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ACHIEVING VERY HIGH ORDER FOR IMPLICIT EXPLICIT TIME STEPPING:
EXTRAPOLATION METHODS∗

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU‡

Abstract. In this paper we construct extrapolated implicit-explicit time-stepping methods that allow one to
efficiently solve problems with both stiff and nonstiff components. The proposed methods can provide very high
order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework. These methods are simple
to construct, and easy to implement and parallelize. We establish the existence of perturbed asymptotic expansions of
global errors, explain the convergence orders of thesemethods, and explore their linear stability properties. Numerical
results with stiffODEs, DAEs, and PDEs illustrate the theoretical findings and the potential of these methods to solve
multiphysics multiscale problems.

Key words. extrapolation methods, implicit explicit methods, ODE, DAE index-1, PDE

AMS subject classifications.

1. Introduction. Modelsdescribedbyprocesses that havemultiple physics andmultiscale
components are pervasive in numerical simulations. Typical applications include mechanical
and chemical engineering, aeronautics, astrophysics, meteorologyandoceanography, financial
modeling, and environmental sciences, which are modeled by Navier-Stokes [Bramkampa
et al., 2004], convection-diffusion-reaction [Ascher et al., 1995; Ruuth, 1995; Constantinescu
et al., 2008], or Black-Scholes. The individual physics or scale components typically have
very different properties that are reflected in their discretization; for example, for advection-
diffusion-reaction systems, the discrete advection has a relatively slow dynamics, while the
diffusion and chemistry are typically fast evolving [Gebhardt et al., 2002; Ruuth, 1995; Verwer
et al., 1996]. The dynamics of a process can be categorized in the relative fast and slow terms.
The informal expressions stiff and nonstiff are commonly associated with the fast and slow
evolution, respectively.

The discretization in time of slow processes with an explicit method is typically more
efficient, because of its low cost, than using an implicit scheme, whereas implicit methods are
more appropriate for stiff processes because of their favorable stability properties [Hairer and
Lubich, 1988; Hairer et al., 1988]. For multiscale processes, purely explicit or implicit methods
are not efficient because, in general, explicit methods require prohibitively small time steps
and implicit methods are either too difficult to implement or too expensive to compute [Hairer
et al., 1993; Lambert, 1991].

An approach to solving problems with both stiff and nonstiff components that has gained
widespread popularity is called implicit-explicit (IMEX) method. In the IMEX approach
one uses an implicit scheme for the stiff components and an explicit integrator for the slow
dynamics such that the combined method has the desired stability and accuracy properties.
IMEX linear multistep methods have been investigated in [Ascher et al., 1995; Frank et al.,
1997; Hundsdorfer and Ruuth, 2007a], and IMEX Runge-Kutta schemes have been developed
in [Ascher et al., 1997; Boscarino, 2007; Pareschi and Russo, 2000; Verwer and Sommeijer,
2004]. These methods are generally limited to low-consistency orders (typically, lower than
five). High-order IMEX Runge-Kutta methods are difficult to construct because of a large
number of order conditions, and IMEX linear multistep methods have increasing stability
restrictions with increasing the order of accuracy.

∗Emil Constantinescu was supported in part by the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Adrian Sandu and Emil Constantinescu
were supported by the National Science Foundation through award NSF CCF-0515170. Notice: This report is an
updated version of the original study described in [Constantinescu and Sandu, 2008].
†Emil Constantinescu (emconsta@mcs.anl.gov) Mathematics and Computer Science Division, Argonne National

Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA.
‡Adrian Sandu (asandu@cs.vt.edu) Department of Computer Science, Virginia Polytechnic Institute and State

University, Blacksburg, VA 24061, USA.

1



In this study we propose a new family of IMEX methods using extrapolation. In the
extrapolation approach several numerical approximationsusing the samemethodbutdifferent
fractions of the step size are used to eliminate truncation error terms.

We are concerned with solving the following problem

y′(x) = F(x, y) , F(x, y) = f (x, y) + g(x, y) , x > x0 , y(x0) = y0 , (1.1)

where f represents the nonstiff part and g the stiff component of the problem. We seek to apply
an explicit method to f and an implicit method to g. We consider the extrapolation methods
[Deuflhard, 1985; Hairer et al., 1993; Hairer and Wanner, 1993] for the efficient integration
of (1.1) and extend the pioneering work of Deuflhard [1985] and Deuflhard et al. [1987] on
extrapolated linearly implicit and mid-point rule to extrapolated IMEX methods.

The contributions of this paper are the following. We propose three novel implicit-explicit
methods. In contrast with IMEX Runge-Kutta and linear multistep strategies, the proposed
methods have a simple construction, and implementation, can attain very high orders of
accuracy, and are parallelizable. We investigate the linear stability properties and show the
existence of perturbed asymptotic expansions of the global discretization errors. We illustrate
these theoretical considerations on ODEs, DAEs, and PDEs examples.

The rest of the paper is organized as follows. In Section 2 we review the extrapolation
methods along with their consistency and linear stability properties; in Section 3 we investi-
gate the asymptotic error expansion for the extrapolated IMEX methods applied to index-1
differential algebraic problems [Hairer and Wanner, 1993]; and in Section 4 we illustrate the
theoretical findings on two numerical examples. In Section 5 we study the error expansion
for the extrapolated IMEX schemes applied to stiffODEs, and in Section 6 we show numerical
evidence that supports the theory. In Section 7 we present a typical PDE example and in
Section 8 we give some implementation considerations. The conclusions follow in Section 9.

2. Extrapolation Methods. Consider a sequence n j of positive integers with n j < n j+1,
1 ≤ j < M and define corresponding step sizes h1, h2, h3, . . . by h j = H/n j. Further, define the
numerical approximation of (1.1) at x0 +H using the step size h j by

T j,1 := yh j (x0 +H) , 1 ≤ j ≤M . [Base method] (2.1)

Historically, the notation T comes from the trapezoidal rule, albeit now it is used in place of
a generic discretization method. Let us assume that the local error of the pth-order method
employed to solve (2.1) has an asymptotic expansion of the form

y(x)− yh(x) = ep+1(x) h
p+1 + · · · + eN(x) h

N + Eh(x) h
N+1 , (2.2)

where ei(x) are errors that do not depend on h, and Eh is bounded for x0 ≤ x ≤ xend. This is
true for the methods discussed in this paper (see Theorem 2.1 and Section 2.1). By using M
approximations to (2.1) with different h j’s one can eliminate the error terms in the global error
asymptotic expansion (2.2) by employing the same procedure as in Richardson extrapolation
(see [Hairer et al., 1993, Chap. II.9]). High-order approximations of the numerical solution of
(1.1) can be determined by solving a linear system with M equations. Then the kth solution
represents a numerical method of order p + k − 1 [Hairer et al., 1993, Chap. II, Thm. 9.1]. The
most economical solution to this set of linear equations is given by the Aitken-Neville formula
[Aitken, 1932; Neville, 1934; Gasca and Sauer, 2000]:

T j,k+1 = T j,k +
T j,k − T j−1,k(
n j/n j−1

)
− 1
, j ≤M , k < j. (2.3a)

If the numerical method (2.1) is symmetric, then the Aitken-Neville formula yields

T j,k+1 = T j,k +
T j,k − T j−1,k

(
n j/n j−1

)2
− 1
, j ≤M , k < j. (2.3b)
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T 2.1
Tableaux with the Ti,k solutions and their corresponding classical orders for a pth order base method.

Ti,k Tableau Classical Orders
T11

T21 T22

T31 T32 T33

· · · · · · · · · · · ·

p
p p + 1
p p + 1 p + 2
· · · · · · · · · · · ·

Scheme (2.1), (2.3) is called the extrapolation method. For illustration purposes, the T j,k

solutions can be represented in a tableau; for example, see Table 2.1. As it can be seen in the
second column of Table 2.1, themethod is representedby a sequence of lower-order embedded
methods. This fact and the methods’s easy construction can be used for (macro-) step size
(H) control and variable-order approaches. There are several choices for the sequences n j;
however, Deuflhard [1983] showed that the harmonic sequence n j = 1, 2, 3, 4, . . . is the most
economical one. This sequence will be used for the rest of this study.

2.1. Base Methods. Typical base methods used to compute (2.1) include the forward
Euler method

yn+1 = yn + h
(
f (yn) + g(yn)

)
, [Explicit Euler]

and the linearly implicit Euler method (see Appendix A)

yn+1 = yn +
[
I − h ( f + g)′(yn)

]−1 (
h f (yn) + h g(yn)

)
. [Linearly implicit] (2.4a)

Method (2.4a) has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the base method,
for solving stiff ODEs of type (1.1) with (2.1), (2.3). Symmetric base methods have also been
considered. This class includes implicit mid-point rule andGBS [Deuflhard, 1985;Hairer et al.,
1993]. Explicit Euler and the symmetric methods are not addressed further in this study.

