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Time-stepping methods using impulse-velocity approaches are guar-
anteed to have a solution for any friction coefficient, but they may
have nonconvex solution sets. We present an example of a configu-
ration with a nonconvex solution set for any nonzero value of the
friction coefficient. We construct an iterative algorithm that solves
convex subproblems and that is guaranteed, for sufficiently small fric-
tion coefficients, to retrieve, at a linear convergence rate, the velocity
solution of the nonconvex linear complementarity problem whenever
the frictionless configuration can be disassembled. In addition, we
show that one step of the iterative algorithm provides an excellent
approximation to the velocity solution of the original, possibly non-
convex, problem if the product between the friction coefficient and
the slip velocity is small.
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1. Introduction

Multi-rigid-body dynamics with contact and friction is fundamen-
tal for virtual reality and robotics simulations. However, the Coulomb
model for friction poses several obstacles in the path of efficient simu-
lation. The classical acceleration-force approach does not necessarily
have a solution even in the simple case of a rod in contact with a ta-
ble top at high friction [20, 21]. Recently, time-stepping methods have
been developed in an impulse-velocity framework that avoid the in-
consistencies that may appear in the classical approach [3, 4, 21, 20].
These methods can be modified to accommodate the most common
types of stiffness [2]. When there is no friction, these time-stepping al-
gorithms solve, at every step, a linear complementarity problem that
represents the optimality conditions for a convex quadratic program.

When the friction coefficients are nonzero, however, this interpre-
tation is lost and the solution set may be nonconvex, even for small
friction coefficients as we show with an example, which may increase
the computational effort of finding a solution. In this work we attempt
to find a solution to the possibly nonconvex linear complementarity
problem by using an algorithm that solves convex subproblems and
has an upper bounded linear convergence rate, at least for small fric-
tion coefficients.

2. The Linear Complementarity Subproblem of the
Time-Stepping Scheme

In the following ¢ and v constitute, respectively, the generalized
position and, respectively, generalized velocity vector of a system of
several bodies [13].

A. Model Constraints

Our approach covers several types of constraints. In the follow-
ing we say that the variables a,b are complementary if a > 0, b > 0
and ab = 0, which we denote by a > 0 L b > 0. For vectors, such a
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relationship is to be understood componentwise.
Joint Constraints. Such constraints are described by the equations

09(q)=0,i=1,2,...,m. (1)

Here, ©((q) are sufficiently smooth functions. We denote by v (q)
the gradient of the corresponding function, or

vD(q) =v,09 (), i=1,2,...,m.
The impulse exerted by a joint on the system is D0 (q), where D
is a scalar related to the Lagrange multiplier of classical constrained
dynamics [13].
Noninterpenetration Constraints. These constraints are defined
in terms of a continuous signed distance function between the two
bodies ®(¢) [6]. The noninterpenetration constraints become

o0)(q) >0, j=1,2,....p. (2)

The function ®(q) is generally not differentiable, especially when the
bodies have flat surfaces. Usually, this situation is remediable by con-
sidering different geometric primitives [10] that result in noninterpen-
etration constraints being expressed in terms of several inequalities
involving differentiable functions ®(g). In the following, we may refer
to (j) as the contact (j), though the contact is truly active only when
®U)(q) = 0. We denote the normal at contact (j) by

n9(q) = v, 89 (q), j=1,2,...,p. (3)

When the contact is active, it can exert a compressive normal impulse,
cgf G (¢) on the system, which is quantified by requiring cgf > 0.
The fact that the contact must be active before a nonzero compression

impulse can act is expressed by the complementarity constraint
oW (g) >0 L) >0, j=12...p

Frictional Constraints. These are expressed by means of a dis-
cretization of the friction cone [2, 3, 20]. For a contact j, we take
a collection of coplanar vectors d;(q), i = 1,2,...,m¢, which span
the plane tangent at the contact (though the plane may cease to
be tangent to the contact normal when mapped in generalized coor-
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dinates [6]). The cover of the vectors d;(q) should approximate the
transversal shape of the friction cone. In two-dimensional mechan-
ics, the tangent plane is one dimensional, its transversal shape is a
segment, and only two such vectors di(q) and da(q) are needed in
this formulation. We denote by D(q) a matrix whose columns are
di(q), 1=1,2,...,m¢c, or D(q) = [di(q),d2(q),-..,dm-(q)]. A tan-
gential impulse is Y "G Bidi(q), where 3; >0, i =1,2,...,mc. We
assume that the tangential contact description is symmetric, that is,
that for any 7 there exists a j such that d;(¢) = —d;(q).

