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Abstract. Acceleration–force setups for multi-rigid-body dynamics are known to be inconsistent for some
configurations and sufficiently large friction coefficients (a Painleve paradox). This difficulty is circumvented
by time-stepping methods using impulse-velocity approaches, which solve complementarity problems with
possibly nonconvex solution sets. We show that very simple configurations involving two bodies may have a
nonconvex solution set for any nonzero value of the friction coefficient. We construct two fixed-point iteration
algorithms that solve convex subproblems and that are guaranteed, for sufficiently small friction coefficients,
to retrieve, at a linear convergence rate, the unique velocity solution of the nonconvex linear complementarity
problem whenever the frictionless configuration can be disassembled. In addition, we show that one step of
one of the iterative algorithms provides an excellent approximation to the velocity solution of the original,
possibly nonconvex, problem if for all contacts we have that either the friction coefficient is small or the slip
velocity is small.

Subject Index 70E55, 75M10, 75M15, 90C33

1. Introduction

Multi-rigid-body dynamics with contact and friction is fundamental for virtual reality
and robotics simulations. However, the Coulomb model for friction poses several obsta-
cles in the path of efficient simulation. The classical acceleration-force approach does
not necessarily have a solution even in the simple case of a rod in contact with a table
top at high friction [30, 29]. Recently, time-stepping methods have been developed in
an impulse-velocity framework that avoid the inconsistencies that may appear in the
classical approach [6, 8, 29, 30]. These methods can be modified to accommodate the
most common types of stiffness [7] and are currently investigated in animation [11]
and robotics applications [22]. When there is no friction, these time-stepping algorithms
solve, at every step, a linear complementarity problem that represents the optimality
conditions for a convex quadratic program. When the friction coefficients are nonzero,
however, this interpretation is lost and there is no obvious way to guarantee that the
solution set is convex, even for small friction coefficients.

In this 1 work we show, with an example, that even a one body on a tabletop configu-
ration may have a nonconvex solution set for arbitrarily small friction coefficients. This
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is unfortunate, because it seems to indicate that the linear complementarity problem may
be hard to solve even for arbitrarily small friction coefficients.

Nevertheless, we show that, for sufficiently small coefficients, the velocity solution
is unique whenever the frictionless configuration can be disassembled. The key obser-
vation is that, for small friction coefficients at the contacts, the unknown velocity is a
fixed point of two contraction mappings. To evaluate the mappings, one needs to solve
only one or two convex linear complementarity subproblems (which are the optimality
conditions for some convex quadratic program). Therefore, the associated fixed-point
iterations have relatively low complexity per iteration.

Several other approaches in computational contact mechanics have a fixed-point
iteration flavor where convex subproblems are used to compute the values of the con-
traction mapping [10, 15, 17, 24, 25]. These approaches evaluate successively the normal
force keeping the tangential force fixed and then the tangential force keeping the normal
force fixed. The approaches rely fundamentally on the uniqueness of the interaction
force for a given configuration, a property that does not hold for our example. So the
fixed-point iteration schemes that we propose, which are velocity based, have a broader
scope than such force-based iteration methods since they do not require the uniqueness
of the interaction force or impulse.

2. The linear complementarity subproblem of the time-stepping scheme

In the following q and, respectively, v constitute the generalized position and, respec-
tively, generalized velocity vector of a system of several bodies [18].

2.1. Model constraints

Our approach covers several types of constraints.

Joint constraints. Such constraints are described by the equations

�(i)(q) = 0, i = 1, 2, . . . , m . (2.1)

Here, �(i)(q) are sufficiently smooth functions. We denote by ν(i)(q) the gradient of the
corresponding function, or

ν(i)(q) = ∇q�
(i)(q), i = 1, 2, . . . , m.

The impulse exerted by a joint on the system is c(i)ν ν(i)(q), where c(i)ν is a scalar related
to the Lagrange multiplier of classical constrained dynamics [18].

Noninterpenetration constraints. These constraints are defined in terms of a continu-
ous signed distance function between the two bodies �(q) [2]. The noninterpenetration
constraints become

�(j)(q) ≥ 0, j = 1, 2, . . . , p. (2.2)
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The function �(q) is generally not differentiable, especially when the bodies have flat
surfaces. Usually, this situation is remediable by considering different geometric prim-
itives [13] that result in noninterpenetration constraints being expressed in terms of
several inequalities involving differentiable functions �(q). In the following, we may
refer to (j) as the contact (j), though the contact is truly active only when �(j)(q) = 0.
We denote the normal at contact (j) by

n(j)(q) = ∇q�
(j)(q), j = 1, 2, . . . , p. (2.3)

When the contact is active, it can exert a compressive normal impulse, c(j)n n(j)(q) on
the system, which is quantified by requiring c

(j)
n ≥ 0. The fact that the contact must be

active before a nonzero compression impulse can act is expressed by the complemen-
tarity constraint

�(j)(q) ≥ 0,

c
(j)
n ≥ 0, j = 1, 2, . . . , p,

�(j)(q)c
(j)
n = 0.

(2.4)

Frictional constraints. These are expressed by means of a discretization of the fric-
tion cone [7, 6, 30]. For a contact j , we take a collection of coplanar vectors di(q),
i = 1, 2, . . . , mC , which span the plane tangent at the contact (though the plane may
cease to be tangent to the contact normal when mapped in generalized coordinates [2]).
The cover of the vectors di(q) should approximate the transversal shape of the friction
cone. In two-dimensional mechanics, the tangent plane is one dimensional, its transver-
sal shape is a segment, and only two such vectors d1(q) and d2(q) are needed in this
formulation. We denote by D(q) a matrix whose columns are di(q), i = 1, 2, . . . , mC ,
or D(q) = [

d1(q), d2(q), . . . , dmC
(q)

]
. A tangential impulse is

∑mC

i=1 βidi(q), where
βi ≥ 0, i = 1, 2, . . . , mC . We assume that the tangential contact description is sym-
metric, that is, that for any i there exists a j such that di(q) = −dj (q).

The friction model ensures maximum dissipation for given normal impulse cn and
velocity v and guarantees that the total contact force is inside the discretized cone. We
express this model as

D(q)T v + λe ≥ 0 ⊥ β ≥ 0,
µcn − eT β ≥ 0 ⊥ λ ≥ 0.

(2.5)

Here e is a vector of ones of dimension mC , e = (1, 1, . . . , 1)T , µ is the friction param-
eter, and β is the vector of tangential forces β = (

β1, β2, . . . , βmC

)
. The additional

variable λ is approximately equal to the norm of the tangential velocity at the contact,
if there is relative motion at the contact, or ‖D(q)T v‖ 	= 0 [6, 30].

Notations. We denote by M(q) the symmetric, positive definite, mass matrix of the sys-
tem in the generalized coordinates q and by k(t, q, v) the external force. All quantities
described in this section associated with contact j are denoted by the superscript (j).
When we use a vector or matrix norm whose index is not specified, it is the 2-norm.
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2.2. The linear complementarity problem

To include these constraints in a time-stepping scheme, we formulate all geometrical
constraints at the velocity level by linearization. To this end we assume that at the current
time step we have exact feasibility of the noninterpenetration and joint constraints. This
assumption can be practically satisfied if at the end of each integration step we do a pro-
jection onto the feasible manifold [7]. Projection methods have been successfully used
for constraint stabilization for differential algebraic equations, and can be shown to not
affect the order of convergence [9]. For finite time steps, however, projection methods
could have the unfortunate side effect of substantially altering the energy of the system,
when stiff forces are present. Nevertheless, for the special (and very common) case of
stiff forces originating in springs and dampers, we have shown that the projection method
can be modified by including constraints that depend on the spring configuration in such
a fashion that stiffness is accommodated and the energy balance of the time-stepping
scheme is not altered [7].

Let h be the time step. If, at some time t (l), the system is at position q(l) and veloc-
ity v(l), then we choose the new position to be q(l+1) = q(l) + hv(l+1), where v(l+1)

is determined by enforcing the simulation constraints. For joint constraints the linear-
ization leads to ∇q�

(i)T (q(l))v(l+1) = ν(i)
T
(q(l))v(l+1) = 0 for i = 1, 2, . . . , m. For

noninterpenetration constraint j , �(j)(q) ≥ 0, where j = 1, 2, . . . , p, linearization at
q(l) for one time step amounts to �(j)(q(l)) + h∇q�

(j)T (q(l))v(l+1) ≥ 0, that is,

n(j)
T

(q(l))v(l+1) + �(j)(q(l))

h
= ∇q�

(j)T (q(l))v(l+1) + �(j)(q(l))

h
≥ 0. (2.6)

Since we assume that at step (l) all geometrical constraints are satisfied, this implies

that �(j)(q(l))
h

≥ 0. For computational efficiency, only the contacts that are imminently
active are included in the dynamical resolution and linearized, and their set is denoted
by A. One practical way of determining A is by including all j for which �(j)(q) ≤ δ,
where δ is a sufficiently small quantity, perhaps dependent on the size of the velocity.

