
Noncontiguous I/O through PVFS

Avery Ching, Alok Choudhary, Wei-keng Liao
Center for Parallel and Distributed Computing

Northwestern University
Evanston, IL 60208

{aching, choudhar, wkliao}@ece.northwestern.edu

Rob Ross and William Gropp
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL, 60439

{rross, gropp}@mcs.anl.gov

Abstract

With the tremendous advances in processor and

memory technology, I/O has risen to become the bottle-
neck in high-performance computing for many applica-
tions. The development of parallel file systems has helped
to ease the performance gap, but I/O still remains an area
needing significant performance improvement. Research
has found that noncontiguous I/O access patterns in scien-
tific applications combined with current file system meth-
ods to perform these accesses lead to unacceptable per-
formance for large data sets. To enhance performance of
noncontiguous I/O, we have created list I/O, a native ver-
sion of noncontiguous I/O. We have used the Parallel
Virtual File System (PVFS) to implement our ideas. Our
research and experimentation shows that list I/O outper-
forms current noncontiguous I/O access methods in most
I/O situations and can substantially enhance the perform-
ance of real-world scientific applications.

1. Introduction

The low cost and scalability of cluster computing
have made it the most popular platform today. Neverthe-
less, as on traditionally massively parallel computers, I/O
remains a challenge. The Parallel Virtual File System
(PVFS), a high-performance parallel file system for Linux
clusters, provides a starting point for I/O solutions in this
environment [2].
 Scientific computing often requires noncontiguous
access of small regions of data [1][4][7][11][12]. Tradi-
tionally, parallel file systems perform multiple contiguous
I/O operations to satisfy these types of requests, resulting
in a large I/O request processing overhead.
 This paper describes a method for high-performance
noncontiguous data access through our implementation
called list I/O. We chose to implement list I/O using
PVFS. This paper presents results from three different
benchmarks: an artificial benchmark, an I/O simulation of
the FLASH code benchmark, and an I/O simulation of a
tiled visualization application. Our results show that in
most cases, list I/O outperforms traditional noncontiguous
methods by up to two orders of magnitude. We first give

an overview of PVFS in Section 2. In section 3 we then
offer an in depth analysis of the noncontiguous I/O prob-
lem. Section 4 describes the machine configuration we
used and our experimental results. Section 5 summarizes
our work and briefly outlines future research.

2. PVFS Overview

To develop optimizations for noncontiguous access,
we used the Parallel Virtual File System to implement our
ideas [2]. PVFS is the leading parallel file system for
Linux cluster computing and has enabled low-cost clusters
of high-performance PCs to address parallel applications
with large-scale I/O needs [6]. An example PVFS system
configuration is shown in Figure 1.

Figure 1. Example PVFS setup. In PVFS, metadata is
stored on the manager node. File data is striped across a
user-specified number of I/O servers. Compute nodes can
directly access I/O servers through the network.

PVFS is a parallel file system that provides high-

speed access to file data for parallel applications. In addi-
tion, PVFS provides a clusterwide consistent name space,
enables user-controlled striping of data across disks on
different I/O nodes, and allows existing binaries to operate
on PVFS files without the need for recompiling. File
striping is illustrated in Figure 2.

Like many other parallel and cluster file systems,
PVFS is designed as a client-server system with multiple
servers, called I/O daemons. I/O daemons typically run on

 1

separate nodes in the cluster, called I/O nodes that have
disks attached to them. PVFS is built on the local file
system, which allows the Linux buffer cache to reduce the
cost of individual local disk operations on the I/O servers.
Each PVFS file is striped across the disks on the I/O
nodes. Application processes interact with PVFS via a
client library or by mounting the file system.

File
Stripe Size

I/O
Server

Data

I/O
Server

Data

I/O
Server

Data

I/O
Server

Data

Figure 2. Example file striping in PVFS. Files in PVFS
can be striped according to user parameters that define
the beginning I/O node, the number of I/O nodes to use,
and the stripe size for data.