In this paperwe consider J = F′(y) ≈ J̃ = (g(y))′ and extend the analysis done byDeuflhard
et al. [1987] to problems that have components treated implicitly and explicitly such as in
the generic representation given in (1.1). We propose the following base methods for the
extrapolation algorithm (2.1), (2.3): the W-IMEX scheme

yn+1 = yn +
[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [W-IMEX] (2.4b)

the Pure-IMEX method

yn+1 = yn + h f (yn) +
[
I − h g′(yn)

]−1 (
h g(yn)

)
, [Pure-IMEX] (2.4c)

and the Split-IMEX scheme

yn+1 = y∗ +
[
I − h g′(yn)

]−1 (
h g(y∗)

)
; y∗ = yn + h f (yn) . [Split-IMEX] (2.4d)

The W-IMEX scheme is essentially the same as the linearly implicit method except for the
Jacobian, which is approximated by using only the stiff part of the problem, which is typically
required for the stability of the numerical algorithm. This makes the W-IMEX method com-
putationally cheaper than the linearly implicit one. The Pure-IMEX and Split-IMEX schemes
use the same approximation of the Jacobian (as in the W-IMEX); however, the explicit and im-
plicit parts are treated separately, making them truly IMEX schemes. The Split-IMEX scheme
evolves the explicit part first and then the implicit one.
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T 2.2
The classical local and global orders for the extrapolation methods with first order base methods.

Local Orders Global Orders
2
2 3
2 3 4
· · · · · · · · · · · ·

1
1 2
1 2 3
· · · · · · · · · · · ·

2.2. Consistency of the Extrapolation Methods. In Henrici’s notation [Henrici, 1962],
one-step methods are expressed as

yn+1 = yn + hΦ
(
xn, yn, h

)
. (2.5)

Methods (2.4) can be represented in Henrici’s notation in the following way:

Φ
(
xn, yn, h

)
=

[
I − h ( f + g)′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [implicit Euler]

Φ
(
xn, yn, h

)
=

[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
, [W-IMEX]

Φ
(
xn, yn, h

)
= h f (yn) +

[
I − h g′(yn)

]−1 (
h g(yn)

)
, [Pure-IMEX]

Φ
(
xn, yn, h

)
= h f (yn) +

[
I − h g′

(
yn

)]−1
(
h g

(
yn + h f (yn)

))
. [Split-IMEX]

Amethod of order p applied to a nonstiff differential equationwith each termbeing sufficiently
differentiable possesses an expansion of the local error of the (classical) form

y(x + h) − y(x) − hΦ
(
x, y(x), h

)
= dp+1(x) h

p+1 + · · · + dp+N(x) h
N+1 + O

(
hN+2

)
. (2.6)

Following [Gragg and Stetter, 1964; Hairer et al., 1993] we consider discretization methods
that have a global error function ep(x) that satisfies (see [Hairer et al., 1993, Chp. II, Thm. 3.6])

y(x) − yh(x) = ep(x) h
p + O(hp+1) . (2.7)

Methods (2.4) are of this type with p = 1. Then we have the following result due to Gragg and
Stetter [1964].

T 2.1 ([Gragg and Stetter, 1964]). Suppose that a given method with sufficiently smooth
increment functionΦ satisfies the consistency conditionΦ

(
x, y, 0

)
= f (x, y) and possesses an expansion

(2.6) for the local error. Then the global error has an asymptotic expansion of the form

y(x) − yh(x) = ep(x) h
p + · · · + eN(x) h

N + Eh(x) h
N+1 , (2.8)

where e j(x), j = p, p + 1, . . . , N, satisfies (2.7) with e j(x0) = 0 and Eh(x) is bounded for x0 ≤ x ≤ xend
and 0 ≤ h ≤ h0.

Proof. See Gragg [1965] and [Hairer and Wanner, 1993, Chp. II, Thm. 8.1].
Methods (2.4) possess the local error expansion (2.6) and global error expansion (2.8)

and therefore can be extrapolated by using (2.1),(2.3a). It follows that the classical orders of
accuracy of the extrapolation methods (2.4) are the ones given in Table 2.2.

Next we discuss the linear stability properties of IMEXmethods (2.4b, 2.4c, 2.4d) and their
extrapolations.

2.3. Linear Stability Analysis of the Extrapolated IMEX Methods. In this section we
investigate the linear stability properties of extrapolated (2.4) and follow the analysis done by
Frank et al. [1997]. Consider methods (2.4) applied to the following linear scalar test problem

y(t)′ = λy(t) + µy(t) , (2.9)

4



where λ, µ ∈ C; e.g., λ, µ can be the eigenvalues of the nonstiff ( f ) and stiff (g) parts in a PDE
application, respectively.

The transfer or stability functions R(z,w) defined by

yn+1 = R(λh, µh)yn (2.10)

for (2.4) are given by the following (see Appendix B).

yn+1 =

(
1

1 − (λh + µh)

)
yn; R(z,w) =

1

1 − (z + w)
[Linearly implicit] (2.11a)

yn+1 =

(
1 + λh

1 − µh

)
yn; R(z,w) =

1 + z

1 − w
[W-IMEX] (2.11b)

yn+1 =

(
1 + λh − λhµh

1 − µh

)
yn; R(z,w) =

1 + z − zw

1 − w
[Pure-IMEX] (2.11c)

yn+1 =

(
1 + λh(1 − µh(1 − λh))

1 − µh − λhµh

)
yn; R(z,w) =

1 + z

1 − w
[Split-IMEX] (2.11d)

The stability region S is defined by

S = {z ∈ Sz,w ∈ Sw; ||R(z,w)|| ≤ 1, (Sz × Sw) ⊂ (C × C)} .

A method with a transfer function R(. . . ) defined by (2.10) is stable if R(. . . ) ⊆ S. In other
words, for scalar problems, linear stability requires that |R(z,w)| ≤ 1. As expected, the linearly
implicit Euler method has the same transfer function as implicit Euler. Incidentally, the W-
IMEXmethod has the same transfer function as the Split-IMEX scheme. The stability function
of the extrapolated methods are calculated from the extrapolation formula (2.3a) as [Hairer
and Wanner, 1993, Chap. IV]:

R j,k+1(z,w) = R j,k(z,w) +
R j,k(z,w) − R j−1,k(z,w)

(n j/n j−k) − 1
,

where R(. . . ) is the one-step transfer function for a specific base method and the subscripts
denote the corresponding position in the extrapolation tableau.

In practice implicit methods that are A-stable or A(α)-stable [Hairer and Wanner, 1993]
are desirable for problems with stiff solution components. We take a practical approach and
ask the following question: To ensure A(α)-stability of the stiff part, what is the necessary
restriction on the nonstiff part? We consider three stability regions for the stiff part: A-stable
and A(α)-stable, α = 30◦, 60◦. In Figure 2.1 we show the stability regions for the implicit part
(left column) and the corresponding stability regions of the explicit part of extrapolated (2.4)
methods for several (T jk) entries in the extrapolation tableau (see Table 2.1).

We remark that the stability region of the implicit parts can easily accommodate the typical
stiff problems encountered in practice. Depending on the problem, the implicit stability region
can be relaxed by decreasing α; as a result, the explicit stability region grows, relaxing the step
size restriction for the entire method. Moreover, the stability regions of the extrapolated
explicit parts encompass a section of the imaginary axis, which is a desirable property when
solving certain PDEs via the method of lines [Hundsdorfer and Verwer, 2003]. We also note
that the explicit stability regions grow as more T jk terms are computed.

In practice, the fast process represented by µ has large values on the negative real axis,
whereas the slow process represented by λ sits close to the origin in the negative real half
plane. The stability regions presented in Figure 2.1 illustrate the relationship between the
IMEX solver and the physical process properties. Next we investigate the accuracy of the
extrapolated IMEX methods.
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F. 2.1. Stability region of the implicit part for A-stability and A(α)-stability, α = 30◦, 60◦ and the corresponding stability
region of the explicit part for several extrapolated IMEX terms with base methods (2.4).
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3. Global Error Expansion for Extrapolated IMEXMethodsApplied toDAEs. Consider
the following test problem

u′ = f (x, u) + g(x, u) (3.1)

with u = y + ε z .