If a contact j switches from inactive to active (the corresponding c
(j)
n is positive),

a collision resolution, possibly with energy restitution, needs to be applied [6]. In this
work we consider only totally plastic collisions, where no energy lost during collision is
restituted. Therefore we avoid the need to consider a compression followed by decom-
pression linear complementarity problem, as is done in certain approaches [6].

After collecting all the constraints introduced above, with the geometrical constraints
replaced by their linearized versions, we obtain the following mixed linear complemen-
tarity problem.


M(l) −ν̃ −ñ −D̃ 0
ν̃T 0 0 0 0
ñT 0 0 0 0
D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0



v(l+1)

cν
cn
β̃

λ

+


−Mv(l) − hk(l)

0
�

0
0

 =


0
0
ρ

σ̃

ζ

 (2.7)
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 cn
β̃

λ

T  ρ

σ̃

ζ

 = 0,

 cn
β̃

λ

 ≥ 0,

 ρ

σ̃

ζ

 ≥ 0 . (2.8)

Here ν̃ = [ν(1), ν(2), . . . , ν(m)], cν = [c(1)ν , c
(2)
ν , . . . , c

(m)
ν ]T , ñ = [n(j1), n(j1), . . . , n(js )],

cn = [c(j1)
n , c

(j2)
n , . . . , c

(js )
n ]T , β̃ = [β(j1)T , β(j2)T , . . . , β(js )T ], D̃ = [D(j1), D(j2), . . . ,

D(js)],λ = [λ(j1), λ(j2), . . . , λ(js )], µ̃ = diag(µ(j1), µ(j2), . . . , µ(js))T ,� = 1
h

(
�(j1),

�(j2), . . . , �(js)
)T

and

Ẽ =


e(j1) 0 0 · · · 0

0 e(j2) 0 · · · 0
...

...
...

...
...

0 0 0 · · · e(js )


are the lumped LCP data, and A = {j1, j2, . . . , js} are the active contact constraints. The
vector inequalities in (2.8) are to be understood component wise. We use the ˜notation
to indicate that the quantity is obtained by properly adjoining blocks that are relevant to
the aggregate joint or contact constraints.

To simplify the presentation we do not explicitly include the dependence of the geo-
metrical parameters on the data of the simulation. Also M(l) = M(q(l)) is the mass ma-
trix, which from our assumption is positive definite, for any l , and k(l) = k(t(l), q(l), v(l))

represents the external force at time (l). Note that, since � ≥ 0, the results from [6] can
be applied to show that the above linear complementarity problem is guaranteed to have
a solution, without any further assumptions. For the case where the pointed friction cone
assumption holds, very general existence results (that do not necessarily require � ≥ 0)
can be obtained from [26].

2.3. Background

To establish our convergence results, we use several previous results, some of which we
include in this section for completeness.

2.3.1. Pointed friction cone. To obtain good properties of this new mixed linear com-
plementarity problem and a good approximation of the original mixed linear comple-
mentarity problem (2.7–2.8), we make a friction cone regularity assumption. We define
the friction cone to be the portion in the configuration space that can be covered by
feasible constraint interaction forces, or

FC(q) =
{
t = ν̃cν + ñcn + D̃β̃

∣∣∣cn ≥ 0, β̃ ≥ 0, ‖β(j)‖1 ≤ µ(j)c
(j)
n , ∀j ∈ A

}
.

(2.9)

Clearly, the cone FC(q) is a convex set.



6 M. Anitescu, G.D. Hart

Definition.

We say that FC(q) is pointed ⇔ ∀
(
cν, cn ≥ 0, β̃ ≥ 0

)
	= 0

such that ‖β(j)‖1 ≤ µ(j)c
(j)
n , ∀j ∈ A

we must have that ν̃cν + ñcn + D̃β̃ 	= 0.

(2.10)

For the case where the geometrical constraints consist only of noninterpenetration
constraints, this definition is equivalent to requiring that FC(q) contain no proper linear
subspace [29]. The pointed friction cone assumption is essential in ensuring that the lim-
its of the solutions of the time-stepping scheme (2.7–2.8) converge to a weak solution
of the continuous problem [29].

Of particular interest is the description of the pointedness of the friction cone when
the friction coefficients are zero, that is µ̃ = 0. Using duality as in the relationship
between MFCQ and (2.13), we can see that the set of friction coefficients diag (µ̃) for
which the friction cone is pointed forms an open set. Therefore, pointedness of the fric-
tion cone for the frictionless case µ̃ = 0 also implies pointedness of the friction cone
for small values of the friction coefficients. This observation is essential in stating our
small friction results.

It is also of interest to write an alternative description of the pointedness of the fric-
tion cone for the frictionless case. By specializing (2.10) for the case where µ̃ = 0, we
obtain

ñcn + ν̃cν = 0, cn ≥ 0 ⇒ cn = 0, cν = 0. (2.11)

Using duality in the same way we did to uncover the relationship between MFCQ and
(2.13), we can determine that this description is equivalent to the joint constraint matrix
ν̃ having linearly independent columns and

∃v such that ν̃T v = 0 and ñT v > 0.

The latest condition means that the rigid body configuration can be disassembled [3]:
there exists an external force that breaks all contacts while keeping feasibility of the joint
constraints. This condition can be established visually for most simple configurations.

2.3.2. Lipschitz stability of strictly convex quadratic programs. In this work, we use
several well-known results concerning Lipschitz stability of the solution of strictly con-
vex quadratic programs with respect to perturbation parameters. Some of these results
are stated through similar properties of nonlinear programs.

For a nonlinear program depending on parameters a,

minx f (x, a)

subject to gi(x, a) ≤ 0 i = 1, 2, . . . , m
hj (x, a) = 0 j = 1, 2, . . . , r

(2.12)

the key to obtaining Lipschitz continuity results of the solution x∗ as a function of a is
to have a constraint qualification at the solution.

At a point x (which may be infeasible) we denote by B the active set:

B(x, a) = {i = 1, 2, . . . , m|gi(x, a) ≥ 0} .
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We say that (2.12) satisfies the Mangasarian-Fromovitz constraint qualification at x
if [20, 21]

(MFCQ)

1. ∇xhj (x, a), j = 1, 2, . . . , r, are linearly independent and
2. ∃p 	= 0 such that ∇xhj (x, a)

T p = 0, j = 1, 2, . . . , r

and ∇xgi(x, a)
T p < 0, i ∈ B(x, a).

A very useful characterization of the case when MFCQ does not hold is given by an
alternative theorem [12], which states that MFCQ does not hold at a point x for NLP if
and only if

∃0 	= (η, ζ ) ∈ RI m × RI r, η ≥ 0; ηi = 0, η /∈ B(x, a) such that∑
i∈B(x,a) ηi∇xgi(x, a) +∑r

j=1 ζj∇xhj (x, a) = 0. (2.13)

The key result we use here is due to Robinson [27]. If MFCQ and certain strong
second-order conditions hold (which are satisfied by quadratic programs with a sym-
metric positive definite matrix) at a solution x∗ for a choice of parameters a0, then there
exist a parameter L, a neighborhood V(x∗) of x∗ and V(a0) of a0 such that for any
a ∈ V(a0) the nonlinear program (2.12) has a unique solution x(a) ∈ V(x∗) and for any
a1, a2 ∈ V(a0) we have

‖x(a1) − x(a2)‖ ≤ L‖a1 − a2‖.
Solutions with this property are said to be locally Lipschitz continuous.

The Lipschitz continuity property can subsequently be strengthened even in the
absence of MFCQ for quadratic programs that are perturbed only in the right-hand side
of the constraints [12, Problem 7.6.10]

Theorem 1. Consider the quadratic program

minimize qT x + 1
2x

TQx

subject to Ax ≥ a

Bx = b

where the matrix Q is assumed symmetric positive definite. Let x(q, a, b) denote the
unique solution of this quadratic program if it exists. Then there exists a parameter
L ≥ 0 such that for any two pairs of vectors (q, a, b) and (q ′, a′, b′), we have

‖x(q, a, b) − x(q ′, a′, b′)‖ ≤ L‖(q, a, b) − (q ′, a′, b′)‖,
if both x(q, a, b) and x(q ′, a′, b′) exist.

3. An example of configuration with nonconvex solution set

If the friction coefficients are µ(j) = 0, j ∈ A, then the mixed linear complementarity
problem (2.7–2.8) has a positive semidefinite matrix and can be shown to always have
a convex solution set. Such mixed linear complementarity problems can be solved in a
time that is polynomial with respect to the problem size [5]. Polynomial complexity is
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almost always associated with the convexity of the solution set of (2.7–2.8), which, as
we now show, may not occur for any positive friction coefficients.

Consider the configuration in Figure 1, where a body of mass m, shaped like a hex-
agonal pyramid, is in contact with a fixed tabletop (whose edges are not shown) in the
position shown, for which we are going to set up the linear complementarity problem
(2.7–2.8). In the following description we represent all relevant vectors with respect
to the three-dimensional space. The generalized coordinates [18] consist of the three
translational coordinates and three rotational coordinates of the body about its center of
mass C.