PVFS also has a manager daemon that handles only
metadata operations such as file permissions, file size,
striping size, striped data location on disks, etc. When
application processes (clients) open a PVFS file, the
PVFS manager informs them of the locations of the I/O
daemons directly. The manager does not participate in
read/write operations; the client library and the I/O dae-
mons handle all file I/O without the manager’s interven-
tion. This approach helps to minimize the impact of this
potential bottleneck. The clients, I/O daemons, and the
manager need not be run on different machines. How-
ever, running them on different machines will probably
result in higher performance [6]. PVFS also supports
MPI-I/O, the I/O chapter of the Message Passing Interface
(MPI) 2 standard, through use of ROMIO [12].
 By default, users must make multiple requests of
PVFS in order to obtain noncontiguous data, one request
per contiguous region. Thus, the number of contiguous
I/O calls increases linearly with the number of contiguous
regions in the noncontiguous request. We desire to create
support in the file system for optimized noncontiguous
access that significantly reduces the number of I/O re-
quests.

3. Noncontiguous Data Access

Noncontiguous data access is an access that works on
data that is not adjacent within file, memory, or both. The
various types of noncontiguous data access are shown in
Figure 3. One example of contiguous data in memory and

noncontiguous data in file is an application that stores a
two-dimensional array in a file, and then later desires to
read the one element from each column into a contiguous
memory buffer.
 The more interesting of the noncontiguous data ac-
cess patterns are the ones where the file data is noncon-
tiguous. In order to optimize access when the file data is
contiguous, a memory operation can buffer the access so
that data movement is executed in memory and only one
file read/write request is necessary. When the file is non-
contiguous, buffering alone is not adequate. Other meth-
ods must be used to perform a noncontiguous data access
when the file data is noncontiguous.

Noncontiguous in file

Noncontiguous in memory

Noncontiguous in memory and file

Memory

File

Memory

File

Memory

File

Figure 3. Possible noncontiguous data accesses. This
figure shows that noncontiguous data access can refer to
noncontiguity in file, memory, or both.

 Often, studies have concluded that scientific applica-
tions access many small noncontiguous regions of data
from a file [1][4][7][11][12]. If contiguous I/O requests
must be used to perform these data accesses, large over-
head resulting from multiple I/O requests will considera-
bly hurt application run times. MPI-IO allows users to
describe noncontiguous data access patterns but is limited
in its ability to improve application performance if support
for noncontiguous access is not present at the file system
level.
 Current solutions to the noncontiguous access pattern
problem involve calling multiple independent I/O requests
or using “data sieving” I/O techniques to take advantage
of the high transfer rate of larger disk operations [13]. In
this section we describe these two solutions for noncon-
tiguous data access as well as our list I/O solution imple-
mented in PVFS.

 2

3.1 Multiple I/O

The interface to most parallel file systems allows for
access only to a contiguous file region in a single I/O op-
eration. Making multiple I/O operations performs the
required noncontiguous access, as shown in Figure 4, but
does so with a large cost of transmitting and processing
I/O requests as well as many potential disk accesses
(caching on the server side can alleviate this problem).
We refer to this approach of handling noncontiguous ac-
cess as multiple I/O. With thousands of compute nodes
each making thousands of independent I/O operations, I/O
servers must spend many of their CPU cycles processing
new requests instead of delivering I/O to their clients. As
clusters move to thousands or more processors, the I/O
request problem grows worse.

3.2 Data Sieving I/O

Depending on the type of noncontiguous access pat-

tern, “data sieving” may help to perform faster I/O in cer-
tain cases [13]. The data sieving approach handles non-
contiguous access by moving a large region of data from
file to a memory buffer, called the data sieving buffer, and
performing the necessary data movement operations in
memory at the client. An example use of data sieving is
shown in Figure 5 where each I/O request covers several
contiguous data regions. We chose to set the data sieving
buffer at 32 MB for our testing purposes. For noncon-
tiguous writes, using data sieving requires the file system
to do a read-modify-write operation. A large section of
data is read into the data sieving buffer, where the relevant
regions are updated by write requests, and then the large
contiguous section is written back to disk.

The advantage of using data sieving to perform non-
contiguous data accesses is that multiple noncontiguous
accesses can be described by a single I/O request. If the
noncontiguous regions are nearby, the data sieving ap-
proach can eliminate many I/O requests. The data sieving
approach can perform poorly, however, if the noncontigu-
ous regions are far apart on disk. This access pattern will
cause the single disk read to access a large amount of un-
used data that must move over the network. In general,
using data sieving to perform noncontiguous I/O can
benefit the user for noncontiguous access patterns that
have relatively densely packed regions of desired data.