The y component is associated with the slow evolving process and z with the stiff part of u.
The stiffness is controlled by ε; that is, the problem is stiffer as 0 ≤ ε≪ 1 shrinks. This problem
can be reformulated to obtain two processes, f the slow process and g the fast process:

{
y′ = f̂ (y, z) = f (y + ε z)
ε z′ = ĝ(y, z) = g(y + ε z)

with



y0 + ε z0 = u0

y + ε z = u
(y + ε z)′ = u′

. (3.2)

Then we have

(
y
ε z

)′
=

(
f (y, z)
0

)
+

(
0

g(y, z)

)
. (3.3)

This system can be analyzed in a singular perturbation problem (SPP) setting. We obtain the
reduced differential algebraic (DAE) form by taking ε→ 0:

(
y
0

)′
=

(
f (y, z)
0

)
+

(
0

g(y, z)

)
. (3.4)

We assume

gz is invertible , (3.5)

and hence (3.4) is an index-1 DAE.
To assess the accuracy of the extrapolated methods, we first analyze the discretization of

the reduced system (3.4) with the proposed extrapolated IMEX methods and then address
the discretization of the full problem (3.3). We next discuss the consistency properties of
extrapolated (2.4). We start with W-IMEX and continue with Pure-IMEX (Sec. 3.2) and Split-
IMEX (Sec. 3.3).

3.1. W-IMEX. Applying the W-IMEX method (2.4b) with y the nonstiff and z the stiff
components to (3.3) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
0

)
+ h

(
0

g
(
yi, zi

)
)
or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
, (3.6)

where g(0) = g(y0, z0). Then the reduced form of (3.6) given by ε→ 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
. (3.7)

To assess the accuracy of the W-IMEX scheme, we first analyze the reduced system (3.7) and
then address the full problem (3.6) in Section 5.1. The following theorems and their proofs
follow the ones for the extrapolated linearly implicit Euler method developed by Deuflhard
et al. [1987] and briefly described in [Hairer and Wanner, 1993, chap. VI.5]. We start with the
reduced problem (DAE) and give the following result.
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T 3.1 (Global error expansion of the extrapolated W-IMEX method applied to
DAEs). Consider problem (3.4) with consistent initial values (y0, z0), and suppose that (3.5) is
satisfied. The global error of the IMEX scheme (3.7) then has an asymptotic h-expansion of the form

yi − y(xi) =

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)
+ O

(
hM+1

)

zi − z(xi) =

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

)
+ O

(
hM+1

) , (3.8)

where a( j)(x) and b( j)(x) are smooth functions and the perturbations satisfy

α(1)
i
= 0 , α(2)

i
= 0 , β(1)

i
= 0 , ∀i ≥ 0 , (3.9a)

α(3)
i
= 0 , α(4)

i
= 0 , β(2)

i
= 0 , ∀i ≥ 1 , (3.9b)

α
( j)

i
= 0 , ∀i ≥ j − 3 , j ≥ 5 , (3.9c)

β
( j)

i
= 0 , ∀i ≥ j − 2 , j ≥ 3 . (3.9d)

The error terms in (3.8) are uniformly bounded for xi = ih ≤ H, if H is sufficiently small.
Proof. Following Deuflhard et al. [1987], the proof consists of two parts: in the first part

(a) truncated expansions are constructed, and in the second one (b) an error bound is obtained
from a stability estimate.

a) Consider the truncated expansions of the numerical solution

ŷi = y(xi) +

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)

ẑi = z(xi) +

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

) (3.10)

such that the defect of ŷi, ẑi inserted in themethod (3.7) is small (see [Hairer and Lubich, 1984]):

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+ O

(
hM+2

)
. (3.11)

The initial values are the exact solution (ŷ0 = y0, ẑ0 = z0), and the perturbation terms (α, β) are
assumed to satisfy

a( j)(0) + α
( j)

0
= 0 , b( j)(0) + β

( j)

0
= 0 , (3.12a)

α
( j)

i
→ 0 , β

( j)

i
→ 0 , for i→∞ . (3.12b)

The Taylor expansions for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) give

f
(
ŷi, ẑi

)
= f

(
y(xi), z(xi)

)
+

+ fy (xi)
(
ha(1)(xi) + hα(1)

i
+ . . .

)
+ fz (xi)

(
hb(1)(xi) + hβ(1)

i
+ . . .

)
+

+ fyy (xi)
(
ha(1)(xi) + hα(1)

i
+ . . .

)2
+ . . . ,

g
(
ŷi, ẑi

)
= g

(
y(xi), z(xi)

)
+

+ gy (xi)
(
ha(1)(xi) + hα(1)

i
+ . . .

)
+ gz (xi)

(
hb(1)(xi) + hβ(1)

i
+ . . .

)
+

+ gyy (xi)
(
ha(1)(xi) + hα(1)

i
+ . . .

)2
+ . . . .
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Similarly,

ŷi+1 − ŷi = y(xi+1) − y(xi)︸           ︷︷           ︸
hy′(xi)+

h2

2 y′′(xi)+...

+ h
(
a(1)(xi+1) − a(1)(xi)︸                ︷︷                ︸

h(a(1))
′
(xi)+...

+ α(1)
i+1
− α(1)

i

)
+ . . . ,

= hy′(xi) +
h2

2
y′′(xi) + · · · + h2

(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ . . . ,

ẑi+1 − ẑi = z(xi+1) − z(xi) + h
(
b(1)(xi+1) − b(1)(xi) + β

(1)
i+1
− β(1)

i

)
+ . . .

= hz′(xi) +
h2

2
z′′(xi) + · · · + h2

(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . . .

Replacing the above in (3.11) yields

(
I 0

−hgy(0) −hgz(0)

)
·

·



hy′(xi) +

h2

2 y
′′(xi) + · · · + h2

(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h2

(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h2

(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

+

+




fz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .


 + O

(
hM+2

)
. (3.13)

Equating coefficients of h1 in (3.13) gives

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirement (3.12b) givesα(1)
i+1
= α(1)

i
whichverifies (3.4) and thusα(1)

i
= 0,

∀i ≥ 0. Next we consider the coefficients of h2 in (3.13):




1
2 y
′′(x) +

(
a(1)

)′
(x) +

(
α(2)
i+1
− α(2)

i

)

−gy(0) y
′(x) − gz(0) z

′(x) − gy(0)
(
α(1)
i+1
− α(1)

i

)
− gz(0)

(
β(1)
i+1
− β(1)

i

)

 =

=




fy (x)
(
a(1)(x) + α(1)

i

)
+ fz (x)

(
b(1)(x) + β(1)

i

)

gy (x)
(
a(1)(x) + α(1)

i

)
+ gz (x)

(
b(1)(x) + β(1)

i

)

 .

By separating the smooth terms and the perturbations, we get

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) ,

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) ,
(
α(2)
i+1
− α(2)

i

)
= fy (x)α

(1)
i
+ fz (x) β

(1)
i
,

− gy(0)
(
α(1)
i+1
− α(1)

i

)
− gz(0)

(
β(1)
i+1
− β(1)

i

)
= gy (x)α

(1)
i
+ gz (x) β

(1)
i
.

These conditions can be simplified by using the consistency requirement α(1)
i
= 0, ∀i ≥ 0, and

the fact that α and β do not depend on h (i.e., fz(x) → fz(0) and gz(x) → gz(0): The terms of
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O(h) are considered in (3.14c) - (3.14d), yields

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.14a)

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) , (3.14b)
(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)
i
+ γ(2)

i
h , (3.14c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
+ η(2)

i
h . (3.14d)

The terms γ
( j)

i
and η

( j)

i
, ∀i, j are neglected for the rest of the proof. The system (3.14a)-(3.14b)

can be solved in the following way. Compute b(1)(x) in (3.14b) using (3.5) to give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x)
]
,

and replace it in (3.14a):

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) − fz (x) gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x)
]
,

which leads to the following ODE in a(1):

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) = −

1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x)

]
.

Using (3.12a); that is, a(1)(0) + α(1)
0
= 0, and the fact that α(1)

0
= 0 gives a(1)(0) = 0. Therefore

a(1)(x) and b(1)(x) are uniquely determined by (3.14a) and (3.14b). We continue with (3.14c) and
(3.14d) and use 0 = g(y, z) for x = 0:

dg

dx

(
y(x), z(x)

)
=
∂g

∂y

∂y

∂x
(x) +

∂g

∂z

∂z

∂x
(x) = gyy

′ + gzz
′ .

The above expression is true for x = 0, and hence the left-hand side of (3.14b) vanishes:

gy (0) a
(1)(0) + gz (0) b

(1)(0) = 0⇒ gz (0) b
(1)(0) = 0⇒ b(1)(0) = 0 .

By (3.12a) we have β(1)
0
= 0. In general, β(1)

i
= 0, ∀i ≥ 0 from (3.14d), and together with (3.14c)

we obtain α(2)
i
= 0, ∀i ≥ 0.