The contact configuration is represented by six point-on-plane contact constraints
[2], one for each corner of the pyramid in contact with the tabletop. The friction coeffi-
cient µ is the same for all contact constraints. At each corner, we use a four-faceted
pyramidal approximation of the friction cone (m(j)

C = 4, j = 1, 2, . . . , 6). The direc-
tions used for the pyramidal approximation of the friction cone are w1 = (1, 0, 0)T and
w2 = (0, 1, 0)T . The normal at each contact in global coordinates is n = (0, 0, 1)T .
From the center of mass C we have six vectors, p(j), j = 1, 2, . . . , 6, pointing toward
the six bottom vertices of the pyramid and whose projection on the contact plane between
the pyramid and the tabletop are r(j), j = 1, 2, . . . , 6. Note that p(j) × n = r(j) × n,
for j = 1, 2, . . . , 6, where × denotes the vector product. We assume that the bottom of
the pyramid is a regular hexagon, which means that we have

r(1) + r(3) + r(5) = 0, r(2) + r(4) + r(6) = 0. (3.14)

We now construct the generalized representations of the vectors that are normal and
tangent to the contacts in global coordinates. We have that [2] (refer to Section 2 for the
choice of notation)

n(j) =
(

n

r(j) × n

)
,

d
(j)
i =

(
wi

p(j) × wi

)
, d

(j)
i+2 = −d

(j)
i , i = 1, 2, j = 1, 2, . . . , 6. (3.15)

From the expression of the generalized normals and (3.14) we obtain

n(1) + n(3) + n(5) = 3

(
n

03

)
, n(2) + n(4) + n(6) = 3

(
n

03

)
. (3.16)

The mass matrix with respect to the generalized coordinates for this one-body config-
uration (since the tabletop is assumed to be sufficiently extended and fixed with respect
to the three-dimensional space) is

M =


m 0 0
0 m 0
0 0 m

03×3

03×3 J

 ,

where J is the inertia matrix, which we assume to be symmetric positive definite.
We assume that the initial velocity of this configuration, v(0), is 0. We analyze one

time step based on (2.7–2.8) starting at time 0 and with time step h. We denote by g
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r1

r2

r3

r4

r5r6p1 p4
n

C

Fig. 1. Example with a nonconvex solution set

the magnitude of the gravitational acceleration, and we assume that gravity is the only
external force acting on the body. Since we can assume that gravity acts at the center of
mass C in a direction opposed to the vector n, the external force k becomes

k = −g

(
n

03

)
in global generalized coordinates.

We now replace all the above defined quantities in (2.7–2.8). We expect that one
possible outcome is v(1) = 0, or that the body does not move (the uniqueness of this
solution, at least for small µ, will be proved later). We attempt to find a solution of
(2.7–2.8) that has zero tangential force, or β(j)i = 0, i = 1, 2, 3, 4, j = 1, 2, . . . , 6.
When this ansatz is replaced in (2.7–2.8), the constraints that remain to be satisfied are

∑6
j=1 c

(j)
n n(j) − hmg

(
n

03

)
= 0.

µc
(j)
n ≥ 0 ⊥ λ(j) ≥ 0, j = 1, 2, . . . , 6.

Using (3.16), we have the following choices that satisfy these constraints, and, thus,
constitute a part of the solution: of (2.7–2.8)

1. c
(1)
n = c

(3)
n = c

(5)
n = hmg

3 , c(2)n = c
(4)
n = c

(6)
n = 0, λ(1) = λ(3) = λ(5) = 0,

λ(2) = λ(4) = λ(6) = 1,
2. c

(1)
n = c

(3)
n = c

(5)
n = 0, c(2)n = c

(4)
n = c

(6)
n = hmg

3 , λ(1) = λ(3) = λ(5) = 1,
λ(2) = λ(4) = λ(6) = 0.
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If, however, we take the average of the solutions, we obtain that c(j)n = hmg
6 , λ(j) = 1

2 ,
for j = 1, 2, . . . , 6, which violate the complementarity constraint

µc
(j)
n ≥ 0 ⊥ λ(j) ≥ 0, j = 1, 2, . . . , 6,

as soon as µ > 0 (the rest of the constraints must be satisfied because they are linear).
This implies that the solution set of (2.7–2.8) is not convex.

Therefore, even for simple cases and arbitrarily small but nonzero friction coeffi-
cients, the solution set of (2.7–2.8) cannot be expected to be convex. Hence the matrix
of this linear complementarity problem cannot be P∗ [19]. The P∗ class is the largest
matrix class for which polynomial time algorithms are known for linear complementarity
problems [19] or mixed linear complementarity problems [5].

This raises an important difficulty in the path of efficiently finding solutions to the
multibody dynamics problem with contact and friction, when a considerable number of
contacts is active, even at small friction coefficients.

To address this problem, in the following sections we develop two iterative methods
that have a guaranteed rate of convergence to the velocity solution of (2.7–2.8) for suffi-
ciently small but nonzero friction coefficients. The methods have convex subproblems
that can be solved in polynomial time.

4. Convex relaxation of (2.7–2.8)

We now investigate a convex relaxation of (2.7–2.8), with the ultimate purpose of setting
up a fixed-point iteration that converges to its solution, at least for small values of the
friction coefficient. The relaxation modifies the linearization of the noninterpenetration
constraint. A related LCP relaxes the relationship between the sizes of the normal and
the tangential contact impulses and can be used in conjunction with the first relaxation
to set up a fixed-point iteration whose iterates do not exhibit the normal velocity drift
of the first case. To simplify notation, we replace the superscript (l + 1) of the velocity
solution of (2.7–2.8) by ∗, and we use no superscript when defining the complementarity
problems.

4.1. A strictly convex quadratic program relaxation of (2.7–2.8)

We first approximate the mixed linear complementarity problem (2.7–2.8) by the fol-
lowing mixed linear complementarity problem:

M(l) −ν̃ −ñ −D̃ 0
ν̃T 0 0 0 0
ñT 0 0 0 −µ̃

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0



v

cν
cn
β̃

λ

+


−Mv(l) − hk(l)

ϒ

9 + �

0
0

 =


0
0
ρ

σ̃

ζ

 (4.17)

 cn
β̃

λ

T  ρ

σ̃

ζ

 = 0,

 cn
β̃

λ

 ≥ 0,

 ρ

σ̃

ζ

 ≥ 0 . (4.18)
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Clearly, the matrix of the linear complementarity problem, is now positive semidefinite.

Here 9 = (
9(j1), 9(j2), . . . , 9(js)

)T
is a nonnegative vector that has as many compo-

nents as active constraints (elements in A) and ϒ = 0. We introduce the parameter ϒ
in order to maintain the full generality of our following sensitivity results. The fact that
� ≥ 0 and ϒ = 0 will be used only when needed, and some of our results will be stated
without any restriction on � and ϒ .

Very useful results can be obtained based on the interpretation of (4.17–4.18) as a a
quadratic program. To simplify the notation, we denote by q(l) = −Mv(l) − hk(l). We
now have our mixed complementarity problem (4.17–4.18) in the form

M(l)v −ñc̃n −D̃β̃ = −q(l)

ν̃T v = −ϒ

ñT v −µ̃λ ≥ −9 − � ⊥ cn ≥ 0
D̃T v +Ẽλ ≥ 0 ⊥ β̃ ≥ 0

µ̃cn −ẼT β̃ ≥ 0 ⊥ λ ≥ 0.

(4.19)

Lemma 1. Assume that ϒ = 0. If for a solution
(
v∗, cν, cn, β̃, λ

)
of (4.19) we have

that 9 = µ̃λ, then that solution of (4.19) is a solution of (2.7–2.8). Conversely, any

solution
(
v∗, cν, cn, β̃, λ

)
of (2.7–2.8) is a solution of (4.17–4.18) with 9 = µ̃λ.

Proof. The proposed substitution makes the two LCPs identical. ��
Note that (4.19) can be seen as constituting the first-order optimality conditions of

the quadratic program

minv,λ 1
2v

TM(l)v + q(l)
T
v

subject to n(j)
T
v − µ(j)λ(j) ≥ −9(j) − �(j), j ∈ A

D(j)T v + λ(j)e(j) ≥ 0, j ∈ A
νTi v = −ϒi, i = 1, 2, . . . , p
λ(j) ≥ 0 j ∈ A.

(4.20)

Lemma 2. Any solution (v, λ) of (4.20), together with its Lagrange multipliers, is a
solution of the linear complementarity problem (4.17–4.18). Conversely, the v, λ com-
ponents of any solution of (4.17–4.18) are a solution of (2).