3.3 List I/O

PVFS has traditionally supported only contiguous re-
quests for data. To address the performance problems
inherent in the access patterns of scientific applications,
we have added support for noncontiguous requests in
PVFS. We desired a noncontiguous implementation that

would reduce I/O accesses independent of the actual loca-
tion in file. Based on the interface proposed [12], our
implementation of noncontiguous data access, list I/O,
would need support to describe any noncontiguous I/O
pattern. The I/O servers would require support to process
this request appropriately. The user would view the list
I/O interface as follows:

pvfs_read_list(int mem_list_count,

 char *mem_offsets[],
 char mem_lengths[],
 int file_list_count,
 int file_offsets[],
 int file_lengths[])

(and similarly for pvfs_write_list).

Application

Contiguous
Data Region

Contiguous
Data Region

Contiguous
Data Region

I/O
Request

I/O
Server

I/O
Server

I/O
Server

I/O
Request

I/O
Request

Figure 4. Multiple I/O dataflow for noncontiguous I/O.
In the multiple I/O approach, each noncontiguous data
region requires a separate I/O request that the I/O servers
must process.

Application

Contiguous
Data Region

Contiguous
Data Region

Contiguous
Data Region

I/O
Server

I/O
Server

I/O
Server

I/O
Request

I/O
Request

Contiguous
Data Region

Figure 5. Data sieving I/O dataflow for noncontiguous
I/O. Noncontiguous data regions can sometimes be com-
bined to reduce the number of I/O requests.

 3

 Mem_list_count holds the total number of contiguous
memory locations involved in the noncontiguous access.
Similarly, file_list_count is the corresponding number of
contiguous file locations. Mem_offsets is an array that
references the beginning of each memory region, and the
mem_lengths array matches each of these references with
the corresponding memory lengths. File_offsets and
file_lengths do the same for file regions.

PVFS clients make I/O requests through the PVFS li-
brary. These I/O requests contain information pertaining
to a file (metadata, striping parameters) and can ask the
I/O servers to perform operations such as read, write, open
and close. In order for the I/O request to convey the de-
scription of noncontiguous data, we added another field to
the I/O request structure to let the I/O servers know that a
variable sized trailing data would follow the I/O request.
This trailing data contains the file offsets and file lengths
of the noncontiguous I/O request.

We modified the I/O server code to correctly process
this routine by adding support to receive the trailing data
and complete the I/O accesses. We have chosen to allow
up to 64 contiguous file regions to be described in trailing
data before another I/O request must be issued. There-
fore, I/O requests that contain more file regions than the
trailing data limit are broken up into several list I/O re-
quests. This limit was chosen to allow the I/O request and
trailing data to travel through the network in a single
Ethernet packet (1500 bytes). This is a conservative limit
that allows us to see how this approach might be used in a
real system. Figure 6 illustrates the list I/O execution
flow.

3.4 Analysis of Different Approaches

For multiple I/O and list I/O, disk accesses will vary
if the memory regions align with the file regions. For data
sieving I/O, the number of I/O requests is also dependent
on the location of the physical data.

Multiple I/O has large disadvantages when compared
with other noncontiguous access methods because of the
large number of I/O requests generated by a single non-
contiguous I/O operation. This approach leads to a huge
overhead in transmitting and processing each request.
The best access pattern for multiple I/O is one where there
are only a few contiguous regions of data to be accessed
in both memory and file.

Data sieving I/O can be a very efficient solution be-
cause of the low number of I/O requests for physically
close noncontiguous data. The major disadvantage asso-
ciated with data sieving I/O is the retrieval of useless ac-
cessed data that will have to flow over the network. An-
other slight drawback with data sieving is evident in the
write cases, where read-modify-write must be used if the
file region is noncontiguous. The ideal I/O pattern for

showcasing data sieving I/O is one where there are many
noncontiguous file regions and the gap between two suc-
cessive regions is small.

Application

PVFS Library

Contiguous
Data Region

Contiguous
Data Region

Contiguous
Data Region

I/O
Request

I/O
Server

I/O
Server

I/O
Server

Figure 6. List I/O dataflow for noncontiguous I/O.
Noncontiguous data regions are described in a single I/O
request.

List I/O reduces the number of I/O requests in a non-
contiguous data access by describing multiple file regions
in a single list I/O request. Except for the case when non-
contiguous regions are close enough for data sieving bene-
fits to overcome the advantages of list I/O, list I/O will
perform better than data sieving I/O.

4. Benchmark Overview and Results

This section will describe the tools used to gauge the
performance of the list I/O optimization. We discuss the
machine configuration, benchmarks, parameters that were
chosen, and the experimental results.