The friction model ensures maximum dissipation for given normal
impulse ¢, and velocity v and guarantees that the total contact im-
pulse is inside the discretized cone. We express this model as

D(@)Tv+Xe>0L3>0, (@)
ucn—eTﬁZOJ_/\ZO.

Here e is a vector of ones of dimension m¢, e = (1,1,..., 1)T, s
the friction parameter, and ( is the vector of tangential impulses § =
(B1, P2, - -, Bme)- The additional variable A is approximately equal to
the norm of the tangential velocity at the contact, if there is relative
motion at the contact, or ||D(q)Tv|| # 0 [3, 20].

Notations. We denote by M(q) the symmetric, positive definite,
mass matrix of the system in the generalized coordinates ¢ and by
k(t,q,v) the external force. All quantities described in this section
associated with contact j are denoted by the superscript ). When
we use a vector or matrix norm whose index is not specified, it is the
2 norm.

B. The Linear Complementarity Problem

To include these results in a time-stepping scheme, we formulate all
geometrical constraints at the velocity level by linearization. To this
end we assume that at the current time step we have exact feasibility
of the noninterpenetration and joint constraints. This assumption can
be practically satisfied if at the end of each integration step we do a
projection onto the feasible manifold [2].
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Let h be the time step. If, at some time ¢!, the system is at po-
sition ¢ and velocity v, then we choose the new position to be
¢ = ¢ + hol+D | where v+ is determined by enforcing the
simulation constraints. For joint constraints the linearization leads to
V007 (¢ = O (41)y(+1) = 0. For one such noninterpen-
etration constraint 7, <I>(j)(q) > 0, linearization at ¢(*) for one time
step amounts to @ (¢1) + AW (¢0)ptHD) > 0, or

A)T

VoW (W)t 4 — 20, (5)

Since we assume that at step (1) all geometrical constraints are satis-
fied, this implies that w > 0. For computational efficiency, only
the contacts that are imminently active are included in the dynamical
resolution and linearized, and their set is denoted by .A. One practi-
cal way of determining A is by including all j for which ®U)(q) < 4,
where ¢ is a sufficiently small quantity, perhaps dependent on the
size of the velocity. After v('““l) is determined, one can decide that
the contact (j) is active if cgf ), the variable that is complementary to
the inequality (5), is positive.

If a contact switches from inactive to active, a collision resolution,
possibly with energy restitution, needs to be applied [3]. In this work
we assume that no energy lost during collision is restituted; hence we
avoid the need to consider a compression followed by decompression
linear complementarity problem.

After collecting all the constraints introduced above, with the ge-
ometrical constraints replaced by their linearized versions, we obtain
the following mixed linear complementarity problem.

MO —y -5 —D 0] [ol+D)] —Mv® — pk® 0
70 0 0 0 ¢y 0 0
a0 0 0 0 o |+ A =|pl| (6)
DT 0 0 0 E 3 0 5
L0 0 g -ET0o] | x| 0 ¢
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Cn 1% Cn P
B a| =0, B | =0, | >0 (7)
A ¢ A ¢

(1) 1(12)

0 0 0---eUs)
are the lumped LCP data, and A = {j1, j2,. .., js} are the active con-
tact constraints. The vector inequalities in (7) are to be understood
componentwise. We use the notation to indicate that the quantity is
obtained by properly adjoining blocks that are relevant to the aggre-
gate joint or contact constraints.

To simplify the presentation we do not explicitly include the de-
pendence of the geometrical parameters on the data of the simula-
tion. Also M®) = M(¢g)) is the mass matrix, which we assume to be
positive definite, at time (1), and k®) = k(t®, ¢®,v") represents the
external force at time (I). Note that, since A > 0, the results from
[3] can be applied to show that the above linear complementarity
problem is guaranteed to have a solution.

To establish our convergence results, we need several regularity
assumptions concerning the problem (6-7), which we describe in this
section.

