusing on the occurrences
of ¢; s in g¢, consider
Ovy Ovg Ov,
= —- =c - . 5
9t.s Ovy, 0%, be 0%, ()
Let P! be an s-xs-separating set in G. With p, € IRIP:! representing the vector
of the corresponding intermediate variables, Equation (5) can be written as

v 3Ps 8p;

Gt,s = Ct 5 - 3—[)5 : @ : ox, (6)

8 Uwe Naumann

This is an immediate consequence of the chain rule. A graphical illustration is
given in Figure 6. Equation (6) can be evaluated in various ways because of
the associativity of matrix multiplication. We are interested in an order that
minimizes the size of the vector that is multiplied by ¢; ;. Consider

8”5 8I)S 8p; (7)
s = Ct s - . .)
7 " \op, b, Ix
The innermost factors are the local gradient
Jv
75 R|P8|
p, ©
and the local Jacobian 5
Ps | P x| Pl
R s
o, -
Their product yields
Ovs Ovs Ops

— L— c R|Psl| ,
op, Ips O
which is then multiplied by the scalar ¢; ;. Consequently, the number of occur-
rences of ¢; ; as a factor in one of the scalar products is minimized if and only if
| P!| is minimal, that is, if P! is a minimal s-x-separating set in G.
It remains to note that the computation of
61& o 605

= .
ap, " op,

is equivalent to the back elimination of the edge (s,t) in G as described in [15].
This implies that once this operation has been performed, the factor ¢; , will not
appear in any other product unless it gets regenerated as fill-in. However, since
we are proving a lower bound for the cost of eliminating an edge (s,1), it is save
to assume that (s,?) is in fact the only path connecting s and ¢ in G.

A similar argument can be applied to

o= Oy Oy sy Ost B 8)
I =90, T 0s; \\os; ov))
One observes that)
8St 8St |S;|
6St 3vt < R ’

making |57 equal to the number of occurrences of ¢, as factor in the com-
putation of g;,. This number is minimized if and only if 5] is a minimal ¢-
ye-separating set in G. The edge (s,t) is front eliminated as a result of this
computation.

Multiplications involving ¢; , will appear as long as (s,t) € E has not been
either front or back eliminated. Earlier we showed that the minimal cost of doing
this is min(| P/, |S¢|), which completes the proof. O

On Optimal Jacobian Accumulation for Single Expression Use Programs 9

A polynomial algorithm for computing minimal separating sets i1s discussed in

[19].

Lemma 2. Given a c-graph G, the value 3., |P;| - |S;| is a lower bound for
the solution of the OJA problem. T

Proof. Consider an intermediate vertex j € Z. A consequence of Lemma 1 is
that at least |P;| in-edges of j must be front eliminated at a minimal cost of
|S;| multiplications each or |S;| out-edges are back eliminated at a minimal cost
of | P;| multiplications. In any case, |P;||S;| is a lower bound for the number of

multiplications required to eliminate j. This applies to all intermediate vertices
in G.O

A c-graph is called absorption freeif any two vertices are connected by exactly
one path.

Lemma 3. Reverse vertex elimination solves the OJA problem for SEU pro-
grams whose c-graphs are absorption free.

Proof. Notice that such c-graphs are sets of trees over a common set of leafs
{1,...,n} and disjoint vertex and edge sets otherwise. In any tree, |S;| = 1 for
Jj=1,...,n+ p. Obviously, |P;| is equal to |P;| for all j = n+1,. .., q. More-
over, eliminating all intermediate vertices in reverse order ensures that both the
numbers of predecessors and successors of all vertices remain constant. Conse-
quently, the number of multiplications involved in the elimination of all interme-
diate vertices is equal to the lower bound established in Lemma 2. The number
of additions 1s equal to zero. O

Theorem 1. Let |{[i — j]}| denote the number of distinct paths connecting two
vertices 1 € X and j € Y. The number of additions performed by any elim-
wnation sequence when applied to the c-graph of an SEU program s equal to

0= Yiex ey (=} = 1)

Proof. According to a result in [12], an entry of the Jacobian of F' can be accu-

mulated as
Py => I ax . 9)

=41 (kD) €li—]

where ¢ € X and j € Y. For SEU graphs this number can neither be increased
nor decreased. The former is obvious, since Equation (9) represents the sum over
all distinct paths. The number of additions could be increased only if there were
more distinct paths.

Suppose that some elimination sequence could decrease the number of addi-
tions. This is the case only if some sum a + b appears as a common subterm in
two or more Jacobian entries, for example in ¢(a + b) and d(a+b). In that case,
the substitution of e = a + & in both expression decreases the number of addi-
tions by one. Obviously, a sum cannot appear twice in the same Jacobian entry.
W.lo.g., let ¢ + ¢ jc; s be a common subexpression in two or more Jacobian

10 Uwe Naumann

entries. First, we must have i € X since only independent vertices are allowed to
have more than one successor. In that case, however, k or some k' with k& <1 &'
would need to have at least two successors for ci; + ¢ jc;; to appear in two
different Jacobian entries. This yields a contradiction to the definition of SEU
programs.