To compare the coefficients of h3, we extend (3.11) with one more term:
(

I 0
−hgy(0) −hgz(0)

)
· (3.15)

·




h2

2 y
′′(xi) +

h3

6 y
′′′(xi) + h2

(
a(1)

)′
(xi) + h3

(
a(2)

)′
(xi) + h2

(
α(2)
i+1
− α(2)

i

)
+ h4

(
a(3)

)′
(xi) + h3

(
α(3)
i+1
− α(3)

i

)
. . .

· · · + h2

2 z
′′(xi) +

h3

6 z
′′′(xi) + · · · + h2

(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ h3

(
b(2)

)′
(xi) + h2

(
β(2)
i+1
− β(2)

i

)
+ . . .


 =

=



· · · + h fy (xi)

(
· · · + h2a(2)(xi) + h2α(2)

i
+ . . .

)
+ h

2 fyy (xi)
(
· · · + h2a(1)(xi) + h2α(1)

i
+ . . .

)

· · · + hgy (xi)
(
· · · + h2a(2)(xi) + h2α(2)

i
+ . . .

)
+ h

2 gyy (xi)
(
· · · + h2a(1)(xi) + h2α(1)

i
+ . . .

)

+

+



h fz (xi)

(
· · · + h2b(2)(xi) + h2β(2)

i
+ . . .

)
+ h

2 fzz (xi)
(
· · · + h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .

hgz (xi)
(
· · · + h2b(2)(xi) + h2β(2)

i
. . .

)
+ h

2 gzz (xi)
(
· · · + h2b(1)(xi) + h2β(1)

i
. . .

)
+ . . .


 ,

where some contributions of the derivatives fyy, fzz, and fyz are zero from the fact that their

factors are (α(1)
i
, α(2)

i
, and β(1)

i
, ∀i ≥ 0) zero. Then the coefficients of h3 in (3.15) give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.16a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.16b)
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where r(2)(x) and s(2)(x) are known functions that depend on the derivatives of y(x), z(x), a(1)(x),
b(1)(x) and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.17a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.17b)

+
1

2
gyy(x)

(
a(1)

)2
(x) +

1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)a

(1)(x)b(1)(x) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
= fy(0)α

(2)
i
+ fz(0)β

(2)
i
,

−gy(0)
(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
= gy(0)α

(2)
i
+ gz(0)β

(2)
i
,

with additional cancellations of terms that have coefficients α(1)
i
= 0 and β(1)

i
= 0, ∀i, and using

α(2)
i
= 0, ∀i, we get

α(3)
i+1
− α(3)

i
= fz(0)β

(2)
i
, (3.18a)

0 = gz(0)β
(2)

i+1
. (3.18b)

Terms a(2)(x) and b(2)(x) are determined in the same way as a(1)(x) and b(1)(x). Thus

b(2)(x) = −gz(x)
−1

[
gy(x) a

(2)(x) + s(2)(x)
]
, (3.19a)

which can be inserted in (3.16a) to give the following linear differential equation:

(
a(2)

)′
(x) +

(
fz(x) gz(x)

−1gy(x) − fy(x)
)
a(2)(x) = − fz(x) gz(x)

−1gy(x) s
(2)(x) + r(2)(x) . (3.19b)

Since α(2)
i
= 0, ∀i, then a(2)(0) = 0, and thus expressions (3.19) determine a(2)(x) and b(2)(x)

uniquely. However, b(2)(0) , 0 in general, and by (3.12a) we have β(2)
0
, 0. From (3.18b)

β(2)
i
= 0, ∀i ≥ 1, and together with (3.18a) one obtains α(3)

i
= 0, ∀i ≥ 1.

For the coefficients of h4 we obtain a similar result as in the previous step:

(
a(3)

)′
(x) = fy(x) a

(3)(x) + fz(x) b
(3)(x) + r(3)(x) , (3.20a)

0 = gy(x) a
(3)(x) + gz(x) b

(3)(x) + s(3)(x) , (3.20b)

α(4)
i+1
− α(4)

i
= fz(0)β

(3)
i
+ fy(0)α

(3)
i
, (3.20c)

0 = gz(0)β
(3)
i+1
+ gy(0)α

(3)
i+1
. (3.20d)

The expressions for r(3)(x) and s(3)(x) are more complicated (depending on derivatives of
y(x), z(x), a(ℓ)(x), b(ℓ)(x), ℓ = 1 , 2), and their representation is not shown here. From (3.12b), the

conclusions, however, are that β(3)
i
= 0, ∀i ≥ 1, and α(4)

i
= 0, ∀i ≥ 1.

A general recurrence formula can be constructed for the coefficients of h j+1, ∀ j ≥ 4:

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r( j)(x) , (3.21a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s( j)(x) , (3.21b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺

( j)

i
, (3.21c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.21d)
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T 3.1
Nonzero α and β values represented with “•” marker.

α
( j)

i
i = 0 1 2 3 4 5 6
y0 y1 y2 y3 y4 y5 y6

j = 1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 • 0 0 0 0 0 0
4 • 0 0 0 0 0 0
5 • • 0 0 0 0 0
6 • • • 0 0 0 0
7 • • • • 0 0 0

β
( j)

i
i = 0 1 2 3 4 5 6
z0 z1 z2 z3 z4 z5 z6

-
j = 1 0 0 0 0 0 0 0
2 • 0 0 0 0 0 0
3 • 0 0 0 0 0 0
4 • • 0 0 0 0 0
5 • • • 0 0 0 0
6 • • • • 0 0 0

T 3.2
Nonzero ̺ and σ values represented with “•” marker.

̺
( j)

i
i = 0 1 2 3 4 5 6
y0 y1 y2 y3 y4 y5 y6

j = 1 0 0 0 0 0 0 0
2(h2) 0 0 0 0 0 0 0
3(h3) • 0 0 0 0 0 0
4(h4) • 0 0 0 0 0 0
5(h5) • • 0 0 0 0 0
6(h6) • • 0 0 0 0 0

σ
( j)

i
i = 0 1 2 3 4 5 6
z0 z1 z2 z3 z4 z5 z6

j = 1 0 0 0 0 0 0 0
2(h2) 0 0 0 0 0 0 0
3(h3) 0 0 0 0 0 0 0
4(h4) • 0 0 0 0 0 0
5(h5) • 0 0 0 0 0 0
6(h6) • 0 0 0 0 0 0

where ̺
( j)

i
and σ

( j)

i
are linear combinations of expressions that contain factors α(ℓ)

i+1
, α(ℓ−1)

i+1
, β(ℓ−1)

i+1
,

ℓ ≤ j. For instance,

̺(3)
i
= α(3)

i
fy(0) and σ

(3)
i
=�����
α(3)
i+1

gy(0) ,

̺(4)
i
= α(4)

i
fy(0) +

1

2
fzz(0)

(
β(2)
i

)2
and σ(4)

i
=�����
α(4)
i+1

gy(0) +
1

2
gzz(0)

(
β(2)
i

)2
,

̺(5)
i
= α(5)

i
fy(0) + fzz(0)β

(2)
i
β(3)
i
+ fyz(0)α

(3)
i
β(2)
i

and σ(5)
i
= α(5)

i+1
gy(0) + gzz(0)β

(2)
i
β(3)
i
,

̺(6)
i
= α(6)

i
fy(0) +

1

2
α(3)
i

2
fyy(0) +

(
α(4)
i
β(2)
i
+ α(3)

i
β(3)
i

)
fyz(0)+

+
1

2

(
β(3)
i

2
+ 2β(2)

i
β(4)
i

)
fzz(0) +

1

6
β(2)
i

3
fzzz(0) and

σ(6)
i
= α(6)

i+1
gy(0) +

1

2
α(3)
i

2
gyy(0) +

(
α(4)
i
β(2)
i
+ α(3)

i
β(3)
i

)
gyz(0)+

+
1

2

(
β(3)
i

2
+ 2β(2)

i
β(4)
i

)
gzz(0) +

1

6
β(2)
i

3
gzzz(0) .

To conclude, let us consider the ̺ and σ values for i and j in Table 3.2 based on the values
of α and β in Table 3.1. Here we show the nonzero coefficients of h j, 1 ≤ j ≤ 7.

Finally, an induction on jwith the hypothesis that ̺
( j)

i
= 0 and σ

( j)

i
= 0 for i ≥ j − 3 is used.