The set of feasible constraint reaction impulses form the friction

cone, that is
FC(q) = {t = v, + fic + DB |en 2 0, B> 0, "
18D, < uDel?, vj e A}

We use the friction cone name for F'C(q) since for the case where
there are no joint constraint, we recover the usual definition of a
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friction cone. The key notion is the one of a pointed friction cone.
Definition: We say that the friction cone FC(q) is pointed if it
does not contain any proper linear subspace.
By using duality, we obtain the following description of pointed
friction cones:

FC(q) is pointed <V (c,,, cn>0,3> 0) # 0 such that

189, < M(j)c%j),Vj € A we must have that vc, + fic, + DB # 0
(9)
The last equation makes clear the physical interpretation of a pointed
friction cone: There is no nonzero reaction impulse (or force) that
results in a zero net action, i.e. the system or parts of it cannot get
“jammed”. Of interest to us will be the pointed friction cone notion
when /i = 0. In that case (9) becomes

ney, +ve, =0, ¢, >20=c¢,=0, ¢, =0.

It can be shown, again by using duality, that the above relation is
equivalent to the joint constraint matrix v having linearly indepen-
dent columns and

Ju such that #7v = 0 and 2lv > 0.

The latest condition means that the rigid body configuration can be
disassembled [7]: there exists an external force that breaks all contacts
while keeping feasibility of the joint constraints. This condition can
be estimated visually for most simple configurations.

When a nonlinear program whose constraints are (1) and (2) satis-
fies the above relation, it is said to satisfy the Mangasarian Fromovitz
constraint qualification or MFCQ [14, 15]. This property is essential
to ensure the good behavior (Lipschitz continuity) of the solution of
the nonlinear program with respect to its parameters [19]. Lipschitz
continuity is the key element that allows us to show convergence of
our fixed-point iteration (successive convex relaxation).
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Figure 1. Example with a nonconvex solution set

3. An Example of Configuration with Nonconvex
Solution Set

If the friction coefficients are ;l9) = 0, j € A, then the mixed linear
complementarity problem (6-7) has a positive semidefinite matrix
and can be shown to always have a convex solution set. Such mixed
linear complementarity problems can be solved by certain algorithms
in a time that is polynomial with respect to the problem size [5],
and the algorithms are called polynomial algorithms. This property
is important, because pivotal methods, such as simplex for linear
programming, are known to potentially need a number of pivots that
grow exponentially with the size of the problem. Such effects are
unlikely to appear for small-sized problems, but they may create an
inconvenience for large-scale problems.

An important question is whether it can be guaranteed that the
mixed linear complementarity problem (6-7) can be solved efficiently,
preferably in polynomial time, at least for small friction coefficients.

Consider the configuration in Figure 1, where a body of mass m,
shaped like a hexagonal pyramid, is in contact with a fixed tabletop
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(whose edges are not shown) in the position shown, for which we
are going to set up the linear complementarity problem (6-7). In the
following description we represent all relevant vectors with respect to
the global three-dimensional space. The generalized coordinates [13]
consist of the three translational coordinates and three rotational
coordinates of the body about its center of mass C.

The contact configuration is represented by six point-on-plane con-
tact constraints [6], one for each corner of the pyramid in contact
with the tabletop. The normal at each contact in global coordinates is
i = (0,0,1)T. From the center of mass C' we have six vectors, ), g =
1,2,...,6, pointing toward the six bottom vertices of the pyramid
and whose projection on the contact plane between the pyramid and
the tabletop are 79, j = 1,2,...,6. Note that p{¥) x 77 = #9) x 7, for
Jj=1,2,...,6, where x denotes the vector product. We assume that
the bottom of the pyramid is a regular hexagon, which means that
we have

D+ 7 78 =0, 7Y 47+ 70 = (10)

Since we will look only for solutions that have zero tangential im-
pulse, we do not describe the tangential vectors. It can be immediately

, , T
seen that the generalized normal becomes n7) = (ﬁT, (77(3 ) x ﬁ)T) ,
j=1,2,...,6. From the expression of the generalized normals and
(10) we obtain

—

2D 4+ n® L6 =3 (g) @ @ ) 3 (g) o

The mass matrix in the six coordinates is

mI3x3|03x3
M =
<O3><3 J )’

where J is the inertia matrix, which we assume to be symmetric
positive definite.

We assume that the initial velocity of this configuration, v(?), is 0.
The effect of the gravity is quantified by the external force vector

it
k:—g<03>.
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We expect that the solution of (6-7) is v) = 0. After we use all the
above defined quantities in (6-7) we obtain the mixed linear comple-
mentarity problems

25:1 nl) — hmg (8) = 0.
e >0 L A0 >0, j=1,2,...,6.