Proof. If we write out the first-order optimality conditions for (4.20), we get (4.19). The
result is true by the property of first-order optimality conditions and by the convexity of
the quadratic program (4.20). ��

The quadratic program (4.20) is not strictly convex with respect to the ensemble of
the variables (v, λ), but it is strictly convex with respect to v. By using the two inequal-
ities involving λ, and that each tangential description of the contact is symmetric, we
are able to show that v is in effect the unique solution of the following strictly convex
quadratic program:

minv 1
2v

TM(l)v + q(l)
T
v

subject to e(j)n(j)
T
v + µ(j)D(j)T v ≥ − (

9(j) + �(j)
)
e(j), j ∈ A

νTi v = −ϒi, i = 1, 2, . . . , p

(4.21)
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If we assume that 9 ≥ 0, � ≥ 0 and ϒi = 0, it immediately follows that this
quadratic program is feasible, because v = 0 is a feasible point. Moreover, whenever it
is feasible, it has a unique solution v∗(9), since we assume that M(l) is positive definite.
This allows us to introduce the mapping

P1(9) = v∗(9). (4.22)

which is well-defined for any 9 for which (4.21) is feasible.
Let v be a velocity vector. For the given active set A, another useful function that

we define is

:(v) = λ, (4.23)

where

λ(j) = max
i=1,2,... ,m(j)

C

{
d
(j)T

i (v)
}
, j ∈ A.

Because of the way D(j) is balanced for a given contact j , there are two immediate
items to note. First, for any fixed v, :(v) ≥ 0. Second, :(v) produces the smallest
possible λ that satisfies the equation

D̃T v + Ẽλ ≥ 0.

After v∗(9) is found, then a λ∗, that, together with v∗(9), is a solution of (4.20) can be
found by choosing

λ∗ = :(v∗). (4.24)

Therefore, all the properties of the velocity solution of (4.17–4.18) can be inferred
by working with (4.21), once we show that the two problems have the same v-solution.
The quantity λ∗ is implicitly a function of 9, but, for defining its properties, we prefer
to regard λ∗ as a function of v∗, or λ∗(v∗).

Theorem 2. Whenever (4.20) is feasible, the v-solution of (4.20) is unique and is, in
fact, a solution of (4.21). Conversely, if v is a solution of (4.21), then (v,:(v)) is a
solution of (4.20).

Proof. Let (v2, λ2) be a solution to (4.20). Therefore, we have

n(j)
T

v2 − µ(j)λ
(j)
2 ≥ −9(j) − �(j), j ∈ A

and

D(j)T v2 + e(j)λ
(j)
2 ≥ 0, j ∈ A,

from which it follows, by multiplying the second inequality by µ(j) and adding it com-
ponentwise to the first inequality, that

e(j)n(j)
T

v2 + µ(j)D(j)T v2 ≥ −e(j)
(
9(j) + �(j)

)
, j ∈ A.
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Hence, v2 is feasible for (4.21), which must now have an optimal solution v1 that satisfies

1

2
v1

TM(l)v1 + qT v1 ≤ 1

2
v2

TM(l)v2 + qT v2.

On the other hand, the solution of (4.21) satisfies

e(j)n(j)
T

v1 + µ(j)D(j)T v1 ≥ −e(j)
(
9(j) + �(j)

)
, j ∈ A. (4.25)

Define λ1 = :(v1), so, by (4.23), we have that

D(j)T v1 + e(j)λ
(j)
1 ≥ 0, j ∈ A. (4.26)

Also, from (4.23) and the fact that the columns of D(j) form a balanced set, we must

have that d(j)
T

i v1 + λ
(j)
1 = 0 for some i among 1, 2, . . . , m(j)

C . Since from (4.25) we

must have that n(j)
T
v1 + µ(j)d

(j)T

i v1 ≥ − (
9(j) + �(j)

)
, the last equality implies

n(j)
T

v1 − µ(j)λ
(j)
1 ≥ −

(
9(j) + �(j)

)
, j ∈ A

and thus from (4.26) we obtain that (v1, λ1) is feasible for (4.20). Hence

1

2
v2

TM(l)v2 + qT v2 ≤ 1

2
v1

TM(l)v1 + qT v1.

Therefore, the objective functions of (4.20) and (4.21) must be equal to each other.
That means (v1,:(v1)) is optimal for (4.20) and v2 is optimal for (4.21). The proof is
complete upon recalling the uniqueness of the solution of (4.21). ��

The matrix of the quadratic program (4.20) is clearly not positive definite with respect
to the ensemble (v, λ) of the variables. Therefore we do not expect the solution of (4.20)
to be unique. We have shown, however, that the velocity component of (4.20), as a result
of its equivalence with (4.21) from Theorem 2, is indeed unique, and the block matrix
associated with the velocity is positive definite. There may be multiple λ solutions, but
there exists a minimal choice λ = :(v) that regularizes the problem.

4.2. A second strictly convex program reformulation of (2.7–2.8)

We now investigate another linear complementarity problem, related to (2.7–2.8), that
is a useful block in setting up a fixed point iteration.

M(l) −ν̃ −ñ −D̃

ν̃T 0 0 0
ñT 0 0 0
D̃T 0 0 0



v

cν
cn
β̃

+


−Mv(l) − hk(l)

0
�

Ẽλ

 =


0
0
ρ̃

σ̃

 (4.27)

[
cn
β̃

]T [
ρ

σ̃

]
= 0,

[
cn
β̃

]
≥ 0,

[
ρ

σ̃

]
≥ 0 . (4.28)
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Here we consider λ to be a fixed quantity, and not a variable of the problem. One
can immediately see that the linear complementarity problem (4.27–4.27) represents the
optimality conditions of the quadratic program

minv 1
2v

TM(l)v + q(l)
T
v

subject to n(j)
T
v ≥ −�(j), j ∈ A

D(j)T v ≥ −λ(j)e(j), j ∈ A
νTi v = 0, i = 1, 2, . . . , p,

(4.29)

where λ ≥ 0 is given. In this section we will assume that � ≥ 0, and thus that (4.29) is
feasible.

Since we assume that M(l) is positive definite, it follows that (4.29) has a unique
solution v∗(λ).

P2(λ) = v∗(λ). (4.30)

which is well defined whenever (4.21) is feasible.

Lemma 3. Assume that (v∗, λ∗) are components of the solution of (2.7-2.8). Then the
solution of (4.29) with λ = λ∗ is exactly v∗, or P2(λ

∗) = v∗.

Proof. Let
(
v∗, cν, cn, β̃, λ∗

)
be a solution of (2.7–2.8). By comparing the linear com-

plementarity problems (2.7–2.8) and (4.27–4.28), we see that if we set λ = λ∗, we obtain

that
(
v∗, cν, cn, β̃

)
is a solution of (4.27–4.28). The conclusion follows by our previous

observation that (4.27–4.28) are the optimality conditions of (4.29), and thus v∗ is the
unique solution of (4.29) for λ = λ∗. ��

4.3. Features of the reformulations

Lemma 4. Consider the quadratic program

minv 1
2v

TQv + qT v

subject to AT v ≥ −;

BT v = 0,
(4.31)

where ; ≥ 0 is a vector, A and B are matrices of the appropriate dimensions, and
the matrix Q is symmetric positive definite, or Q � 0. Let v∗ be its solution. Then

‖Q 1
2 v∗‖2 ≤ ‖Q− 1

2 q‖2.

Proof. Since v = 0 is feasible and Q is positive definite, the quadratic program (4.31)
has a solution v∗. Let η ≥ 0 be the Lagrange multipliers of the inequality constraints and
ζ be the Lagrange multipliers of the equality constraints. We then have the following
first-order conditions:

Qv∗ + q − Aη − Bζ = 0, AT v∗ + ; ≥ 0,
(
AT v∗ + ;

)T
η = 0, BT v∗ = 0.
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Multiplying the first equation with v∗T to the left and using the constraints and the
complementarity condition, we obtain

v∗T Qv∗ + qT v∗ + ηT ; = 0.

This, in turn, implies, since η ≥ 0 and ; ≥ 0, that

v∗T Qv∗ ≤ −qT v∗,

or that

‖Q 1
2 v∗‖2

2 ≤ −
(
Q− 1

2 q
)T (

Q
1
2 v∗

)
≤ ‖Q 1

2 v∗‖2‖Q− 1
2 q‖,

where the last inequality follows from Cauchy-Schwartz. The claim follows after divid-

ing the last inequality by ‖Q 1
2 v∗‖2, if nonzero. ��

As an immediate consequence of this lemma, which we apply to previously defined
quadratic programs, we obtain the following corollaries.

Corollary 1. Whenever 9 ≥ 0, � ≥ 0 and ϒ = 0, the solution v∗(9) of (4.21) satisfies

‖M(l)
1
2
v∗(9)‖2 ≤ ‖M(l)

− 1
2
q(l)‖2. That is, ‖M(l)

1
2
P1(9)‖2 ≤ ‖M(l)

− 1
2
q(l)‖2.

Corollary 2. Whenever λ ≥ 0, � ≥ 0 and ϒ = 0, the solution v∗(λ) of (4.29) satisfies

‖M(l)
1
2
v∗(λ)‖2 ≤ ‖M(l)

− 1
2
q(l)‖2. That is, ‖M(l)

1
2
P2(λ)‖2 ≤ ‖M(l)

− 1
2
q(l)‖2.

Lemma 5. If the friction cone of the current configuration is pointed, then the quadratic
program (4.21) satisfies MFCQ.