Equation (3.21d) implies that β
( j)

i+1
= 0, i ≥ j − 3, and then relations (3.12b) and (3.21c) give

α
( j+1)

i+1
= 0, i ≥ j − 3. This concludes the proof for (3.9c) and (3.9d).

b) The second part of this proof consists in estimating a bound on the reminder term; that
is, differences ∆yi = yi − ŷi and ∆zi = zi − ẑi. Subtracting (3.11) from (3.7) and eliminating ∆yi
and ∆zi, we get
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(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
−

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
=

= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
− h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−hgy(0) −hgz(0)

) (
∆yi+1
∆zi+1

)
−

(
I 0

−hgy(0) −hgz(0)

) (
∆yi
∆zi

)
=

= h

(
f
(
yi, zi

)
− f

(
ŷi, ẑi

)
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−gy(0) −gz(0)

) (
∆yi+1
∆zi+1

)
=

(
I 0

−gy(0) −gz(0)

) (
∆yi
∆zi

)
+

+

(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

−gy(0) −gz(0)

)−1 (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+

+

(
I 0

−gy(0) −gz(0)

)−1 

O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

O(1) −gz(0)
−1

) (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 .

The application of the Lipschitz condition on f (y, z) and g(y, z) gives

( ∥∥∥∆yi+1
∥∥∥

‖∆zi+1‖

)
≤

(
I 0
O(1) ζ

) ( ∥∥∥∆yi
∥∥∥

‖∆zi‖

)
+



O

(
hM+2

)

O
(
hM+1

)

 , (3.22)

where |ζ| < 1 ifH is sufficiently small. UsingLemmaC.1 (seeAppendixC) gives
∥∥∥∆yi

∥∥∥+‖∆zi‖ =
O

(
hM+1

)
.

We continue to investigate the orders for the extrapolation with base method (3.7). The
following (harmonic) sequence is considered: n j = {1, 2, 3, . . . } and h j = H/n j. We define the
components

Y jk = yh j (x0 +H) , Z jk = zh j (x0 +H) , (3.23)

which represent the numerical solution of (3.4) after j steps with step size h j, extrapolatedwith

(2.3a); that is, on the kth column of the extrapolation tableau. We make the following remarks
that will aid the understanding of the next result.

1. Each extrapolation step (2.3a) cancels one smooth term ({a, b}( j)) from the error expan-
sion (3.8).

2. The perturbations α and β propagate through the extrapolation steps (2.3a) in the form
described by Table 3.3. Furthermore, we note that the accuracy of the solution on the

extrapolation tableau diagonal is affected by terms {α, β}
( j)

1
.

3. Nonzero smooth terms a(0) and b(0) affect the perturbations α0 and β0 through (3.12a);

for example, b(2)(0) , 0⇒ β(2)
0
, 0.

We prove the following result. Similar approaches are found in [Hairer andWanner, 1993,
chap. VI, Thm. 5.4] and [Deuflhard et al., 1987].
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T 3.3
Extrapolated perturbation error propagation. The entries represent the perturbations that affect the solutions in the

extrapolation tableau.

Perturbation coefficients for y jk

α(1)
{1} ���a(2)(·) ���a(3)(·) ���a(4)(·) ���a(5)(·) ���a(6)(·) ���a(7)(·)

α(1)
{2}

α(2)
{1,2}

α(1)
{3}

α(2)
{2,3}

α(3)
{1,2,3}

α(1)
{4}

α(2)
{3,4}

α(3)
{2,3,4}

α(4)
{1,2,3,4}

α(1)
{5}

α(2)
{4,5}

α(3)
{3,4,5}

α(4)
{2,3,4,5}

α(5)
{1,2,3,4,5}

α(1)
{6}

α(2)
{5,6}

α(3)
{4,5,6}

α(4)
{3,4,5,6}

α(5)
{2,3,4,5,6}

α(6)
{1,2,3,4,5,6}

α(1)
{7}

α(2)
{6,7}

α(3)
{5,6,7}

α(4)
{4,5,6,7}

α(5)
{3,4,5,6,7}

α(6)
{2,3,4,5,6,7}

α(7)
{1,2,3,4,5,6,7}

Perturbation coefficients for z jk

β(1)
{1} ���b(2)(·) ���b(3)(·) ���b(4)(·) ���b(5)(·) ���b(6)(·) ���b(7)(·)

β(1)
{2}

β(2)
{1,2}

β(1)
{3}

β(2)
{2,3}

β(3)
{1,2,3}

β(1)
{4}

β(2)
{3,4}

β(3)
{2,3,4}

β(4)
{1,2,3,4}

β(1)
{5}

β(2)
{4,5}

β(3)
{3,4,5}

β(4)
{2,3,4,5}

β(5)
{1,2,3,4,5}

β(1)
{6}

β(2)
{5,6}

β(3)
{4,5,6}

β(4)
{3,4,5,6}

β(5)
{2,3,4,5,6}

β(6)
{1,2,3,4,5,6}

β(1)
{7}

β(2)
{6,7}

β(3)
{5,6,7}

β(4)
{4,5,6,7}

β(5)
{3,4,5,6,7}

β(6)
{2,3,4,5,6,7}

β(7)
{1,2,3,4,5,6,7}

T 3.2 (Accuracy for the extrapolated W-IMEX applied to DAEs). If the harmonic
sequence {1, 2, 3, . . . } is considered, then the extrapolated values Y jk and Z jk satisfy

Y jk − y(x0 + h) = O (Hr jk) , Z jk − z(x0 + h) = O (Hs jk) , (3.24)

where the differential-algebraic orders r jk and s jk are given in Table 9.1 up to j = 12, k = 12.

Proof. We use the expansion (3.8). It follows from (3.9a) (i.e., α(1)
i
= β(1)

i
= 0) and from

(3.12a) that a(x0) = 0 and b(x0) = 0. Since a( j)(x) and b( j)(x) are smooth functions, one obtains
a(1)(x0 + H) = O(H) and b(1)(x0 + H) = O(H). Thus the errors in Y j1 and Z j1 are of O(H2),
which gives the first column entries in Table 9.1 for the W-IMEX scheme. In the same way one

deduces that a(2)(x0 + h) = O(H); however, since β(2)
0
, 0, by (3.12a), b(2)(0) , 0 (in general), and

b(2)(x0 + h) = O(1). One extrapolation of the numerical method eliminates the terms with j = 1
in (3.8). The error is thus O(H3) for Y j2 and O(H

2) for Z j2. Equivalently, (3.8) can be expanded
to


y1 − y(x1) = h1

(
a(1)(x1) + α

(1)
1

)
+ h2

(
a(2)(x1) + α

(2)
1

)
+ . . .

z1 − z(x1) = h1
(
b(1)(x1) + β

(1)
1

)
+ h2

(
b(2)(x1) + β

(2)
1

)
+ . . .

,

which gives


y1 − y(x1) = h1 (O(H) + 0) + · · · = O

(
H2

)

z1 − z(x1) = h1 (O(H) + 0) + · · · = O
(
H2

) .
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However, for j = 2, a(2)(x0 + h) = O(H) and b(2)(x0 + h) = O(1), and thus


y1 − y(x1) = h2 (O(H) + 0) + · · · = O
(
H3

)

z1 − z(x1) = h2 (O(1) + 0) + · · · = O
(
H2

) .

The smooth parts of (3.8) are eliminated one by one; however, the perturbations are not,
and the approximation orders are reduced as follows. One order is “lost” on columns y j3

and z j2 from O(1) smooth part expansion. Thereafter, the orders are increasing by using the
extrapolation formula (2.3a) that cancels the smooth terms. The nonzero perturbation terms
affect the orders of the extrapolation method by propagating through (2.3a) as shown in Table

3.3. Specifically, for y jk components, α(5)
1
, 0, which limits the order on the diagonal for y j j,

j ≥ 6 to 4. Using the same argument, one can show that the first subdiagonal y j j−1, j ≥ 8,

is limited to 5 and the second one y j j−2, j ≥ 10, is limited to 6 because α(6)
2
, 0 and α(7)

3
, 0,

respectively, and so on. Similarly, for z jk components one has z j j, j ≥ 5 to 3; z j j−1, j ≥ 7 to 4;

and z j j−2, j ≥ 9 to 5, because β(4)
1
, 0, β(5)

2
, 0, and β(6)

3
, 0, respectively. This process can be

continued to find all the entries in Table 9.1.
Of particular interest is the location of the term in the extrapolation tableau that yields the

maximum order of accuracy for a given number of steps j, namely, the column that has the
highest convergence rate for a given row number. A quick inspection of Table 9.1 reveals that
the best choice is T j, j for j ≤ 4; T j, ( j−1)/2+3 for j ≥ 5 and odd; and T j, j/2+2 for j ≥ 6 and even. We
used boldface fonts to identify the tableau location yielding the most accurate extrapolation
term. In Table 9.1 we also show the theoretical orders for the extrapolated linearly implicit
Euler method (2.4a) as described in [Hairer and Wanner, 1993; Deuflhard et al., 1987]. The
“best” terms are selected by first identifying the most accurate stiff components and then
matching them with the best nonstiff counterparts.