Using (11), we have the following choices that satisfy these con-
straints, and, thus, constitute a part of the solution: of (6-7)

1. (3) (5) _ hmg (2) _ (4) _ (6):0’ A = \B) = \6)

Cn” =Cp” =Cp” = —3 6 =C =0Cn
0, A& = \@ — x©® Z 1
2. o) = o = D) — 0, D) = o = {9 — hma (1) _ \@) = A6) =

If, however, we take the average of the solutions, we obtain that
P = h—?g, A0 = 3,7 =1,2,...,6 which violate the complementar-
ity constraint

pe? >0 LAY >0, j=1,2,...,6

as soon as 1 > 0 (the rest of the constraints must be satisfied because
they are linear). This implies that the solution set of (6-7) is not
convex for any nonzero friction coefficient.

To address the nonconvexity issue, in the following sections we de-
velop an iterative method that have a guaranteed rate of convergence
to the velocity solution of (6-7) for sufficiently small but nonzero fric-
tion coefficients. The methods have convex subproblems that can be
solved in polynomial time.

4. Sequential Convex Relaxation of (6-7)

We now investigate a convex relaxation of (6-7), with the ulti-
mate purpose of setting up a fixed-point iteration that converges to
its solution, at least for small values of the friction coefficient. To
simplify notation, we replace the superscript (I + 1) of the velocity
solution of (6-7) by *, and we use no superscript when defining the
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complementarity problems.

Due to lack of space, we will only sketch the important results
without proof, the proofs being available in a preprint [1].

We first approximate the mixed linear complementarity problem
(6-7) by the following mixed linear complementarity problem:

(MO v -7 —D 0] [ —Mv® — pk® 0
70 0 0 0 cy 0 0
nt 0 0 0 —p||enl|+ r+A =1p| (12)
DT 0 0 0 E||B 0 5
0 0 i —ET 0 A 0 ¢
L - JL
Cn P Cn P
B | =0, 3| >0, 5| >o0. (13)
A ¢ A ¢
Here I' = (F(jl), @2 .. ,F(js))T is a nonnegative vector that has as

many components as active constraints (elements in A). It is clear
that the solution of (12)—(13) coincides with the one of (6-7) if we
can ensure that T' = jiA. To simplify the notation, we denote by ¢!) =
—Mv® — peO

Important conclusions can be drawn from the observation that
the mixed linear complementarity problem represents the optimality
conditions of the quadratic program

min,, ) %”UTM(I)’U + q() v

subject to  n0 v — WAG) > 10 — AW, je A
DUy + A( Neld) >0, jeA (14)
ufvzo, 1=1,2,...,p
A0 >0 je A

In particular, since the quadratic program (14) is convex, it and there-
fore (12-13) can be solved in a time that is polynomial with the size
of the problem. An issue is that the objective function of (15) is not
strictly convex in A that may lead to nonuniqueness of the solution,
which is an obstacle in expressing sensitivity results with respect to
the parameter I' (which we will adjust iteratively so that the solution
satisfies I' = iA and will thus be a solution of (6-7)). But this prob-
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lem can be removed by noting that v, the velocity solution of (14) is

a solution of the following quadratic program, that does not include
A

min,, %UTM(Z)U + q(l)TU
I/iT’UZO, 1=1,2,...,p.

Recall that we assume that '() >0 and AU) >0 for j € A. We
note that this quadratic program is always feasible, because v = 0 is
a feasible point. Moreover, it has a unique solution v*(I"), since we
assume that M is positive definite. This allows us to define the

mapping
Py(I') = v*(I). (16)

Let v be a velocity vector. For the given active set A, another useful
function that we define is

A(v) = A, (17)
where

AD = max {@”Tug}, je A

i ()
1=1,2,...mg

Because of the way D) is balanced for a given contact 7, it can be
shown that after v*(I"), the solution of (15) is found, then a \*, that,
together with v*(I"), is a solution of (14) can be found by choosing

A= A(vY). (18)

Therefore, all the properties of the velocity solution of (12-13) can
be inferred by working with (15).