4.1 Machine Configuration

We obtained all performance results on the Chiba
City cluster at Argonne National Laboratory [3]. The
cluster was configured as follows at the time of our ex-
periments. There were 256 nodes, each with two 500-
MHz Pentium III processors, 512 Mbytes of RAM, a 9
Gbyte Quantum Atlas IV SCSI disk, a 100 Mbits/sec Intel
EtherExpress Pro fast-ethernet network card operating in
full-duplex mode, and a 64-bit Myrinet card (Revision 3).
We used only the fast Ethernet for our testing purposes.
These nodes are currently using Red Hat 7.1. The kernel
version 2.4.9 was compiled for SMP use. We used vari-

 4

ous compute nodes and 8 PVFS I/O nodes. One of the I/O
nodes doubled as both a manager and an I/O server. For
all of our tests we used the default stripe size of 16,384
bytes.

4.2 Benchmarks

Three types of benchmarks are presented in this pa-
per: an artificial benchmark, a FLASH I/O astrophysics
application, and a tiled visualization I/O application.

4.2.1 Artificial Benchmark

We created an artificial benchmark in order to test the
noncontiguous performance of parallel reads and writes.
We set the aggregate data access at 1 GByte in order to
access a meaningful amount of data and also to have a
baseline comparison. We also kept the I/O nodes constant
at 8, with one doubling as both a manager and an I/O
daemon. The benchmark varies the number of clients, the
number of accesses, and the data access pattern. The data
access patterns used in the benchmark are the one-
dimensional cyclic and the two-dimensional block-block
as shown in Figure 7 and Figure 8, respectively. Increas-
ing the number of accesses further fragments the data ac-
cess, making it more noncontiguous while preserving the
aggregate data size. Changing the number of clients also
determines the fragmentation of data. More clients ac-
cessing the same amount of data means more noncontigu-
ity. The parallel reads and writes were conducted three
times, and the I/O request time was averaged over the
three runs. Because of the large execution time of multi-
ple I/O in the write cases, however, we ran those tests
only once. We decided not to use data sieving I/O with
the parallel writes since data sieving requires a read-
modify-write and therefore requires synchronization in
which only one processor can write at a time in order to
ensure the written data will not encounter any race condi-
tions.

One-Dimensional Cyclic - This access pattern is a vari-
able-grained, interleaved access, where we merge data
from many processes into a single file in a cycling man-
ner. An example of an application that would use this
type of access pattern is one in which there is a global
two-dimensional array and each processor operates on a
region of columns of the array, as shown in Figure 7.

In these tests we vary the block size while maintain-
ing a constant file size. Thus, a decrease in the block size
increases the number of I/O requests for using multiple
I/O. List I/O performance is expected to decrease as the
accesses increase because of the need for additional re-
quests, but not as rapidly as multiple I/O. Since the actual
amount of data read is the same regardless of the number

of accesses, we expect data sieving I/O to perform in a
near constant time throughout the range of accesses. Note
that as we increase the number of clients, data sieving I/O
will be reading more and more useless data because the
fraction of desired data in the accessed region decreases.

Proc 2Proc 1Proc 0 Proc 3

Memory

File

Access Access Access

Two-Dimensional
File View

(Row Major)

= Proc 0 Data

= Proc 1 Data

= Proc 2 Data

= Proc 3 Data

Figure 7. Example one-dimensional cyclic access. An
entire file stores a two-dimensional array and each proc-
essor is in charge of an equal amount of columns. The file
view is also flattened into one-dimension.

Block-Block - This type of access has a data distribution
where a two-dimensional global array is partitioned by
creating a block for every processor and organizing the
blocks as shown in Figure 8. The tile application de-
scribed later in section 4.4.1 uses an access pattern similar
to this one.

4.2.2 Artificial Benchmark Results

 For the one-dimensional cyclic access pattern, we
expect linear results from both multiple I/O and list I/O
since the number of I/O requests will increase linearly
with the number of accesses. Data sieving should perform
slightly better using the block-block access pattern due to
the fact that the useful data is closer, which means access-
ing less impertinent data.

One-Dimensional Cyclic Results - Figure 9 shows that
multiple I/O and list I/O scale linearly with the number of
accesses. As we increase the number of accesses, the
number of contiguous regions also increases, but the size
of each contiguous region becomes smaller. Multiple I/O
has to increase the number of I/O requests for a larger
number of accesses. List I/O must also increase the num-
ber of I/O requests for a larger number of accesses, but at
a slower rate than multiple I/O. Since list I/O can describe
64 file offsets and lengths in a single I/O request, list I/O
will not be as affected as multiple I/O by a larger number
of accesses.