We next investigate the error expansion for the other two proposed extrapolatedmethods.

3.2. Pure-IMEXMethod. Applying the Pure-IMEXmethod (2.4c) to (3.3) yields
(

I 0
−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
I 0

−hgy(0) εI − hgz(0)

)
f
(
yi, zi

)
+ hg

(
yi, zi

)
or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
− hgy(0) f

(
yi, zi

)
)
. (3.25)

The reduced form given by ε→ 0 is
(

I 0
−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
− hgy(0) f

(
yi, zi

)
)
, (3.26)

or (
I 0
0 −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
. (3.27)

We next formulate a similar pair of theorems (error expansions and extrapolated orders)
for the extrapolated Pure-IMEXmethod.

T 3.3 (Global error expansion of the extrapolated Pure-IMEX method applied to
DAEs). Consider problem (3.4)with consistent initial values (y0, z0), and suppose that (3.5) is satisfied.
The global error of the Pure-IMEX scheme (3.26) then has an asymptotic h-expansion of the form (3.8),
where a( j)(x) and b( j)(x) are smooth functions and the perturbations satisfy

α(1)
i
= 0 , ∀i ≥ 0 , (3.28a)

α(2)
i
= 0 , β(1)

i
= 0 , ∀i ≥ 1 , α(3)

i
= 0 , β(2)

i
= 0 , ∀i ≥ 2 , (3.28b)

α
( j)

i
= 0 , ∀i ≥ j − 1 , j ≥ 4 , (3.28c)

β
( j)

i
= 0 , ∀i ≥ j , j ≥ 3 . (3.28d)
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The error terms in (3.8) are uniformly bounded for xi = ih ≤ H, if H is sufficiently small.
Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We begin with

part (a) in which the truncated expansions are constructed. The second part can easily be
shown following the same steps as in the W-IMEX method. We focus on the first part only.

We consider again the truncated expansions (3.10) with small defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f (ŷi, ẑi)

g(ŷi, ẑi) − hgy(0) f (ŷi, ẑi)

)
+ O

(
hM+1

)
. (3.29)

The initial values are exact, and the perturbation terms satisfy (3.12). Replacing the Taylor
expansion for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) in (3.29) yields

(
I 0

−hgy(0) −hgz(0)

)
· (3.30)

·



hy′(xi) +

h2

2 y
′′(xi) + · · · + h2

(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h2

(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h2

(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

+

+




fz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .


 +

(
0

−h2gy(0) f
(
y(xi), z(xi)

)
)
+ O

(
hM+2

)
.

The coefficients of h1 in (3.30) give

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirements (3.12b) gives (3.4), and hence α(1)
i
= 0, ∀i ≥ 0. The

coefficients of h2 give the following equations

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.31a)

− gy(0) y
′(x) − gz(0) z

′(x) + f (x)gy(0) = gy (x) a
(1)(x) + gz (x) b

(1)(x) , (3.31b)
(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)
i
, (3.31c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
. (3.31d)

This system can be solved by using (3.5) and computing b(1)(x) in (3.31b) to give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) − f (x)gy(0)
]
,

and then replacing this in (3.31a) to yield

1

2
y′′(x) +

(
a(1)

)′
(x) =

= fy (x) a
(1)(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) − f (x)gy(0)
]
,

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) =

= −
1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) − f (x)gy(0)

]
.
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Using (3.12a) and α(1)
0
= 0 gives a(1)(0) = 0. Therefore a(1)(x) and b(1)(x) are uniquely determined

by (3.31a) and (3.31b). In contrastwith theW-IMEXmethod (3.14b), the left hand side of (3.31b)
does not vanish anymore:

gy (0) a
(1)(0) + gz (0) b

(1)(0) = f (0)gy(0)⇒ gz (0) b
(1)(0) = f (0)gy(0)⇒ b(1)(0) , 0 .

By (3.12a), β(1)
0
, 0. In general, β(1)

i
= 0, ∀i ≥ 1 from (3.31d), and together with (3.31c) and

(3.12b) give α(2)
i
= 0, ∀i ≥ 1.

Next we investigate the coefficients of h3, which for the smooth part give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.32a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.32b)

where r(2)(x) and s(2)(x) are known functions that depend on derivatives of y(x), z(x), a(1)(x),
b(1)(x) and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.33a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.33b)

+
1

2
gyy(x)

(
a(1)

)2
(x) +

1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)a

(1)(x)b(1)(x) −
(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(0) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
= fy(0)α

(2)
i
+������

fyz(0)α
(1)
i
β(1)
i
+ fz(0)β

(2)
i
+������1

2
(α(1)

i
)2 fyy(0) +

1

2
(β(1)

i
)2 fzz(0)−

−
(
����
fy(0)α

(1)
i
+ fz(0)β

(1)
i

)
gy(0) + β

(1)
i
b(1)(0) fzz(0) · · · ,

− gy(0)
(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
=����
gy(0)α

(2)
i
+������
gyz(0)α

(1)
i
β(1)
i
+ gz(0)β

(2)
i
+

+�������1

2
(α(1)

i
)2gyy(0) +

1

2
(β(1)

i
)2gzz(0) + β

(1)
i
b(1)(0)gzz(0) + · · · ,

where the vanishing terms have been canceled. It follows that

α(3)
i+1
− α(3)

i
= fy(0)α

(2)
i
+ β(1)

i
(. . . ) + fz(0)β

(2)
i
, (3.34a)

0 = gz(0)β
(2)
i+1
+ β(1)

i
(. . . ) + α(2)

i
(. . . ) . (3.34b)

From (3.34), β(2)
i
= 0, ∀i ≥ 2 and α(3)

i
= 0, ∀i ≥ 2. This concludes the proof for hypotheses

(3.28a) and (3.28b). The general recurrence follows

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r( j)(x) , (3.35a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s( j)(x) , (3.35b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺

( j)

i
, (3.35c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.35d)

where the smooth terms are determined by (3.35a) and (3.35b). Hypotheses (3.28c) and (3.28d)
can be easily verified following the same type of induction on (3.35a) and (3.35b) as in the
proof of Theorem 3.1.
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T 3.4 (Accuracy for the extrapolated Pure-IMEX method applied to DAEs). If the
harmonic sequence {1, 2, 3, . . . } is considered, then the extrapolated values Y jk and Z jk satisfy

Y jk − y(x0 + h) = O (Hr jk) , Z jk − z(x0 + h) = O (Hs jk) , (3.36)

where the differential-algebraic orders r jk and s jk are given in Table 9.1.
Proof. The orders in Table 9.1 for the Pure-IMEX method can be recovered by using the

same procedure as in the proof of Theorem 3.2 with the error expansion given by Theorem

3.3. The major differences are given by the fact that now α(2)
0

is nonzero and thus one classical

order is “lost” on the second column of the y component. Then α(3)
1

gives the third order on the

diagonal. For the z component, β(1)
0

is nonzero, and hence the first column of the z component

is 1. Furthermore, β(2)
1

does not vanish, and thus the diagonal Tkk is 2 for k ≥ 2. The rest follows
from the propagation of error terms as described by Table 3.3.

3.3. Split-IMEXMethod. The Split-IMEX method (2.4d) applied to (3.3) yields

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h

(
I 0

−hgy(0) εI − hgz(0)

) (
f
(
yi, zi

)
0

)
+

+ h




0

g
(
yi + h f (yi, zi), zi

)

 or

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h




f
(
yi, zi

)

g
(
yi + h f (yi, zi), zi

)
− hgy(0) f

(
yi, zi

)

 . (3.37)

The DAE reduced form given by ε→ 0 is

(
I 0

−hgy(0) −hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
= h




f
(
yi, zi

)

g
(
yi + h f (yi, zi), zi

)
− hgy(0) f

(
yi, zi

)

 . (3.38)

We continue with a similar pair of theorems (error expansions and extrapolated orders)
for the extrapolated Split-IMEX method.

T 3.5 (Global error expansion of the extrapolated Split-IMEX method applied to
DAEs). Consider problem (3.4)with consistent initial values (y0, z0), and suppose that (3.5) is satisfied.
The global error of the Split-IMEX scheme (3.38) then has an asymptotic h-expansion of the form (3.8),
where a( j)(x) and b( j)(x) are smooth functions and the perturbations satisfy

α(1)
i
= 0 , α(2)

i
= 0 , β(1)

i
= 0 , ∀i ≥ 0 , (3.39a)

α(3)
i
= 0 , β(2)

i
= 0 , ∀i ≥ 1 , (3.39b)

α
( j)

i
= 0 , ∀i ≥ j − 2 , j ≥ 4 , (3.39c)

β
( j)

i
= 0 , ∀i ≥ j − 1 , j ≥ 3 . (3.39d)

The error terms in (3.8) are uniformly bounded for xi = ih ≤ H if H is sufficiently small.
Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We begin with

part (a) in which the truncated expansions are constructed. The second part can easily be
shown to follow the same steps as in the W-IMEX case.