Proof. Assume that at some point v (4.21) does not satisfy MFCQ. Then, from (2.13)
it follows that there exist the multipliers η(j)k ≥ 0, j ∈ A, k = 1, 2, . . . , m(j)

C and cν,i ,
i = 1, 2, . . . , p, not all 0, such that

0 =
∑
j∈A

m
(j)
C∑

k=1

η
(j)
k

(
n(j) + µ(j)d

(j)
k

)
+

∑
i=1,2,... ,p

cν,iνi . (4.32)

This form is implied by the one described in (2.13), and is sufficient to prove our claim.
Define now, for j ∈ A,

c
(j)
n =

m
(j)
C∑

k=1

η
(j)
k ≥ 0

β
(j)
k = µ(j)η

(j)
k ≥ 0, k = 1, 2, . . . , m(j)

c

β(j) =
[
β
(j)
1 , β

(j)
2 , . . . , β

(j)

m
(j)
C

]
.
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One can immediately see with this definition that, for j ∈ A,

µ(j)c
(j)
n =

m
(j)
C∑

k=1

β
(j)
k = µ(j)e(j)

T

β(j) = µ(j)‖β(j)‖1.

Therefore, cn =
{
c
(j)
n

}
j∈A, β̃ = {

β(j)
}
j∈A and cν = {

cν,i
}
i=1,2,... ,p satisfy the

inequalities defining the friction cone FC(q) (2.9), are not all 0 (from our choice of η
and cν), and from (4.32) satisfy

0 = ñcn + D̃β̃ + ν̃cν .

This contradicts the assumption that the cone is pointed and hence proves the claim. ��

An important consequence of MFCQ holding for (4.21) is that (4.21) is feasible for
any choice of 9,� and ϒ [27].

4.4. Lipschitz continuity

The algorithms we consider here are fixed-point iterations, based on (4.17–4.18) and
(4.27–4.28), where 9 and λ are computed based on the velocity at the previous iteration.
To be able to prove our convergence results for these algorithms, we have to obtain some
Lipschitz continuity results of the solution maps P1(9) and P2(λ) of the strictly convex
associated programs (4.21) and (4.29).

Since the function max{x1, x2, . . . , xn} is globally Lipschitz with a Lipschitz param-
eter of 1 in the ‖ · ‖∞ in RI n, it follows that the mapping defining λ∗ as a function of
v∗ in (4.23) is globally Lipschitz with a parameter KD that depends on the vectors d(j)i

defining the tangential forces at each contact.

Lemma 6. There exists a parameter KD ≥ 0 such that for any two velocities v1 and v2,

‖:(v1) − :(v2)‖∞ ≤ KD‖v1 − v2‖∞.

Proof. Note that the definition of : yields for any j ∈ A∣∣:(j)(v1) − :(j)(v2)
∣∣ =

∣∣∣max
i=1,2,... ,m(j)

C

{
d
(j)T

i (v1)
}

− max
i=1,2,... ,m(j)

C

{
d
(j)T

i (v2)
}∣∣∣

≤ max
i=1,2,... ,m(j)

C

|d(j)Ti (v1 − v2)| = ‖D(j)T (v1 − v2)‖∞

≤ ‖D(j)T ‖∞‖(v1 − v2)‖∞ ≤ ‖D̃‖∞‖(v1 − v2)‖∞.

(4.33)

for all j ∈ A. The conclusion follows after taking KD = ‖D̃‖∞. ��
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To simplify our discussion for our next result, we denote by µ̂ = diag(µ̃).

Theorem 3. (i) LetK9 > 0 andKµ > 0 such that the friction cone FC(q) is pointed
whenever ‖µ̂‖∞ ≤ Kµ, ∀j ∈ A. Then there exists L(K9,Kµ) such that for any
91 and 92 such that ‖91‖∞ ≤ K9 and ‖92‖∞ ≤ K9 we have

‖P1(91) − P1(92)‖∞ ≤ L(K9,Kµ)‖91 − 92‖∞.

(ii) Let M be a convex compact set such that FC(q) is pointed whenever µ̂ ∈ M, and
let K9 > 0. There exists L(K9,M) such that for any µ̂ ∈ M, 91 and 92 such
that ‖91‖∞ ≤ K9 and ‖92‖∞ ≤ K9 we have

‖P1(91) − P1(92)‖∞ ≤ L(K9,M)‖91 − 92‖∞.

Here P1(9) = v∗(9), the unique solution of the quadratic program (4.21), when it
exists.

Proof of Part (i). Since the friction coneFC(q) is pointed whenever ‖µ̂‖∞ ≤ Kµ, then,
from Lemma 5 the quadratic program (4.21) satisfies MFCQ whenever ‖µ̂‖∞ ≤ Kµ.
Therefore the quadratic program (4.21) is feasible for any 9, � and ϒ and the mapping
P1(9) is well defined for any 9. Since the matrix M(l) is positive definite, the strong
second-order conditions required by Robinson’s local Lipschitz result [27] hold. There-
fore, for any 90 and µ̂0, satisfying ‖µ̂0‖∞ ≤ Kµ, there exist a parameter L(90, µ̂0) and
neighborhoods V(90) and V(µ̂0) such that ∀91, 92 ∈ V(90) and ∀µ̂1, µ̂2 ∈ V(µ̂0), we
have that

‖v∗(91, µ̂1) − v∗(92, µ̂2)‖∞ ≤ L(90, µ̂0)
(‖91 − 92‖∞ + ‖µ̂1 − µ̂2‖∞

)
.

Here we denote by v∗(9, µ̂) the solution of (4.21), to emphasize the possible dependence
of the solution on the friction coefficients.

Since v∗(9, µ̂) is a locally Lipschitz mapping, then, when we restrict it over the
compact set defined by the inequalities ‖9‖∞ ≤ K9 and ‖µ̂‖∞ ≤ Kµ, it becomes
globally Lipschitzian. Therefore there exists L(K9,Kµ) such that

‖v∗(91, µ̂1) − v∗(92, µ̂2)‖∞ ≤ L(K9,Kµ)
(‖91 − 92‖∞ + ‖µ̂1 − µ̂2‖∞

)
.

When µ̂ is fixed, then v∗ can be considered to be a function of 9 alone. Replacing
µ̂1 = µ̂2 = µ̂ in the previous equation proves part (i). ��
Proof of Part (ii). As above, v∗(9, µ̂) is a locally Lipschitz mapping for ‖9‖∞ ≤ K9

and µ̂ ∈ M.Thereforev∗(9, µ̂) is a globally Lipschitz mapping over
{
9|‖9‖∞ ≤ K9

}×
M. Therefore there exists L(K9,M) such that

‖v∗(91, µ̂1) − v∗(92, µ̂2)‖∞ ≤ L(K9,M)
(‖91 − 92‖∞ + ‖µ̂1 − µ̂2‖∞

)
whenever ‖91‖∞ ≤ K9 , ‖92‖∞ ≤ K9 and µ̂1, µ̂2 ∈ M. The conclusion of part ii)
follows by taking µ̂1 = µ̂2 = µ̂. ��

The Lipschitz continuity of P2(λ) is considerably easier to demonstrate, because the
constraints of (4.29) are not affected by the friction coefficient, so we do not have to
ensure uniformity of the Lipschitz parameter with respect to the friction coefficient.
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Theorem 4. Assume that � ≥ 0. There exists a parameter L2 ≥ 0 such that ‖P2(λ1)−
P2(λ2)‖∞ ≤ L2‖λ1 − λ2‖∞, ∀λ1, λ2 ∈ RI card{A}, λ1, λ2 ≥ 0.

Proof. Since � ≥ 0, it follows that (4.29) is feasible and its solution mapping P2(λ) is
well defined for λ ≥ 0. The conclusion of the statement is an immediate consequence of
Theorem 1. The Theorem applies since the quadratic program (4.29) is strictly convex,
it does not depend on µ̃, and its parameter λ affects only the right-hand side. ��

4.5. Fixed-point reformulation and contraction property

The fundamental result of this section is based on analyzing the properties of a series of
aggregate maps. Recall that, following the definition of the mixed linear complementar-
ity problem (2.7–2.8), µ̃ is a diagonal matrix whose entries are the friction coefficients
at the individual contacts.

4.5.1. Fixed point formulation based onP1. Using (4.22), we define the first aggregate
map by

χ1(v) = P1(µ̃:(v)). (4.34)

Lemma 7. Assume that ϒ = 0. The quantity v∗ is the velocity component of a solution
of the mixed linear complementarity problem (2.7–2.8) if and only if it is a fixed point
of χ1(v).