 5

 We also notice that data sieving I/O stays fairly con-
stant among any number of accesses for a fixed number of
clients. This is because data sieving is moving the same
amount of data in all of those cases. Also as expected, the
time nearly doubles with data sieving I/O when the clients
double due to the doubling of impertinent data read by
each client (since each client now only has half as much
relevant data in the same overall file region).

Proc 2Proc 1Proc 0 Proc 3

Memory

File

Accesses

= Proc 0 Data

= Proc 1 Data

= Proc 2 Data

= Proc 3 Data

Two-Dimensional
File View

(Row Major)

Figure 8. Example block-block access. An entire file
stores a two-dimensional array of blocks, and each proc-
essor is in charge of a single block. The file view has
been flattened into 1-dimension.

 The write performance illustrated in Figure 10 for the
one-dimensional cyclic access pattern is very poor for
multiple I/O. Throughout most of the figures we can see

that list I/O and multiple I/O have a performance gap of
nearly two orders of magnitude. Both list I/O and multi-
ple I/O performance degrades with the number of accesses
but maintain their two order magnitude difference.

Block-Block Results - The results described in Figure 11
in the block-block read tests showed the trend expected
for multiple I/O and data sieving I/O. Multiple I/O in-
creases at a linear rate with the number of accesses while
data sieving I/O remains nearly constant among the range
of accesses.

List I/O performs unusually in the evaluation of 9 and
16 client block-block reads. When using 4 clients to read
a file in a block-block distribution, list I/O scales up line-
arly with the number of accesses. However, we note that
in Figure 11 for 9 and 16 clients, the list I/O curve sharply
turns upward at some number of accesses. For 9 clients,
each access is of size (1024*1024*1024 bytes)/(9 cli-
ents)/(800,000 accesses) ≈ 149 bytes/access at the turning
point. Due to the block-block access pattern, each client
heavily uses only a fraction of all the I/O servers, unlike
the one-dimensional cyclic access pattern, which distrib-
utes a compute node’s I/O load over all the I/O servers.
Increasing the number of accesses for the block-block
access pattern doesn’t spread out the load as in the one-
dimensional cyclic case. We observed the greater in-
crease of list I/O with the number of accesses in the block-
block access pattern at about 150 bytes/access for both the
9 client and 16 client cases.

One-Dimensional Cyclic Read - 8 clients

0
100
200
300
400
500
600
700
800

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O

One-Dimensional Cyclic Read - 16 clients

0
100
200
300
400
500
600
700
800

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O

One-Dimensional Cyclic Read - 32 nodes

0
100
200
300
400
500
600
700
800

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O

Figure 9: One-dimensional cyclic read results with various clients. These results are obtained by using 8-32 clients
reading data with the one-dimensional cyclic file access pattern.

One-Dimensional Cyclic Write - 8 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O

One-Dimensional Cyclic Write - 16 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O

One-Dimensional Cyclic Write - 32 nodes

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O

Figure 10: One-dimensional cyclic write results with various clients. These results are obtained by using 8-32 clients
writing data with the one-dimensional cyclic file access pattern.

 6

Block-Block Read - 4 clients

0
100
200
300
400
500
600
700

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O

Block-Block Read - 9 clients

0
100
200
300
400
500
600
700

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O

Block-Block Read - 16 clients

0
100
200
300
400
500
600
700

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O Data Sieving I/O List I/O
Figure 11. Block-block read results with various clients. These results are obtained by using 4-16 clients reading data
with the block-block file access pattern.

Block-Block Write - 4 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O

Block-Block Write - 9 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O

Block-Block Write - 16 clients

1

10

100

1000

10000

100000

0 200000 400000 600000 800000 1000000

Number of Accesses

Ti
m

e
(s

ec
on

ds
)

Multiple I/O List I/O
Figure 12. Block-block write results with various clients. These results are obtained by using 4-16 clients reading data
with the block-block file access pattern.

A comparison between the 16 node cases in Figure 9
and Figure 11 show that the data sieving I/O times are
reduced. The reason is that the data sieving I/O accesses
less irrelevant data using the block-block access pattern.
 Figure 12 shows that the block-block write results
perform similar to the one-dimensional cyclic write results
for multiple I/O and list I/O. As the number of accesses
increases, multiple I/O and list I/O run times increase
while maintaining the two orders of magnitude difference.
The trend follows the results of the writes of the one-
dimensional cyclic case.