We consider again the truncated expansions (3.10) with defects

(
I 0

−hgy(0) −hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= (3.40)

= h




f (ŷi, ẑi)

g
(
ŷi + h f (ŷi, ẑi), ẑi

)
− hgy(0) f (ŷi, ẑi)


 + O

(
hM+1

)
.
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The initial values are exact, and the perturbation terms satisfy (3.12). Replacing the Taylor
expansion for f (ŷi, ẑi) and g(ŷi, ẑi) about (y(xi), z(xi)) in (3.40) yields

(
I 0

−hgy(0) −hgz(0)

)
· (3.41)

·



hy′(xi) +

h2

2 y
′′(xi) + h2

(
a(1)

)′
(xi) + h

(
α(1)
i+1
− α(1)

i

)
+ h3

(
a(2)

)′
(xi) + h2

(
α(2)
i+1
− α(2)

i

)
+ . . .

hz′(xi) +
h2

2 z
′′(xi) + · · · + h2

(
b(1)

)′
(xi) + h

(
β(1)
i+1
− β(1)

i

)
+ . . .


 =

=



h f

(
y(xi), z(xi)

)
+ fy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

hg
(
y(xi), z(xi)

)
+ gy (xi)

(
h2a(1)(xi) + h2α(1)

i
+ . . .

)

+

+




fz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .

gz (xi)
(
h2b(1)(xi) + h2β(1)

i
+ . . .

)
+ . . .


+

+

(
0 . . .

−h2gy(0) f
(
y(xi), z(xi)

)
+ h2gy(xi) f

(
y(xi), z(xi)

)
+ . . .

)
+ O

(
hM+2

)
.

The coefficients of h1 in (3.41) give

(
y′(xi) +

(
α(1)
i+1
− α(1)

i

)

0

)
=

(
f
(
y(xi), z(xi)

)
g
(
y(xi), z(xi)

)
)
.

Using the consistency requirements (3.12b) gives (3.4) and hence α(1)
i
= 0, ∀i ≥ 0. The h2 terms

give the following system:

1

2
y′′(x) +

(
a(1)

)′
(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (3.42a)

− gy(0) y
′(x) − gz(0) z

′(x) = gy (x) a
(1)(x) + gz (x) b

(1)(x) + f (x)gy(x) − f (x)gy(0) , (3.42b)
(
α(2)
i+1
− α(2)

i

)
= fz (0) β

(1)

i
, (3.42c)

− gz(0)
(
β(1)
i+1
−�

�β(1)
i

)
=����
gz (0) β

(1)
i
. (3.42d)

The differential equation (3.42a)-(3.42b) can be solved by using (3.5) and computing b(1)(x) in
(3.42b) to give

b(1)(x) = −gz (x)
−1

[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) + f (x)gy(x) − f (x)gy(0)
]
,

and then replacing it into (3.42a) yields

1

2
y′′(x) +

(
a(1)

)′
(x) =

= fy (x) a
(1)(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + gy (x) a

(1)(x) + f (x)gy(x) − f (x)gy(0)
]
,

(
a(1)

)′
(x) +

(
fz (x) gz (x)

−1gy (x) − fy (x)
)
a(1)(x) =

= −
1

2
y′′(x) − fz (x) gz (x)

−1
[
gy(0) y

′(x) + gz(0) z
′(x) + f (x)gy(x) − f (x)gy(0)

]
.

Using (3.12a) and α(1)
0
= 0, one has that a(1)(0) = 0. Therefore a(1)(x) and b(1)(x) are uniquely

determined by (3.42a) and (3.42b). The left-hand side of (3.42b) at x = 0 gives

gy (0) a
(1)(0) + gz (0) b

(1)(0) + f (0)gy(0) − f (0)gy(0) = 0⇒ gz (0) b
(1)(0) = 0⇒ b(1)(0) = 0 .

By (3.12a) and (3.42d), β(1)
0
= 0, and in general β(1)

i
= 0, ∀i ≥ 0, from (3.42d). Further, by using

(3.42c) and (3.12b) one obtains α(2)
i
= 0, ∀i ≥ 0.
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Next we investigate the coefficients of h3, which for the smooth part give

(
a(2)

)′
(x) = fy(x) a

(2)(x) + fz(x) b
(2)(x) + r(2)(x) , (3.43a)

0 = gy(x) a
(2)(x) + gz(x) b

(2)(x) + s(2)(x) , (3.43b)

where r(2)(x) and s(2)(x) are known functions that depend on derivatives of y(x), z(x), a(1)(x),
b(1)(x) and can be shown to be

r(2)(x) = −
1

6
y′′′(x)+ (3.44a)

+
1

2
fyy(x)

(
a(1)

)2
(x) +

1

2
fzz(x)

(
b(1)

)2
(x) + fyz(x)a

(1)(x)b(1)(x) ,

s(2)(x) =
1

2
gy(0)y

′′(x) +
1

2
gz(0)z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)+ (3.44b)

+
(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(x) +

1

2
gyy(x)

(
a(1)(x) + f (x)

)2
+

+
1

2
gzz(x)

(
b(1)

)2
(x) + gyz(x)

(
a(1)(x) + f (x)

)
b(1)(x) −

(
fy(x)a

(1)(x) + fz(x)b
(1)(x)

)
gy(0) .

The perturbations can be expressed as

α(3)
i+1
− α(3)

i
=����

fy(0)α
(2)
i
+������

fyz(0)α
(1)
i
β(1)
i
+ fz(0)β

(2)
i
+������1

2
(α(1)

i
)2 fyy(0) +������1

2
(β(1)

i
)2 fzz(0)−

−
(((((((((((((
fy(0)α

(1)
i
+ fz(0)β

(1)
i

)
gy(0) +�������

β(1)
i
b(1)(0) fzz(0) + · · · ,

(((((((((
−gy(0)

(
α(2)
i+1
− α(2)

i

)
− gz(0)

(
β(2)
i+1
− β(2)

i

)
=����
gy(0)α

(2)
i
+������
gyz(0)α

(1)
i
β(1)
i
+ gz(0)β

(2)
i
+

+�������1

2
(α(1)

i
)2gyy(0) +������1

2
(β(1)

i
)2gzz(0) +�������

β(1)
i
b(1)(0)gzz(0) + · · · ,

where the vanishing terms have been canceled. It follows that

α(3)
i+1
− α(3)

i
= fz(0)β

(2)
i
, (3.45a)

0 = gz(0)β
(2)
i+1
. (3.45b)

From (3.45), β(2)
i
= 0, ∀i ≥ 1, and α(3)

i
= 0, ∀i ≥ 1.

The coefficients in h4 reveal that the perturbations satisfy

α(4)
i+1
− α(4)

i
= fy(0)α

(3)
i
+ fz(0)β

(3)
i
, (3.46a)

0 = gz(0)β
(3)
i+1
+ gy(0)α

(3)
i+1
+ f (0)gyz(0)β

(2)
i
. (3.46b)

From (3.46) we have that β(3)
i
= 0, ∀i ≥ 2 and α(4)

i
= 0, ∀i ≥ 2. This concludes the proof for

hypotheses (3.39a) and (3.39b). The general recurrence formula follows as

(
a( j)

)′
(x) = fy(x) a

( j)(x) + fz(x) b
( j)(x) + r( j)(x) , (3.47a)

0 = gy(x) a
( j)(x) + gz(x) b

( j)(x) + s( j)(x) , (3.47b)

α
( j+1)

i+1
− α

( j+1)

i
= fz(0)β

( j)

i
+ ̺

( j)

i
, (3.47c)

0 = gz(0)β
( j)

i+1
+ σ

( j)

i
, (3.47d)

where the smooth terms are determined by (3.47a) and (3.47b). Hypotheses (3.39c) and (3.39d)
can be easily verified following the same type of induction on (3.47a) and (3.47b) as in the
proof of Theorem 3.1.
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T 3.6 (Accuracy for the extrapolated Split-IMEX method applied to DAEs). If the
harmonic sequence {1, 2, 3, . . . } is considered, then the extrapolated values Y jk and Z jk satisfy

Y jk − y(x0 + h) = O (Hr jk) , Z jk − z(x0 + h) = O (Hs jk) , (3.48)

where the differential-algebraic orders r jk and s jk are given in Table 9.1.
Proof. The orders in Table 9.1 for the Split-IMEX method can be recovered by using the

same procedure as in the proof of Theorem 3.2 with the error expansion given by Theorem 3.5.