Proof. Let
(
v∗, cν, cn, β̃, λ

)
be a solution of (2.7–2.8). It is then immediate that(

v∗, cν, cn, β̃,:(v)
)

is also a solution of the problem (2.7–2.8). In effect, the only

change in the new solution is that λ(j) corresponding to a contact that satisfiesD(j)T v∗ =
0 is set to 0. Therefore, after comparing (2.7–2.8) and (4.17–4.18) we see that(
v∗, cν, cn, β̃,:(v∗)

)
is a solution of (4.17–4.18) with 9 = µ̃:(v∗). Using Lemma

2, Lemma 1, the definition of the mapping P1 (4.22), and Theorem 2, we get that
v∗ = P1(µ̃:(v

∗)), which shows that v∗ is a fixed point of the mapping χ1.
Conversely, letv∗ be a fixed point ofχ1, orv∗ = P1(µ̃:(v

∗)). SinceP1 is the solution
mapping associated with the strictly convex quadratic program (4.21) we obtain from
Theorem 2 that (v∗,:(v∗)) is a solution of (4.20) for the choice of9 = µ̃:(v∗). In turn,
Lemma 2 implies that, for appropriate multipliers, (v∗, cν, cn, β̃,:(v∗)) is a solution
of (4.17–4.18) for 9 = µ̃:(v∗). Finally Lemma 1 shows that (v∗, cν, cn, β̃,:(v∗)) is
a solution of (2.7–2.8) and proves the rest of the claim. ��

The following results require upper bound conditions on the friction coefficients. In
order to invoke the results from Section 4.4, recall that µ̃ is a diagonal matrix, whose
diagonal is the vector µ̂ and that the following equation holds

‖µ̃‖∞ = ‖µ̂‖∞.
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Lemma 8. Assume that, for µ̃ = 0, the friction cone FC(q) is pointed. Let S be a
compact set in RI n. Then there exists µ◦ > 0 such that whenever ‖µ̃‖∞ ≤ µ◦, we have
that, for any v1, v2 ∈ S the mapping χ1(v) is well defined and satisfies

‖χ1(v1) − χ1(v2)‖∞ ≤ 1

2
‖v1 − v2‖∞.

Proof. Define

µ∗ = 1

2
max

{
µ ≥ 0|FC(q) is a pointed cone whenever ‖µ̃‖∞ < µ

}
.

Since FC(q) is polyhedral and pointed when µ̃ = 0, it follows that µ∗ > 0. Whenever
‖µ̃‖∞ < 2µ∗, we have that (4.21) satisfies MFCQ from Lemma 5 since the friction
cone is pointed.

Thus whenever ‖µ̃‖∞ ≤ µ∗, we have that P1, the solution mapping, is well defined
which, in turn, implies that χ1 is well defined. Choose Kµ = µ∗ and

K9 = max
v∈S

{
µ∗‖:(v)‖∞

}
µ◦ = min

{
µ∗,

1

2L(K9,Kµ)KD

}
> 0,

whereL(K9,Kµ) is the Lipschitz parameter ofP1 under the conditions specified in The-
orem 3(i) andKD is the Lipschitz parameter in Lemma 6. Pick any two points v1, v2 ∈ S

and µ̃ such that ‖µ̃‖∞ ≤ µ◦. Then from Lemma 6 we have that

‖:(v1) − :(v2)‖∞ ≤ KD‖v1 − v2‖∞.

In turn, this implies that

‖µ̃:(v1) − µ̃:(v2)‖∞ ≤ ‖µ̃‖∞‖:(v1) − :(v2)‖∞ ≤ ‖µ̃‖∞KD‖v1 − v2‖∞.

Finally we use Theorem 3(i), which applies because of our choice of K9 . Since
‖µ̃:(v1)‖∞ ≤ K9 and ‖µ̃:(v2)‖∞ ≤ K9 and since, from our choice of µ◦, the
friction cone is uniformly pointed whenever µ̃ ≤ µ◦, we have that

‖χ(v1) − χ(v2)‖ = ‖v∗(µ̃:(v1)) − v∗(µ̃:(v2))‖∞ ≤ L(K9,Kµ)‖µ̃‖∞KD‖v1 − v2‖∞.

With the choice ofµ◦ as above, we immediately obtain that for any v1, v2 ∈ S, whenever
‖µ̃‖ ≤ µ◦,

‖χ1(v1) − χ1(v2)‖∞ ≤ 1

2
‖v1 − v2‖∞,

which completes the proof. ��
We can now state the main result of our development for this map.

Theorem 5. Assume that, for µ̃ = 0, the friction cone FC(q) is pointed and that� ≥ 0

and ϒ = 0. Consider the set S =
{
v

∣∣∣∣‖M(l)
1
2
v‖2 ≤ ‖M(l)

− 1
2
q(l)‖2

}
. Then χ1(S) ⊆ S

and there exists a µ◦ > 0 such that, whenever ‖µ̃‖∞ ≤ µ◦ we have that χ1 is a
contraction over S of parameter 1

2 in the infinity norm.
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Proof. Take a vector v ∈ S and construct 9 = µ̃:(v). From (4.23) and the fact that
the vectors defining the polyhedral approximation to the friction cone form a balanced
set, we obtain that 9 ≥ 0. From (4.34) we have that χ1(v) = P1(9), the solution of
(4.21). From Corollary 1, it immediately follows that P1(9), and thus χ1(v) satisfies the
inequality that defines S, which implies that χ1(S) ⊂ S. Using Lemma 8 we obtain the
conclusion of the proof. ��

From here we get the following important corollary.

Corollary 3. Under the conditions of Theorem 5 (sufficiently small friction coefficient),
the mixed linear complementarity problem (2.7–2.8) has a unique velocity solution. The
solution can be found by a fixed point iteration of the mapping χ1(v) that converges at
least linearly to the solution.

Proof. The conclusion is immediate from the properties of contractions, Theorem 5, and
Lemma 7. ��

We now apply the concepts developed in this section to the example from Section
3. Using our observations concerning pointed friction cones in Section 2.3.1, we see
that the configuration in the example can be disassembled (a sufficiently large upwards
impulse induces simultaneous break of all contacts) and thus has a pointed friction cone
when µ̃ = 0. Therefore, Theorem 5 applies to show that, for sufficiently small friction
coefficients, the example has a unique velocity solution, although the solution set of
(2.7–2.8) is nonconvex. Hence our fixed-point iteration converges for some configura-
tions to the velocity solution while solving convex subproblems, despite the fact that the
solution set is nonconvex.

4.5.2. Fixed point iteration based onP1 andP2. In this section, we assume throughout
that � ≥ 0 and ϒ = 0. The second mapping under consideration is

χ2(v) = P2 ◦ : ◦ P1 ◦ (µ̃:(v)) . (4.35)

Lemma 9. If v∗ is a velocity solution of (2.7–2.8) then v∗ is a fixed point of χ2(v).

Proof. This is an immediate consequence of Lemma 1, Lemma 2, Theorem 2, and
Lemma 3. ��

Theorem 6. (i) Consider the set S =
{
v

∣∣∣∣‖M(l)
1
2
v‖2 ≤ ‖M(l)

− 1
2
q(l)‖2

}
. Then

χ2(S) ⊆ S.
(ii) Assume that, for µ̃ = 0, the friction cone FC(q) is pointed. Then there exists

µ◦ > 0 such that, whenever ‖µ̃‖∞ ≤ µ◦, the mapping χ2(v) is a contraction over
S in the ‖ · ‖∞ norm, with parameter 1

2 .

Proof of Part (i). Take a vector v ∈ S and define v1 = χ2(v) and λ = :◦P1 ◦ (µ̃:(v)).
From the definition of the mapping (4.35) we get that v1 = P2(λ). From the definition
(4.23) of the mapping : we get that λ ≥ 0. Finally, using Corollary 2, we obtain that
v1 ∈ S, which proves the claim of part (i). ��
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Proof of Part (ii). Define

µ∗ = 1

2
max {µ ≥ 0|FC(q) is a pointed cone whenever ‖µ̃‖ ≤ µ} .

Since FC(q) is polyhedral and pointed when µ̃ = 0, it follows that µ∗ > 0. Choose
now Kµ = µ∗

K9 = max
v∈S

{
µ∗‖:(v)‖∞

}

µ◦ = min

{
µ∗,

1

2L(K9,Kµ)L2K
2
D

}
> 0,

where L(K9,Kµ) is Lipschitz parameter of mapping P1 from Theorem 3(i), L2 is the
global Lipschitz parameter of the mapping P2 from Theorem 4, and KD is the Lipschitz
parameter in Lemma 6. Pick any two points v1, v2 ∈ S and µ̃ such that ‖µ̃‖∞ ≤ µ◦.
Then

‖χ2(v1) − χ2(v2)‖∞ = ‖P2 ◦ : ◦ P1 ◦ (µ̃:(v1)) − P2 ◦ : ◦ P1 ◦ (µ̃:(v2)) ‖∞
≤ L2‖: ◦ P1 ◦ (µ̃:(v1)) − : ◦ P1 ◦ (µ̃:(v2)) ‖∞
≤ L2KD‖P1 ◦ (µ̃:(v1)) − P1 ◦ (µ̃:(v2)) ‖∞
≤ L2KDL(K9,Kµ)‖µ̃ (:(v1) − :(v2)) ‖∞
≤ L2KDL(K9,Kµ)‖µ̃‖∞‖ (:(v1) − :(v2)) ‖∞
≤ µ◦L2L(K9,Kµ)K

2
D‖v1 − v2‖∞ ≤ 1

2‖v1 − v2‖∞.