4.3.1 FLASH I/O Benchmark

The FLASH code is an adaptive mesh refinement ap-
plication that solves fully compressible, reactive hydrody-
namic equations, developed mainly for the study of nu-
clear flashes on neutron stars and white dwarfs [5]. The
I/O requirement for such an application often accounts for
much of the running time. Instead of running the entire
FLASH code, we simulate the I/O checkpoint writes
where the element data in every block on every processor
is written to file by using PVFS library calls. The access
pattern of the FLASH code is noncontiguous both in
memory and in file, making it a challenging application
for parallel I/O systems. The FLASH memory structure
consists of 80 FLASH three-dimensional blocks, or cells
in the refined mesh, on each processor. Every block con-
tains an inner data block surrounded by guard cells. Each
of these data elements has 24 variables associated with it.
Every processor writes these blocks to a file in a manner

such that the file appears as the data for variable 0, then
the data for variable 1, all the way up to variable 23.
Within each variable, there exist 80 blocks, each of these
blocks containing all the FLASH blocks from every proc-
essor [8]. The memory distribution is sketched in Figure
13, and the file hierarchy is explained in Figure 14.
 The variable parameter in our implementation of the
FLASH I/O benchmark is the number of clients. We var-
ied the number of clients in the FLASH I/O benchmark
while holding the other parameters consistent with the
FLASH defined parameters. We ran each test once for 4-
32 clients and used each noncontiguous method.
 Each contiguous memory region is only the size of a
double (8 bytes). In file, however, the contiguous regions
are (8 x-elements)*(8 y-elements)*(8 z-
elements)*(sizeofdouble) = 4096 bytes.

The FLASH I/O code is worst for multiple I/O. The
number of I/O requests for multiple I/O = (80 blocks)*(8
x-elements)*(8 y-elements)*(8 z-elements)*(24 variables)
= 983,040 I/O requests / processor. Our implementation
of list I/O can do a little better, since list I/O describes the
file regions, list I/O can reduce the amount of I/O requests
to (80 blocks)*(24 variables)/64 = 30 I/O re-
quests/processor, given the limit we placed on the number
of regions described in a single request. Data sieving I/O
can easily provide the fewest amount of requests, since the
data size is only (80 blocks)*(8 x-elements)*(8 y-
elements)*(8 z-elements)*(24 variables)*(sizeofdouble) =
7,864,320 bytes/processor (which is smaller than our data
sieving buffer size of 32 MB), we need to make only one
I/O request/processor. Data sieving writes, however, have

 7

the property that if multiple processors are writing to the
same file and the file cannot be locked, there may be a
chance of a race condition producing unpredictable re-
sults. Since there is no file locking mechanism in PVFS,
we used an MPI_Barrier() to serialize access between
processor data sieving writes. We implemented this
through a for loop and a barrier so that during every itera-
tion of the for loop, only one of the processors will write
and then synchronize and then another processor will
write and then synchronize until all the processors have
written their data to file.

X-Axis

Y-Axis

Z-Axis

FLASH block structure

Variable 0

Variable 1

Variable 2

Variable 23

Blocks to
access in

X-axis

Blocks to
access in

Y-axis

Guard Cells

Cut a slice
of the block Each element

has 24 variables

Memory Organization

Figure 13. FLASH memory organization. Each proces-
sor holds 80 FLASH blocks. Each of these blocks com-
prises a 8x8x8 cube of elements surrounded by guard
cells. Within every element of data there are 24 double
sized variables. As we scale up the number of processors,
the total amount of data scales up as well.

4.3.2 FLASH I/O Benchmark Results

In our FLASH I/O tests, the data size per compute
process was fixed, while the number of compute processes
was varied from 2 to 32. The file size increases linearly
with the number of compute processes. Every additional

compute node adds an additional 7.5 MBytes to the file.
We held all other parameters consistent with the actual
FLASH code. As described in Section 4.3.1, we expect
data sieving to perform the best in this environment.