Consequently, [{[{ = j]}|—1 additions must be performed for each pairi € X
and j €Y. O

An immediate consequence of Theorem 1 is that the number of additions that
must be performed to compute the gradient of a scalar assignment is equal to

2iiex (ISl =1).

Theorem 2. Given a linearized dag G = (V, E) of an SEU program implement-
ing a vector function y = F(x), the Jacobian

Jy
T\ —
Fx) = ox

can be computed with a minimal number of flops as follows:

1. Doforj=n+1,...,n+p.
(a) Compute minimal {1,... n}-{j}-separating set P
(b) If |P;| < |P;|, then compute the local gradient Ov;/0x by reverse vertex
elimination.
2. Compute 0y /0x by reverse vertex elimination.

Proof. With Theorem 1 and Lemma 2, o + Zj:n+1,...,n+p
for the solution of the OJA problem for SEU programs, since |S;| = 1 for
j=n+1,...,n+p. Let j be the first intermediate vertex such that_|Pj| < |P;.
The computation of Jv; /0P; by vertex elimination would decrease thgn—degree
of j by |P;| —|F;]|. Since |£I: |P;| and |S;| = 1fori=n+1,...,5—1, the local
gradient 3vj/3_Pj can be computed at a minimal cost by reverse vertex elimina-

tion. Application of this argument to all j = n+1,..., p+n followed by a global
reverse vertex elimination ensures that all intermediate vertices are eliminated

|P;| is a lower bound

at minimal cost. Consequently, the algorithm results in a vertex elimination se-
quence that reaches the lower bound established by Lemma 2. Both the number
of additions and the number of multiplications become minimal, and therefore
the algorithm solves the OJA problem for SEU programs. O

Often the elemental functions used are at most binary. In this case the Jacobian
accumulation algorithm can be simplified to become considerably more efficient.

Theorem 3. Given a linearized dag G = (V, E) of an SEU program implement-
ing a vector function y = F(x) with |P;| <2 for j € V. Then the Jacobian F'(x)
can be computed by using a minimal number of flops as follows:

1. Eliminate all vertices with Markowitz degree equal to one in forward mode.
2. Compute 0y /0x by using reverse vertex elimination.

On Optimal Jacobian Accumulation for Single Expression Use Programs 11

Proof. Again, the number of additions performed is equal to «. Moreover, the
computation of a minimal {1,... n}-{j}-separating set becomes very simple.
The only situation in which |P;| < |P;| could possibly occur is |P;| = 2 and
|P;| = 1. This implies that P; = {7} for some i € {1,...,n} and that {7} is
also a minimal {1, ..., n}-{k}-separating set for all & with ¢ <¥ k and k <T j.
When considering j all these & must have a Markowitz degree of one and can
therefore be eliminated at minimal cost. The in-degree of j thus itself becomes
equal to one. Finally, once all vertices j with |P;| = 1 have been eliminated, the
remaining remaining vertices can be eliminated at minimal cost in reverse order.

d

From the AD literature [1], [5], [6], [8], we know that the complexity of derivative
codes for computing gradients of scalar functions f : JR™ — IR based on forward
(vertex elimination) mode is O(n). According to the cheap gradient principle [8,
Rule 4], the gradient of f can be computed at a small constant multiple of the
cost of evaluating f itself. This is supported by the numerical results presented
in Section 4, and it is exploited in the statement-level reverse mode featured by
the AD tools ADIFOR and ADIC. The main motivation for the research that
led to the results in this paper is the fact that reverse mode is not optimal for
computing gradients in general. In particular, there 1s the following result.

Theorem 4. An optimal derwative code undercuts the number of flops per-
formed by a reverse vertex elimination sequence by less than a factor of two
for SEU programs.

Proof. Notice first that for SEU programs the number of additions performed
is the same for both a reverse and an optimal vertex elimination sequence. By
Lemma 2 in an optimal derivative code for an SEU program, each intermediate
vertex j € {n+1,...,n+ p} in the corresponding c-graph is eliminated at the
cost of |P;| scalar multiplications. In a reverse vertex elimination sequence the
elimination of the same vertex involves | P;| multiplications. In SEU programs
the elimination of some intermediate vertex can lead only to the indegree of its
single successor being decreased by at most one. Notice that this costs at least
one multiplication. Consider the “worst case” where the elimination of every
vertex leads to a decrease of the in-degree of its successor. This is the case only
for graphs shaped as shown on the left of Figure 7. For p intermediate variables
the factor between reverse and optimal vertex elimination stays below two as p
approaches co. O

4. Case Study and Conclusions
Consider the following two assignments,
y=x(1) *x(2) ... xx(n) (10)

and
y=sin(x)*x*...4x (11)

12 Uwe Naumann

Fig. 7. Case Study

where sin(x) is multiplied n times by x. The dags are shown in Figure 7 for n
equal to 4. Our numerical tests are based on the 10° executions of the assign-
ments and the corresponding derivative codes for n=20 on an INTEL Pentium
IIT processor.