(4.36)

At the fourth inequality we have used Theorem 3(i), which applies because v1, v2 ∈ S

implies that ‖µ̃:(v1)‖∞ ≤ K9 and ‖µ̃:(v2)‖∞ ≤ K9 from our choice of K9 and
our choice of Kµ and µ◦ ensures that the friction cone is uniformly pointed whenever
‖µ̃‖∞ ≤ µ◦. This proves that for the parametric choices outlined above, the mapping
χ2 is a contraction mapping with parameter 1

2 . ��
The observation must be made here that since P2 produces a velocity component

that is independent of the friction, it seems reasonable that unless we have prior knowl-
edge of λ∗, we would need some way of estimating this parameter. Fortunately, this is a
byproduct of the mapping P1, which explains the convergence result above.

For efficiency reasons, especially in real time applications, one may wish to stop a
fixed point iteration algorithm significantly before its convergence. In that case one may
consider using as an approximation to the solution velocity just the first iteration of one
of the fixed-point methods. The following result estimates the error in velocity when
doing one such operation.

Theorem 7. Let M be a convex compact set such that FC(q) is a pointed cone when-

ever µ̂ = diag(µ̃) ∈ M. Let S =
{
v

∣∣∣∣‖M(l)
1
2
v‖2 ≤ ‖M(l)

− 1
2
q(l)‖2

}
and K9 =

maxv∈S
{
µ∗‖:(v)‖∞

}
. Then for any velocity solution v∗ of (2.7–2.8) the following

inequalities hold:
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(i) ‖v∗ − χ1(0)‖∞ ≤ L(K9,M)‖µ̃:(v∗)‖∞,

(ii) ‖v∗ − χ2(0)‖∞ ≤ L2KDL(K9,M)‖µ̃:(v∗)‖∞.

HereL2 andKD are the Lipschitz parameters of the mapsP2 and:, whereasL(K9,M)

is the parameter from Theorem 3 (ii).

Proof. We prove only the case (ii), the proof of the case (i) being almost identical. Using
Lemma 9, we obtain that v∗ = χ2(v

∗) = P2 ◦ : ◦ P1 (µ̃:(v
∗)). Therefore

‖v∗ − χ2(0)‖∞ = ‖P2 ◦ : ◦ P1 (µ̃:(v
∗)) − P2 ◦ : ◦ P1 (µ̃:(0)) ‖∞

≤ L2KD‖P1 (µ̃:(v
∗)) − P1(0)‖∞ ≤ L2KDL(K9,M)‖µ̃:(v∗)‖∞,

where the last inequality follows from Theorem 3 (ii). ��
The last result shows that one step of the fixed-point iteration based on either the

map χ1 or the map χ2 (which solved two convex quadratic programs) results in an
approximation to v∗ whose error is proportional to ‖µ̃:(v∗)‖∞. This approximation is
very good when either the friction coefficient is small or when the friction coefficient is
large but the tangential velocity is small. In particular, configurations that have a no slip
solution are computed exactly by this method.

5. Fixed-point iteration algorithms

We now describe fixed-point iteration algorithms in terms of the quadratic programs
or, equivalently, linear complementarity programs introduced in the preceding sections.
To simplify the discussion, we assign acronyms to all algorithms. We call LCP0 the
resolution of (2.7–2.8) directly by Lemke’s method.

5.1. Fixed-point iteration algorithm based on χ1

In terms of χ1, the fixed-point algorithm is expressed simply as v∗(0) = 0, v∗(κ + 1) =
χ1(v

∗(κ)). Using the definition of χ1, (4.34), we can express the fixed point iteration in
terms of certain convex quadratic programs.

1. Set 9(0) = 0, κ = 0, v∗(0) = 0.
2. Set v∗(κ + 1) = P1(9(κ)): Solve the mixed linear complementarity problem (4.17–

4.18) for 9 = 9(κ) (or, equivalently, the quadratic program (4.21)), and find the
new velocity v∗(κ + 1) = v∗(9(κ)).

3. Set λ(κ + 1) = :(v∗(κ + 1)) from (4.23):

λ(j)(κ + 1) = max
i=1,2,... ,m(j)

C

{
d
(j)T

i v∗(κ + 1)
}
, j ∈ A. (5.37)

4. Set 9(κ+1) = µ̃λ(κ+1). Recall from the discussion following the definition of the
mixed linear complementarity problem (2.7–2.8) that µ̃ is a diagonal matrix whose
entries are the friction coefficients of the individual contacts. From the assumption
that the tangential force description is balanced, we clearly have that 9(κ) ≥ 0, ∀κ .
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5. Check for convergence. If the convergence test is not satisfied, set κ = κ + 1, and
return to Step 2.

To simplify further discussion, we call this algorithm LCP1.
From Corollary 3 we obtain that for sufficiently small but nonzero friction this algo-

rithm converges to the unique velocity solution of the mixed linear complementarity
problem (2.7–2.8). This convergence is achieved globally (always initializing the algo-
rithm with v = 0), with a fixed linear rate, while solving (at Step 2 of the algorithm)
only convex subproblems (linear complementarity problems with positive semidefinite
matrices).

5.2. Fixed point iteration algorithm based on χ2

Similarly, forχ2 we can define the fixed-point iteration algorithm v∗(0) = 0, v∗(κ+1) =
v∗(κ). Using the definition of χ2 (4.35), we can express the steps of the algorithm in
terms of convex quadratic programs.

1. Set 9(0) = 0, κ = 0, v∗(0) = 0.
2. Set v̂∗(κ + 1) = P1(9(κ)): Solve the mixed linear complementarity problem (4.17–

4.18) for 9 = 9(κ) (or, equivalently, the quadratic program (4.21)), and find the
new velocity v̂∗(κ + 1) = v∗(9(κ)).

3. Set λ̂(κ + 1) = :(v̂∗(κ + 1)) from (4.23):

λ̂(j)(κ + 1) = max
i=1,2,... ,m(j)

C

{
d
(j)T

i v̂∗(κ + 1)
}
, j ∈ A. (5.38)

4. Set v∗(κ + 1) = P2(λ̂(κ + 1)): Solve the mixed linear complementarity problem
(4.17–4.18) for λ = λ̂(κ + 1)) (or, equivalently, the quadratic program (4.29)), and
find the new velocity v∗(κ + 1) = v∗(λ̂(κ + 1)).

5. Set λ(κ + 1) = :(v∗(κ + 1)) from (4.23):

λ(j)(κ + 1) = max
i=1,2,... ,m(j)

C

{
d
(j)T

i v∗(κ + 1)
}
, j ∈ A. (5.39)

6. Set 9(κ + 1) = µ̃λ(κ + 1). Once again we clearly have that 9(κ) ≥ 0, ∀κ .
7. Check for convergence. If convergence test is not satisfied, set κ = κ+1, and return

to Step 2.

We call this algorithm LCP2.
From Theorem 6 and Lemma 9 we obtain that for sufficiently small but nonzero

friction this algorithm converges to the unique velocity solution of the mixed linear
complementarity problem (2.7–2.8). This convergence is achieved globally (always ini-
tializing the algorithm with v = 0), with a fixed linear rate, while solving (at Step 2 of
the algorithm) only convex subproblems (linear complementarity problems with positive
semidefinite matrices).

An important issue is to determine when or if algorithm LCP1 is preferable to algo-
rithm LCP2. It seems possible that, because of the extra step, algorithm LCP2 takes
more work for a comparable rate of convergence. Algorithm LCP2 has one important
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advantage, however, for real-time simulation. In many real-time applications it may be
impossible to solve the target problem in the time allocated for the computation. In
that case, it is important for the algorithm to provide partial information that satisfies
as many of the simulation constraints as possible. In that sense, one can immediately
show that any iteration of LCP2 satisfies the linearized geometrical constraints exactly,
and it provides a dissipative impulse that lives inside the friction cone. This is markedly
different from LCP1, for which a partial iteration may decide that a contact must take off
although the contact is dynamically active (it exhibits a nonzero contact impulse). Since
most users of multibody dynamics software packages are likely to consider satisfaction
of geometrical constraints more important than that of dynamical constraints, because
of the immediately visible error in the first case, this may make an important difference
in practical applications.

This observation also indicates that one can use as a cheaper alternative to LCP0,
LCP1,or LCP2 an algorithm that uses the mapχ1 and, respectively, the mapχ2, or, equiv-
alently, algorithm LCP1 and, respectively, the algorithm LCP2 for exactly one iteration.
We call LCP3 an algorithm that uses only one iteration of LCP1. From Theorem 7 we
see that the error that we need to assume in using LCP3 is of the order of ‖µ̃:(v∗)‖,
where v∗ is an exact solution of (2.7–2.8). Therefore, if the friction coefficient is small
or if the friction coefficient is large but the tangential velocity λ is small, LCP3 provides
a good approximation of v∗.

A similar algorithm can be defined by using LCP2 for only one iteration and, from
Theorem 7, it follows that it will have the same property. Also, as argued above, such an
algorithm will satisfy the geometrical constraints exactly, and it will be interesting from
the perspective of real-time simulations. The difficulty is that for χ2 we do not have the
equivalent of Lemma 7, since in effect, when using the mapping P2, we are not only
perturbing a constraint, we are ignoring one (the conic constraint). It is therefore not
immediate how to obtain aposteriori estimates for ‖χ2(0) − v∗‖ for purposes of numer-
ical comparison, other than computing v∗. For numerical validation, we will therefore
use only LCP3.