0 1 2 3 4 5 6 7Y

0 1 2 3 4 5 6 7Z

0 1 2 3 4 5 6 7X

Var 0 Var 1 Var 2 Var 23

Block 0 Block 1 Block 2 Block 79

Proc 0 Proc 1 Proc 2 Proc N

File Organization

Figure 14. FLASH file organization. The FLASH file
organization is much different from the memory organiza-
tion. At the highest level of viewing the file, all of the
variable 0’s are contiguous, then the variable 1’s, etc.
Within the chunk of a variable, there are 80 FLASH
blocks. Every block contains the pertinent FLASH block
from every processor.

The FLASH I/O test highlights the power of the data

sieving optimization. By combining I/O requests through
buffering, we expect performance significantly better than
list I/O and many orders of magnitude better than multiple
I/O, both of which fail under the sheer number of noncon-
tiguous regions. Because of the read-modify-write access
method of data sieving I/O writes, file access must be se-
rialized across compute processes. Again, we imple-
mented these semantics through MPI_Barrier(), which
should slow data sieving I/O performance slightly.
 Multiple I/O and list I/O performed fairly consistently
regardless of the number of clients, since PVFS scales
without problems for these numbers of clients. Data siev-
ing I/O time increases with the number of clients because
of the file synchronization and a growing amount of use-
less data being accessed. Since a larger number of clients
means more separation of useful data, data sieving I/O

 8

will not be as effective as when the relevant data was
closer together.
 Figure 15 shows the considerable impact of large
amounts of I/O requests in the multiple I/O results. List
I/O is approximately two orders of magnitude slower than
data sieving I/O and a little over one order of magnitude
faster than multiple I/O. The FLASH I/O results show
that data sieving I/O can be very useful for this type of
access pattern. Since multiple I/O requires so many small
I/O requests, it cannot compete with data sieving I/O. List
I/O also has the problem of a large number of small I/O
accesses, but to a lesser degree.

Flash I/O Benchmark

1

10

100

1000

10000

100000

Multiple I/O Datasieve I/O List I/O

Method of Noncontiguous Access

Ti
m

e
(s

ec
on

ds
)

2 clients 4 clients 8 clients 16 clients 32 clients
Figure 15. FLASH I/O results. This test shows that even
with the file locking slowdown, data sieving I/O can easily
outperform the other two noncontiguous methods.

4.4.1 Tiled Visualization I/O

 The tiled visualization code takes display files and
divides them into blocks of files, creating an array of dis-
plays. This type of display division is useful for viewing
high-resolution playback on a larger screen by using more
displays. In our benchmark, we implement the I/O por-
tion of the code in terms of PVFS library calls, where
multiple compute nodes read a single file and each node
accesses a part of that data in the pattern shown in Figure
16. We monitor the time to take a large display file and
read the relevant tile data to each respective node.

For our tests, we used 6 compute nodes along with
the 8 node PVFS setup. The parameters were a 3 x 2 dis-
play with each display rendering 1024 x 768 with 24 bit
color. Between the displays there was a 270 pixel hori-
zontal overlap and a 128 pixel vertical overlap, bringing
the file size to about 10.2 MBytes. Each test was run
three times and the data was averaged.
 In the tiled visualization I/O code, we expect that the
list I/O code will outperform the other noncontiguous
methods. Since file access is noncontiguous (but each
chunk is fairly large) and the memory is contiguous, list
I/O will need to perform a minimal number of I/O re-

quests (768/64 = 12). Multiple I/O requires 768 I/O re-
quests because of its description of only a contiguous re-
gion. Data sieving I/O should perform reasonably, but in
this case the client will end up using only a fraction (1 /
number of tiles in the x direction, for this case 1/3) of the
actual data read.

Figure 16. Tiled visualization I/O access pattern. Each
processor holds a “tile” of the actual file. The file is or-
ganized in a row major order. For this example, the be-
ginning of the file would be proc 0 data, proc 1 data,
proc2 data, then proc 0 data, proc 1 data, proc 2 data,
etc.

4.4.2 Tiled Visualization I/O Benchmark Results

 The tiled visualization access pattern is actually very
similar to the one tested in the artificial benchmark in the
block-block case. As we expected, we see that list I/O is
able to perform more than twice as well as either of the
other two methods.

Tiled Visualization I/O - 6 clients

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Multiple I/O Data Sieving I/O List I/O

Method of NonContiguous Access

Ti
m

e
(s

ec
on

ds
)

Open Time Read Time Close Time
Figure 17. Results of the tiled visualization I/O bench-
mark with 6 clients. In this benchmark, we indicate the
time to open the file, have each processor perform the
read, and the close file time.

