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Abstract

We consider the simulation of three-dimensional transonic Euler flow using pseudo-transient Newton—Krylov methods
[8,9]. The main computation involves solving a large, sparse linear system at each Newton (nonlinear) iteration. We
develop a technique for adaptively selecting the linear solver method to match better the numeric properties of the
linear systems as they evolve during the course of the nonlinear iterations. We show how such adaptive methods can be
implemented using advanced software environments, leading to significant improvements in simulation time.
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1. Introduction

Implicit solution methods play a critical role in compu-
tational dynamics (CFD) applications modeled by partial
differential equations (PDEs) with different temporal and
spatial scales. We consider the solution of the classical
problem of three-dimensional transonic Euler about an
ONERA M6 wing using pseudo-transient Newton—Krylov
methods [8]. The majority of computation time in these
simulations is spent on solving a large, sparse linear system
at each nonlinear iteration, and the numeric properties of
these linear systems evolve during the course of the non-
linear iterations. In this paper, we develop an approach for
adaptively selecting linear solvers to match more closely
the evolving numeric properties of the linear systems. We
discuss the instantiation of such adaptive methods using
advanced software environments, and we report on experi-
ments that demonstrate significant improvements in overall
simulation time through adaptive methods.

Section 2 contains a description of our transonic ap-
plication. Section 3 describes the Newton—Krylov algorith-
mic framework for the solution of such PDE-based CFD
problems and its implementation using advanced software
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environments. Section 4 presents an approach for adaptive
linear solver selection for our application. This section con-
tains empirical results that show the significant reductions
in total simulation times achieved with adaptive solvers
relative to the traditional approach of using a single linear
solution method. Section 5 contains concluding remarks
and future research directions.

2. Simulating three-dimensional transonic flow

We solve the steady-state, three-dimensional compress-
ible Euler equations on mapped, structured meshes using
a second-order, Roe-type, finite-volume discretization. The
governing system of PDEs can be expressed in coordinate-
invariant form by

V- (pu) =0, )]
V- (puu+ pl)=0, 2
V- ((pe+ pju) =0, (3)

where p, u, and e represent the density, three-dimensional
velocity, and energy density fields, respectively. The pres-
sure field p is determined by an algebraic equation of state,
e = +1p(u?+v? +w?), where y is the ratio of specific
heats. As described in [13], this system and its discretiza-
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Fig. 1. Mach number contours (the local tangential velocity
magnitude divided by the local sound speed) of the converged
flowfield on the upper wing surface for a mesh with 224,264
nodes.

tion are standard and produce a nonlinear system of the
form

) =0, (C))
where u is a vector of unknowns representing the state
of the system, and f(u) is a vector-valued function of
residuals of the governing equations.

The basis for our implementation, as discussed in [8], is
a legacy sequential Fortran 77 code by Whitfield and Taylor
[13] that uses a mapped, structured C-H mesh to compute
steady-state residuals and finite-difference Jacobians. The
residual evaluations are undertaken to second order, while
the Jacobian matrices (used only for preconditioning in
this work) are evaluated to first order. We replaced the ex-
plicit characteristic boundary conditions with fully implicit
characteristic variants, which help to maintain stability in
the pseudo-transient Newton—Krylov approach, which is
discussed in Section 3.

We explore the standard aerodynamics test case of tran-
sonic flow over an ONERA M6 wing using the frequently
studied parameter combination of a freestream Mach num-
ber of 0.84 with an angle of attack of 3.06°. The robust-
ness of solution strategies is particularly important for this
model because of the so-called A-shock that develops on
the upper wing surface, as depicted in Fig. 1.

3. Algorithms and software

We use pseudo-transient continuation to solve the dis-
cretized steady-state nonlinear problem given by Eq. (4).
As discussed in [9], we solve a sequence of problems
derived from the model %—L: = — f(u), namely

1
g,g(u)zﬁ(u—u‘f*‘)jtf(u):o, =1,2,.... 3)

Our time-stepping scheme is based on the SER technique
[10] and advances the time step in inverse proportion to

. 2 i
residual norm progress, t¢ = r¢!. H;EZH;” within bounds

relative to the current step [8]. We employ a locally adapted
variant, where for a given mesh point j, rf = afNéFL,
where «; is a ratio of signal transit time to cell volume,
and Ncp. is the CFL number, which serves as a global
dimensionless scaling factor. At each time step we apply a
single inexact Newton iteration (see, e.g., [11]) to Eq. (5)
through the two-step sequence of (approximately) solving
the Newton correction equation

(é + f(u“)) Suf = — f*h), (©6)

where [/ is the identity matrix, and then updating the iter-
ate via u* = u*~' 4 8u*. We employ matrix-free Newton—
Krylov methods (see, e.g., [7]), in which we compute the
action of the Jacobian on a vector v via directional differ-
encing of the form f'(u)v ~ W’ where £ is a dif-
ferencing parameter. We precondition the Newton—Krylov
methods, whereby we increase the linear convergence rate
at each nonlinear iteration by transforming the linear sys-
tem (6) into the equivalent form

B—I (é +f/(uk—l)> 614]‘ — —B_]f(uk_]), (7)

through the action of a preconditioner, B, whose inverse
action approximates that of the Jacobian (see, e.g., [2]).

We implement the pseudo-transient Newton—Krylov
solvers using PETSc [3,4], a suite of software for the
scalable solution of PDE-based applications. The software
design, which incorporates a hierarchy of data and al-
gorithmic components, facilitates experimentation and the
development of novel algorithms. For example, we imple-
mented the adaptive linear solvers discussed in Section 4
by simply introducing a new routine that monitors the
nonlinear convergence and then activates different linear
solvers depending on how the simulation is progressing.
No changes in the application code or library were required
for these experiments.