Our setup suggests the following iteration, after initializing with
I' = 0: Find a solution v* of (15), compute I' = jiA(v*) and then pro-
ceed with the next iteration. We call this algorithm LCP1. We can see
that the algorithm solves successively (15) which is a strictly convex
quadratic program, which is why we call it a successive convex relax-
ation algorithm . The algorithm is in effect a fixed-point iteration for
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the mapping
x1(v) = Pi(aA(v)). (19)

The key to show that LCP1 ultimately converges to a fixed point,
and thus, a velocity solution of (6-7) (since then we would have
Py(aA(v*)) = v*, and, by our previous observation concerning the
relationship between (14) and (15), it follows that v* is a solution of
(6-7)) for sufficiently small friction is to show that it is a contraction,
which is the following result.

Theorem 4.1

1
i Consider the set S = {v |MO2 ], < |MD

x1(5) € S.

it Assume that, for i =0, the friction cone FC(q) is pointed.
Then there exists i° > 0 such that whenever ||fi||, < p°, the
mapping x1(v) is a contraction over S in the || - ||
with parameter %

1
2qW 1, } Then

~ norm,

Sketch of the Proof The first part means that the kinetic energy
at the end of the step cannot exceed the kinetic energy of the system
with all constraints removed, and it follows much the same way as
in [3]. The second part is based on the crucial observation that the
friction cone is pointed if and only if MFCQ holds for the quadratic
program (15). This allows us to apply the sensitivity results of [19]
to conclude that P;(T") is a Lipschitz continuous mapping with pa-
rameter L ( that does not depend on fi as soon as the friction cone
is uniformly pointed, which is the critical technical difficulty) over S.
The mapping A(v*) is uniformly Lipschitz with some parameter Kp
which means that the mapping xi is Lipschitz continuous with pa-
rameter ||fi|| . LK p. The latter can be made smaller than 1, provided
that we choose ||fi]|,, to be sufficiently small, which completes the
proof. For details, see [1]. o

An interesting conclusion occurs for our example in Section 3 that
does have a pointed friction cone (in effect for any friction coefficient,
following our duality interpretation, since it cannot get jammed, for
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any friction coefficient). At the same time, it has a nonconvex solution
set for any nonzero friction coefficient. Based on the previous Theo-
rem, our fixed-point iteration scheme based on successive convex re-
laxation will converge, for sufficiently small friction coefficients, with
constant linear rate to the velocity solution of nonconvex problems
while solving convex subproblems (that have polynomial complexity)!

For efficiency reasons, especially in real-time applications, one may
wish to stop an iterative algorithm significantly before its conver-
gence, perhaps even after one such step. In that case one may consider
using as an approximation to the solution velocity just the first iter-
ation of the fixed-point iteration for yi. The following result, which
is based on the Lipschitz continuity properties of the solution of (15)
estimates the error in velocity for this case.

Theorem 4.2 Let M be a convex compact set such that FC(q) is
a pointed cone whenever i = diag(ft) € M. Then there exists L, de-
pending on M and S such that for any velocity solution v* of (6-7)
the following inequality holds:

[o* = x1(0)[lc < LllAA(VY) |-

Therefore x1(0), the solution of (15) when I' = 0, approximates
very well the solution of (6-7) when the product between the friction
coefficient and the tangential velocity is small (though the friction co-
efficient itself does not need to be small). In particular, configurations
that have a no slip solution are computed exactly by this method. We
call LCP2 the time-stepping scheme that is based on one iteration of
x1(0) (an thus one resolution of (15)). Comparing (12-13) with (6-7)
we see that x1(0) satisfies all the constraints of (6-7) except the com-
plementarity constraint between the normal impulse and the normal
velocity. This means that the velocity produced by LCP2 may pre-
dict take-off even when there is a nonzero normal impulse. The first
part of Theorem 4.1 ensures that a time-stepping scheme based on
x1(0) will in fact be stable since the inequality defining S is sufficient
to generate a bounded velocity over any fixed time interval and for
every timestep [3].
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Table 1. Comparison between LCP0 and LCP2

u | LCPO CPU | LCP 2 CPU | LCP 2 Residual Error
0.1 29.76 34.42 0.06
0.2 | MAX ITER 36.28 0.12
0.4 | MAX ITER 24.03 0.07
0.6 | MAX ITER 20.40 le-8
0.8 | MAX ITER 14.52 8e-11

A. Numerical Results

We have implemented the discussed algorithms in Matlab. We have
simulated several two-dimensional cannonball arrangements with a
variable number of disks of diameter 3: n disks placed on a long
immovable plank, all in linear contact, then n — 1 disks on top of
these, and so forth. No joint constraints were considered. The time
step was chosen 0.05, all collisions are plastic and all simulations start
with 0 velocity. We denote by LCP0 Lemke’s method applied to (6-7)
(and which is guaranteed to find a solution [3]). To solve the linear
complementarity problems (or the respective quadratic programs) we
use PATH [11, 16].