5. Conclusion

 Our experimental results have shown that list I/O can
perform noncontiguous data access much faster than tradi-

 9

tional methods for some significant workloads. In situa-
tions where most of the noncontiguous regions are close
together, data sieving produces better results. Overall,
multiple I/O should not be considered for large-scale sci-
entific applications with noncontiguous accesses patterns.
 A combination of the list I/O and data sieving ap-
proaches could provide a hybrid solution that would be
applicable over a larger range of access patterns. More
research should be conducted on ways to use data sieving
techniques in conjunction with the list I/O implementa-
tion. For example, if two noncontiguous regions are close
to each other, a data sieving operation may take place for
just those particular regions. Determining such a case
may, however, require more complex software design and
suffer considerable overhead.

Even more interesting is the possibility of using more
descriptive languages for identifying requested regions.
In all of our tests, the access patterns are regular. Support
for I/O requests that use an approach similar to MPI
datatypes, for example, would describe these patterns with
vector datatypes. This would eliminate the linear relation-
ship between the number of contiguous regions and the
number of I/O requests. By doing so, the largest draw-
back of the list I/O approach could be avoided.

Acknowledgments

This project was sponsored by the Scientific Data
Management Center of the DOE SCIDAC program, the
DOE ASCI program and a grant from the National Sci-
ence Foundation. We also enjoyed the support of the
Mathematical, Information and Computational Sciences
Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

References

[1] S. Baylor and C. Wu. Parallel I/O Workload Characteristics

Using Vesta. In R. Jain, J. Werth, and J. Browne, editors,
Input/Output in Parallel and Distributed Computer Systems,
chapter 7, pages 167-185. Kluwer Academic Publishers,
1996.

[2] P. Carns, W. Ligon III, R. Ross, and R. Thakur. PVFS: A
Parallel File System for Linux Clusters. In Proc. of the
Third Annual Linux Showcase and Conference, pages 317-
327, Atlanta, GA, October 2000. USENIX Association.

[3] Chiba City, the Argonne scalable cluster.
http://www.mcs.anl.gov/chiba.

[4] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input-Output
Characteristics of Scalable Parallel Applications. In Pro-
ceedings of Supercomputing '95. ACM Press, 1995.

[5] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale,
D. Q. Lamb, P. MacNeice, R. Rosner, and H. Tufo.
FLASH: An Adaptive-Mesh Hydrodynamics Code for

Modeling Astrophysical Thermonuclear Flashes. Astro-
physical Journal Suppliment, 131:273, 2000.

[6] W. B. Ligon III and R. B. Ross. Implementation and Per-
formance of a Parallel File System for High Performance
Distributed Applications. In Proceedings of the Fifth IEEE
International Symposium on High Performance Distributed
Computing, pages 471-480, IEEE Computer Society Press,
1996.

[7] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M.
Best. File-Access Characteristics of Parallel Scientific
Workloads. IEEE Transactions on Parallel and Distributed
Systems, 7(10):1075-1089, October 1996.

[8] R. B. Ross, D. Nurmi, A. Cheng, and M. Zingale. A Case
Study in Application I/O on Linux Clusters. Proceedings of
SC2001, Denver, CO, November 2001.

[9] J. M. del Rosario and A. Choudhary. High Performance
I/O for Parallel Computers: Problems and Prospects. IEEE
Computer, pages 59-68, March 1994.

[10] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O Require-
ments of Scientific Applications: An Evolutionary View. In
Proceedings of the Fifth IEEE International Symposium on
High Performance Distributed Computing, pages 49-59.
IEEE Computer Society Press, 1996.

[11] R. Thakur, W. Gropp, and W. Lusk. Data Sieving and Col-
lective I/O in ROMIO. In Proc. of the Seventh Symposium
on the Frontiers of Massively Parallel Computation, pages
182-189, 1999.

[12] R. Thakur, W. Gropp, and W. Lusk. On Implementing
MPI-IO Portably and with High Performance. In Proc. of
the Sixth Workshop on Input/Output I Parallel Distributed
Systems, pages 23-32, 1999.

[13] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S.
Kuditipudi. Passion: Optimized I/O for Parallel Applica-
tions. IEEE Computer, 29(6):70–78, 1996.

 10

http://www.mcs.anl.gov/chiba

	Noncontiguous I/O through PVFS
	
	
	Abstract

	Introduction
	PVFS Overview
	Noncontiguous Data Access
	Benchmark Overview and Results
	Conclusion
	Acknowledgments
	References