5.3. Numerical results

We have implemented the two algorithms inside a Matlab simulation environment for
rigid multibody dynamics with contact and friction. In all cases, we have simulated the
cannonball arrangement in two dimensions with a variable number of disks of radius
3. There are n bodies placed on the bottom plank, all in linear contact, then n − 1
bodies on top of these, and so forth. The time step was 0.05. The friction coefficient was
0.05, unless mentioned otherwise. All collisions are plastic. For LCP0 we used Lemke’s
method as implemented by PATH [14, 23]. For solving the quadratic programs in meth-
ods LCP1, LCP2, and LCP3 we also used PATH with the problems transformed in their
linear complementarity form.

We ran the following examples:

1. Starting from rest, 21 disks in the cannonball arrangement (6 disks on the bottom).We
compare LCP1, LCP2, LCP3, and LCP0 in Figure 2. LCP1 and LCP2, the iterative
methods based on χ1 and, respectively, χ2, were run until ‖v∗(κ) − v∗(κ − 1)‖ ≤
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Fig. 2. Comparison of a 2D simulation with 21 bodies

1e − 5. In the first graph we display the number of active contacts. The size of the
linear complementarity problem to be solved by LCP0 is four times the number of
contacts (since we pivot out the mass matrix first in (2.7–2.8) and we have no joint
constraints). In the second graph we see the number of seconds spent solving LCPs
by LCP1 (stars) and LCP2 (line). In the third graph we see the number of seconds
spent in solving LCPs by LCP3 (stars) and LCP0 (line).

2. Starting from rest, 136 disks in the cannonball arrangement (16 disks on the bottom)
with friction coefficient µ = 0.2. Here LCP0, LCP1, and LCP2 failed to find a
solution, so the results are plotted only for LCP3 in Figure 3: the number of contacts
at various stages of the simulation and the amount of time spent solving LCPs per
time step by LCP3.

3. A comparison between LCP3 and LCP0 running times for 210 disks (20 on the
bottom), for the first step of the simulation. The results are displayed in Table 1 for
several values of the friction coefficients. The error is the discrepancy in the lineari-
zation of the noninterpenetration constraint of the solution of (4.19), when inserted
in (2.7–2.8) (since all the other constraints are the same). Through Lemma 1, the
velocity solution of (4.19) coincides with the solution of (4.21), which, for 9 = 0 is
the one used in χ1(0) and thus LCP3.

4. To verify whether LCP3 will produce realistic results, we have simulated a well-
known effect from granular flow: the Brazil Nut effect [28] In this simulation, it
is expected that one large particle will raise to the top when shaken with smaller
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Fig. 3. Results of a 2D simulation with 136 bodies

Table 1. Comparison between the LCP0 algorithm and LCP3 for the 210 bodies example

µ LCP0 CPU LCP 3 CPU LCP 3 Residual Error
0.1 29.76 34.42 0.06
0.2 MAX ITER 36.28 0.12
0.4 MAX ITER 24.03 0.07
0.6 MAX ITER 20.40 1e-8
0.8 MAX ITER 14.52 8e-11

particles. In our case, there is one large particle of radius 5 together with 269 small
particles of radius 1.5. The shake is modeled by a sliding bottom bar that moves
vertically. The algorithm used for simulation is LCP3 with linearization of the con-
straint at a fixed timestep of 100ms which is proven to achieve constraint stabilization
for plastic collisions [4]. Here we have used a Newton collision restitution rule (for
which we did not prove constraint stabilization), that is adapted for fixed time-step
simulation [1]. The approximation Theorem 7 can be easily extended for the scheme
we used in this simulation. We have used a friction coefficient of 0.5 and a restitution
coefficient of 0.5.

From the above mentioned figures and table we extract the following conclusions.

1. For a small number of bodies the Lemke solver LCP0 is very efficient, more so than
LCP1 and LCP2, though not more efficient than LCP3. The situation for the algo-
rithms other than LCP0 can be considerably improved by applying specialized con-
vex quadratic program solvers. For example, PATH uses LU factorization whereas
convex QP approaches can be solved using Choleski factorizations, which would
result, in a factor of 2 speed-up. Specialized techniques for convex QP approaches
will be discussed in future research.

2. Both LCP1 and LCP2 have converged for 21 disks andµ = 0.05. We have not aprio-
rily determined whether the value of the friction coefficient lies within the range of
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friction coefficients for which our theory predicts convergence. Nevertheless, as in
most other works dealing with fixed point iterations at small friction coefficients [10,
15, 17, 24, 25], we consider this behavior to be a validation of our theoretical results.

3. Other techniques (even if approximate) are essential for larger problems because,
for 136 bodies, all solvers except LCP3 (the heuristic solver) failed on the problem
(here PATH failed with a maximum number of iterations message). The guarantee
that LCP0 has a solution does not in itself guarantee that the solution can be found in
a convenient amount of time, especially given the nonconvexity of the solution set,
as illustrated by the example in Section 3. In such situations and given the real-time
constraint, users may have to accept approximate but fast solutions, like the ones
provided by LCP3, which are at least valid in some fairly common cases.

4. We can also see that, in some cases, LCP1, LCP2, and LCP3 do work faster than
LCP0, especially at high friction, near an equilibrium solution. This can be inferred
from Table 1; the P1 part of the LCP3 step is also common for the LCP1 and LCP2
steps, since it shows that LCP1 and LCP2 would have converged for a fairly small
convergence tolerance. For this particular case (at all contacts we have very slow
sliding) we can see that LCP3 gives a very effective approximation of the solution
at a relatively small cost.

5. When using LCP3 to simulate the Brazil Nut effect, we have obtained that the large
disk migrates to the top in about 50 shakes. This is in the same range as the number
of shakes obtained by Monte-Carlo simulation where the shake is simulated by a
heating-cooling schedule with periodic horizontal boundary conditions [28] (in our
case we have hard vertical walls). Therefore, at least for this case, the convex relax-
ation algorithm LCP3 produces realistic results. Four frames of the simulation are
presented in Figure 4.

6. Conclusions

We consider the issue of solving the mixed linear complementarity problem that appears
when designing time-stepping methods for multi-rigid-body dynamics with contact and
friction.

Here we discuss the impulse-velocity approach introduced in [30, 6], that, for large
friction, circumvents the problem of lack of solutions for certain rigid-body dynamics
problems with contact and Coulomb friction. In this work we are interested in solving
efficiently the linear complementarity problem at least for sufficiently small but nonzero
friction coefficients.

We show that even simple problems such as the example presented in Section 3 may
have a nonconvex solution set at rest, for arbitrarily small but nonzero friction. In effect,
simple examples can be constructed based on this one where the number of solution
facets grows exponentially with the size of the problem. Problems of this type may be
difficult to solve.

We show that for sufficiently small friction, however, a certain fixed-point iteration
converges globally and linearly to the velocity solution while solving convex subprob-
lems, provided that the friction cone is pointed at µ̃ = 0, or, equivalently, that the
configuration is disassemblable [2]. Fixed-point iterations have been used in the past to
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Fig. 4. Four frames of a two-dimensional Brazil nut effect simulation

solve elastostatic friction problems for small friction coefficients [10, 15, 17, 24, 25],
when the force component of the solution is unique. Our method is an improvement over
previous approaches in that we obtain convergence even for configurations for which the
impulse or force part of the solution is not unique. In particular, even problems that have
an overall nonconvex solution set like the example in Section 3 (but a unique velocity
solution) can be solved by our fixed-point iteration.

It is true that, for small friction, the classical acceleration force model may have a
solution and the development that treats the problem in impulse–velocity coordinates
may not be necessary to get a consistent framework [16, 31]. However, if the friction is
treated implicitly in mixed explicit-implicit Euler step, then one would have to solve at
every step the linear complementarity problem (2.7–2.8) [7]. The implicit treatment of
friction (in the sense that dissipation is enforced based on the velocity at the end of the
interval) is useful because of the good energy properties [7, 6]. Therefore, the approach
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(2.7–2.8) is relevant even when the configuration is consistent in a classical sense but
the discrete scheme needs to preserve the energy properties of the continuous model.

We also demonstrate that efficient approximations of the linear complementarity
problem (2.7–2.8) can be constructed by using only one or two convex linear comple-
mentarity problems (or, equivalently, one or two convex quadratic programs) per step.
These approximations have very low error when either the friction or the tangential
velocity at the contact is small, and can be seen as one step of our fixed point itera-
tion algorithms. We demonstrated that for more than 100 bodies in two dimensions this
method is much faster than solving the linear complementarity problem that may have a
nonconvex solution set. In addition, the approximation satisfies many of the constraints
of the simulation, and can be shown to dissipate energy, for zero external force. Such
approximations may prove very important for real-time simulations where the users may
be unwilling to let costly algorithms run to completion and where a coarse approxima-
tion that is physically meaningful may be sufficient. We have demonstrated that this
approximation can be used to realistically simulate the Brazil nut effect [28].
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