For statement (10) we compared forward with reverse vertex elimination and
got the following results:

Flops | Runtime (sec)
Function 20 22
Forward 209 293
Reverse 36 55

We have also listed the runtime for executing the original assignment 10°
times. The execution of the reverse vertex elimination derivative code takes 2.5
times longer than the original code. The factor of 5.8 between forward and reverse
suggested by considering the number of flops can nearly be carried over to the
runtime, which exhibits a corresponding factor of 5.3. Reverse mode 1s optimal
in this case by Lemma 3.

For the second example, statement (11), we have compared the results for the
reverse vertex elimination derivative code with the optimal vertex elimination
derivative code (which happens to be equivalent to forward vertex elimination
in this particular case).

Flops | Runtime (sec)
Function 21 43
Optimal 40 51
Reverse 59 66

The operations count suggests a factor of almost 1.5 between optimal and
reverse which cannot be observed when considering the runtime. The reason
may be the fact that the reverse vertex elimination sequence requires only one
additional temporary variable. It is well known that memory accesses are, in
general, more expensive than scalar flops. Therefore they are likely to dominate
the runtime in our examples.

On Optimal Jacobian Accumulation for Single Expression Use Programs 13

We conclude that investigations into optimizing derivative code from the view-
point of memory accesses are very important. In connection with the algorithms
presented in this paper this research is likely to lead to a significant speedup of
the derivative codes generated by next-generation AD software tools.

Acknowledgment

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. M. Bergz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation:
Techniques, Applications, and Tools, Proceedings Series, Philadelphia, 1996. STAM.

2. C. Bischof, A. Carle, P. Khademi, and A. Maurer. The ADIFOR 2.0 system for Automatic
Differentiation of Fortran 77 programs. IEEE Comp. Sci. & Eng., 3(3):18-32, 1996.

3. C. Bischof and M. Haghighat. Hierarchical approaches to Automatic Differentiation. In
[1], pages 82-94, 1996.

4. T. Coleman and A. Verma. Structure and efficient Jacobian calculation. In [1], pages
149-159. STAM, 1996.

5. G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors. Automatic Dif-
ferentiation of Algorithms — From Simulation to Optimization, New York, 2002. Springer.

6. G. Corliss and A. Griewank, editors. Automatic Differentiation: Theory, Implementation,
and Application, Proceedings Series, Philadelphia, 1991. STAM.

7. A. Curtis, M. Powell, and J. Reid. On the estimation of sparse Jacobian matrices. J. Inst.
Math. Appl., 13:117-119, 1974.

8. A. Griewank. FEwvaluating Derivatives. Principles and Techniques of Algorithmic Differ-
entiation. Number 19 in Frontiers in Applied Mathematics. STAM, Philadelphia, 2000.

9. A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule.
In /6], pages 126-135, 1991.

10. P. Hovland and B. Norris. Users’ guide to ADIC 1.1. Technical Memorandum ANL/MCS-
TM-225, Mathematics and Computer Science Division, Argonne National Laboratory,
2001.

11. J. Marshall, C. Hill, L.. Perelman, and A. Adcroft. Hydrostatic, quasi-hydrostatic and
nonhydrostatic ocean modeling. J. Geophysical Research, 102, C3:5,733-5,752, 1997.

12. W. Miller and C. Wrathall. Software for Roundoff Analysis of Matriz Algorithms. Aca-
demic Press, New York, 1980.

13. U. Naumann. Efficient Calculation of Jacobian Matrices by Optimized Application of the
Chain Rule to Computational Graphs. PhD thesis, Technical University Dresden, Feb.
1999.

14. U. Naumann. Elimination techniques for cheap Jacobians. In [5], pages 247-253, 2002.

15. U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Mathematical Programming, 2002. Under review.

16. G. Newsam and J. Ramsdell. Estimation of sparse Jacobian matrices. STAM J. Alg. Dis.
Meth., 4:404-417, 1983.

17. S. Park, K. Droegemeier, and C. Bischof. Automatic differentiation as a tool for sensitivity
analysis of a convective storm in a 3-D cloud model. In [1], pages 205-214. STAM, 1996.

18. M. Tadjouddine, S. Forth, J. Pryce, and J. Reid. Performance issues for vertex elimination
methods in computing Jacobians using Automatic Differentiation. In Proceedings of the
1CCS 2000 Conference, volume 2330 of Springer LNCS, pages 1077-1086, 2002.

19. Jin Tian, Azaria Paz, and Judea Pearl. Finding minimal D-separators. Technical Report
980007, University of California, Los Angeles, 1998.

20. S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Com-
putational Approach. LNCSE. Springer, New York, 1999.