4. Adaptive linear solvers

We report on experiments that compare the traditional
approach of using a single linear solver for the entire
pseudo-transient Newton process with an adaptive scheme
that employs different preconditioners during different sim-
ulation phases. We consider two problem sizes, each hav-
ing five degrees of freedom per node: a mesh of dimension
50x 10 x 10 (labeled problem 1) and a mesh of 98 x 18 x 18
(labeled problem 2). As a preconditioning operator we use
a first-order finite difference approximation of the Jacobian,
which is held fixed over ten nonlinear iterations. All runs
plotted in Figs. 2—4 use matrix-free GMRES(10) and a rel-
ative linear convergence tolerance that holds fixed for most
of the nonlinear solve at 10? but then decreases during the
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Fig. 2. Left-hand graph: Plot of CFL number vs. nonlinear iteration number, which illustrates the CFL transition from low to high values
during the pseudo-transient Newton algorithm. Right-hand graph: Plot of time for each linear solve vs. nonlinear iteration number, which
illustrates that different amounts of work are needed to solve the linear systems during various phases of the overall simulation. Both
plots are for problem 2 using matrix-free GMRES(10) with a point-block ILU(1) preconditioner.
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Fig. 3. Comparison of traditional linear solvers, which use a single preconditioner throughout the entire simulation, and an adaptive
scheme, which uses a different preconditioner during each of the three phases of the pseudo-transient Newton—Krylov algorithm. We plot
convergence rate (in terms of residual norm) versus both nonlinear iteration number (left-hand graph) and time (right-hand graph) for

problem 1 using matrix-free GMRES(10).

final Newton phase. We performed these experiments on a
dedicated workstation with a dual-CPU 500 MHz Pentium
III with 512 MB of RAM.

Approximately eighty percent of overall time is devoted
to solving the linearized Newton systems, and the choice
of preconditioners largely determines whether low overall
computational cost can be achieved [8]. Thus, we have
developed an adaptive strategy based on the changing nu-
meric properties of the Newton systems (6) during the
course of the pseudo-transient iterations. As Kelley and

Keyes discuss in their convergence analysis of pseudo-
transient techniques [9], we can view these schemes as
composed of three phases. During the first phase, when
the time step 7 remains relatively small, the Jacobians
associated with Eq. (5) are well conditioned. During the
second phase the time step T¢ advances to moderate values,
and in the final phase t* transitions toward infinity, so that
the iterate u® approaches the root of Eq. (4). The left-hand
graph of Fig. 2 plots CFL number versus time for problem
2, while the right-hand graph depicts the time spent during
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Fig. 4. Comparison of traditional linear solvers, which use a single preconditioner throughout the entire simulation, and an adaptive
scheme, which uses a different preconditioner during each of the three phases of the pseudo-transient Newton—Krylov algorithm. We plot
convergence rate (in terms of residual norm) versus both nonlinear iteration number (left-hand graph) and time (right-hand graph) for

problem 2 using matrix-free GMRES(10).

each linear solve, using a fixed preconditioner of point-
block ILU(1) with block size five. We observe that varying
amounts of work are done during the linear solves in each
phase of the pseudo-transient algorithm.

In response to this observation, we developed adaptive
linear solvers that employ a different preconditioner for
each of the three phases of the simulation, as indicated by
CFL number. Our goal was to combine more robust (but
more costly) methods when needed in a particular phase,
with faster (though less powerful) methods in other phases,
with the aim of reducing overall time to solution.

The graphs in Figs. 3 and 4 compare several base pre-
conditioner methods with adaptive schemes for problems
1 and 2, respectively. We plot convergence rate (in terms
of residual norm) versus both nonlinear iteration number
(left-hand graph) and time (right-hand graph). We note that
the nonlinear model employs a subtle form of continuation
in boundary conditions by activating the full characteristic
boundary conditions only after the tenth nonlinear itera-
tion; this accounts for the spikes seen in the residual norm
histories.

The convergence of the adaptive ILU methods, which
change the level of fill in an incomplete factorization
preconditioner during each phase of the pseudo-transient
method, reduced the overall time to solution for these cases
by 2040 percent relative to traditional fixed linear solvers.
While these preliminary experiments show the promise of
adaptive linear solvers, much research remains to determine
the most effective combinations of methods for particular
problems.

5. Conclusions

We have provided a framework for adaptively selecting
the linear solvers that are at the heart of implicit CFD
codes using pseudo-transient Newton—Krylov algorithms.
We demonstrated how simulation time can be reduced
significantly by adaptively selecting linear solvers to fit the
evolving numeric properties of linear systems generated at
each nonlinear iteration.

Such adaptive schemes can also be applied to other
computational steps of PDE-based CFD simulations. Thus,
using multi-method strategies for dynamic matching of
method attributes to problem characteristics can result in
dramatic performance improvements. Multi-methods can
also be used in an alternate form; for example, when
several methods with different computational costs and
failure rates are available for solving the same problem, a
composite of these methods can improve reliability while
minimizing worst-case average execution time [5,6]. We
plan to continue our work on multi-method techniques
and their instantiation through the design of advanced
software architectures and common abstract interfaces [12].
We conjecture that these approaches can provide significant
performance improvements and lower development costs
for large-scale applications over traditional techniques.
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