We ran the following examples: (1) Arrangement with 21 disks, for
friction p = 0.05 at all contacts. The stopping criteria for the iterative
method LCP1 was le — 5 difference in A(v) between iterations. The
results are shown in Figure 2. (2) Arrangement with 136 disks and
1 = 0.2 for all contacts. Here LCP0 and LCP1 failed with a maximum
number of iterations reached message (MAX ITER, 10,000), so the
results are plotted only for LCP2. The average normal velocity error
(which we do not plot here) did not exceed .12. (3) A comparison
between LCP2 and LCPO running times for 210 disks (20 on the
bottom), for the first step of the simulation. The results are displayed
in Table 1 for several values of the friction coefficients. The error is
the error in normal velocity (for a contact (j) that satisfies > 0,
the normal velocity error is u)\(j)) which is the only part violating
the LCP constraints).

From the above mentioned figures and table we extract the follow-
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ing conclusions. (1) For a small number of bodies the Lemke solver
solves LCPO faster than our iterative method LCP1 but slower than
LCP2. The situation for LCP1 can be considerably improved by ap-
plying specialized convex quadratic program solvers ( a factor of 2
improvement will result from using Choleski instead of LU factoriza-
tion as PATH currently does). Specialized techniques for convex QP
approaches will be discussed in future research. (2) LCP1 has con-
verged for 21 disks and p = 0.05, as predicted by the Theorem 4.1.
(3) Other techniques (even if approximate) are essential for larger
problems because, for 136 bodies, all solvers except LCP2 (the one
iteration solver) failed on the problem. In such situations and given a
possible real-time constraint, users may have to accept approximate
but fast solutions, like the ones provided by LCP2, which are at least
valid in some fairly common cases. Note that for 21 bodies, both
LCPO and LCP2 solved the problem in substantially less than 50
ms most of the time, which would make the results compatible with
real-time simulation. (4) We can also see that, in some cases, LCP1
and LCP2 do work faster than LCP0O (which actually fails on some
of these problems), especially at high friction, near an equilibrium
solution. This can be inferred from Table 1 (where LCP1 would stop
at the last two cases if the stopping criteria was less than le — 5).

5. Conclusions

We construct an algorithm for the linear complementarity problem
that appears in certain time-stepping schemes [20, 3]. We show that
even simple problems such as the example presented in Section 3 may
have a nonconvex solution set at 0 velocity, for arbitrarily small but
nonzero friction.

We show that for sufficiently small friction a fixed-point iteration
(successive convex relaxation) approach converges linearly to the in-
tended velocity solution provided that the friction cone is pointed.
Fixed-point iterations have been used in the past to solve friction
problems for small friction coefficients [8, 17, 18]. Nevertheless, our
method is different from previous approaches in that we obtain con-
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Figure 2. Comparison of a 2D simulation with 21 bodies
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Figure 3. Results of a 2D simulation with 136 bodies
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vergence even for configurations for which the impulse or force part
of the solution is not unique, or the solution set may not even be
convex (though the velocity may be unique).

It is true that, at small friction, the classical acceleration-force
model may have a solution and the development that treats the prob-
lem in impulse—velocity coordinates may not be necessary to get a
consistent framework [12]. If the friction is treated implicitly, how-
ever, then one would have to solve at every step the linear comple-
mentarity problem (6-7) [2]. The implicit treatment of friction (in
the sense that dissipation is enforced based on the velocity at the end
of the interval) is useful because of the good energy properties [2, 3].
Therefore, the approach (6-7) is relevant even when the configura-
tion is consistent in a classical sense but the discrete scheme needs to
preserve the energy properties of the continuous model.

We also demonstrate that efficient approximations of the linear
complementarity problem (6-7) can be constructed by using only
one linear complementarity problem (or, equivalently, one convex
quadratic program) per step. This approximation has very low error
when the product between the friction coefficient and the tangential
velocity at the contact is small, can solve efficiently configurations
with hundreds of bodies, and results in a time-stepping scheme with
good energy properties of the simulation. Such approximations may
prove very important for real-time simulations where the users may
be unwilling to let costly algorithms run to completion and where a
coarse approximation that is physically meaningful may be sufficient.
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