In contrast with the proof of Theorem 3.4, α(3)
0

is nonzero, and thus one classical order is “lost”

on the third column of the y component. Then α(4)
1

gives the fourth order on the diagonal.

For the z component, β(2)
1

is nonzero, and hence the second column of the z component is 2.

Furthermore, β(3)
1

does not vanish, and thus the diagonal Tkk is 3 for k ≥ 3. The rest follows
from the propagation of error terms as described by Table 3.3.

The previous theorem concludes the set of theoretical results for the proposed three ex-
trapolated IMEXmethods applied to DAEs. The results point to the W-IMEX scheme as being
the most accurate; however, from the implementation point of view, the Split-IMEX scheme is
superior. The Split-IMEX method gives a good balance between accuracy and computational
cost.

4. NumericalResults for ExtrapolatedIMEXApplied toDAEs. We illustrate the theoret-
ical findings using two DAE examples: the reduced van der Pol equation and a trigonometric
problem developed by us. The reduced van der Pol equation comes from the stiff van der
Pol ODE with ε → 0, which is a typical example for numerical stiffness analysis. In this
case the numerical results with Split-IMEX have a slightly higher order than what the theory
predicts. We explain this phenomenon and use the trigonometric equation to illustrate that
the numerical orders concur with the theoretical ones.

Schemes (2.4) are implemented in MatlabR© by using variable-precision arithmetic with 64
digits of accuracy. For van der Pol a reference solution is computed with very high accuracy.

Methods (2.4) are implemented in the following way:

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
I − h fy(0) −h fz(0)
−hgy(0) −hgz(0)

)−1 (
f
(
yi, zi

)
g
(
yi, zi

)
)
,

[
linearly
implicit

]
(4.1a)

(
yi+1
zi+1

)
=

(
yi
zi

)
+ hJ̃−1

(
f
(
yi, zi

)
g
(
yi, zi

)
)
, [W-IMEX] (4.1b)

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
f
(
yi, zi

)
0

)
+ hJ̃−1

(
0

g
(
yi, zi

)
)
, [Pure-IMEX] (4.1c)

(
yi+1
zi+1

)
=

(
yi+1
zi+1

)
+ hJ̃−1

(
0

g
(
yi, zi

)
)
,

[
Split-
IMEX

]
(4.1d)

where

J̃ =

(
I 0

−hgy(0) −hgz(0)

)
,

(
yi+1
zi+1

)
=

(
yi
zi

)
+ h

(
f
(
yi, zi

)
0

)
.

The experiments consist in integrating the problem by taking successively smaller steps H
while using the same sequence n j.

4.1. Experiments with the Van Der Pol Equation. The reduced van der Pol equation is
given by

y′ = −z = f (y, z)

0 = y −
(
z3

3 − z
)
= g(y, z)

. (4.2)
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We take y(0) = −2 and z(0) = −2.355301397608119909925287735864250951918 . . . , which satis-
fies g(y(0), z(0)) = 0. The values of H range from 10−1 to 10−4.5.

The orders based on the local errors are given in Table 9.2. The experimental orders should
be compared with the theoretical ones given in Table 9.1. We note that the experimental
orders verify the theoretical conclusions for the linearly implicit, W-IMEX, and the Pure-IMEX
method. The experimental orders for the Split-IMEX method are higher than the orders
predicted by the theory. We can explain this disagreement by paying a closer attention
at equation (4.2) and noting that gyz is zero. If we factor this in (3.46b), we find that the

perturbation factor β(3)
2

is zero and leads to α(4)
2
= 0. This effectively increases the order by one

on the diagonal terms corresponding to the y and z components.
Next we explore an example that has gyz nonzero in order to illustrate the theoretical

findings for the Split-IMEX method.

4.2. Experiments with a Trigonometric Equation. We next investigate the numerical
solution of the following DAE discretized by using the Split-IMEX method:

y′ =
y2

z

√
y2

z2
− 1

= f (y, z)

0 = z2 −
1

1 + y2
− y2

(
1

z2
− 1

)
= g(y, z)

. (4.3)

The exact solution is y(t) = sinh(t), z(t) = tanh(t). We start with t0 = 0.5 and note that gyz
is nonzero. The experimental orders for Split-IMEX are shown in Table 4.1. The orders can
be verified to be the same as the theoretical ones given in Table 9.1. We note that the results
are harvested automatically and some entries are not integers. These results happen because
of variations in the convergence slope, which is caused either by linear instablility or by
round-off. The edited places are marked in parentheses.

5. Global Error Expansion for Extrapolated IMEX Methods Applied to stiff ODEs. In
this section we extend the theoretical results for the global error expansion of extrapolated
implicit-explicit methods applied to stiff ODEs. For this analysis we consider the following
singular perturbation system [Hairer and Lubich, 1988; Auzinger et al., 1990]:

y′ = f (y, z) , y(0) = y0
εz′ = g(y, z) , z(0) = z0 , 0 < ε≪ 1 ,

(5.1)

which is solved using the W-IMEX (3.6), Pure-IMEX (3.25), and Split-IMEX (3.37) schemes.
The favorable convergence results obtained for DAEs in the previous sections do not extend
directly to the stiff ODEs (ε , 0 , ε ≤ h). In this case, the asymptotic expansions of the global
error is more complicated, especially for “small” values ofH. Moreover, different convergence
regimes can be identified for the numerical approximations in the extrapolation tableau that
depend on H/ε. We study the asymptotic behavior of the global error for the proposed IMEX
methods and explore the reasons for the changes in their convergence slope.

5.1. W-IMEX. We start with theW-IMEXmethod and consider equations of the following
form (in line with (3.16)):

a′ = fy(x)a + fz(x)b + c(x, ε) ,
εb′ = gy(x)a + gz(x)b + d(x, ε) .

(5.2)

Their solution described by Lemma C.2 will be the basis for proving the next theorems, which
are the second set of main results of this paper.

T 5.1 (Global error expansion for the extrapolatedW-IMEX applied to stiff ODEs).
Assume that the solution of (5.1) is smooth. Under the condition (given by (C.3))

∥∥∥(I − γgz(0)
)−1∥∥∥ ≤ 1

1 + γ
for γ ≥ 1 , (5.3)
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T 4.1
Numerical approximation of the extrapolated local orders for the trigonometric DAE using the Split-IMEX scheme (based

on L1 error norm).

Orders component y jk

1 2.0

2 1.9 3.0

3 1.9 3.0 3.0

4 2.0 3.0 2.9 4.0

5 2.0 3.0 3.0 4.0 4.0

6 2.0 3.0 3.0 3.9 4.9 4.0

7 2.0 3.0 3.0 4.0 4.9 4.9 4.1

8 2.0 3.0 3.0 4.0 4.9 5.9 4.9 (4)

9 2.0 3.0 3.0 4.0 4.9 5.9 5.9 5.0 (4)

10 2.0 3.0 3.0 4.0 4.9 5.9 6.9 5.9 5.0 (4)

11 2.0 3.0 3.0 4.0 4.9 5.9 6.8 6.9 5.9 5.1 (4)

12 2.0 3.0 3.0 4.0 4.9 5.9 6.8 8.1 6.9 6.0 5.2 (4)

1 2 3 4 5 6 7 8 9 10 11 12

Orders component z jk

1 2.0

2 2.0 2.0

3 2.2 2.0 3.0

4 1.8 2.0 2.9 3.0

5 1.9 2.0 2.9 4.0 3.0

6 1.9 2.0 2.9 3.9 4.0 3.1

7 1.9 2.0 2.9 3.9 5.0 4.0 3.2

8 1.9 2.0 2.9 3.9 4.9 4.9 4.0 (3)

9 2.0 2.0 2.9 3.9 4.9 6.0 5.0 4.0 (3)

10 2.0 2.0 2.9 3.9 4.9 5.9 5.9 5.0 4.1 (3)

11 2.0 2.0 3.0 3.9 4.9 5.9 7.0 5.9 5.0 4.2 (3)

12 2.0 2.0 3.0 3.9 4.9 5.9 6.9 6.9 6.0 5.0 4.3 (3)

1 2 3 4 5 6 7 8 9 10 11 12

the numerical solution of (3.6) possesses for ε ≤ h a perturbed asymptotic expansion of the form

yi = y(xi) + ha(1)(xi) + h2a(2)(xi) + O(h
3)− (5.4a)

− ε fz(0)g
−1
z (0)

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb(1)(xi) + h2b(2)(xi) + O(h
3)− (5.4b)

−

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions a(1)(0) = O(εh),
a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

23



Proof. The proof goes along the lines of Theorem 3.1 and [Hairer and Wanner, 1993, chap.
VI, Thm. 5.6] and [Hairer and Lubich, 1988]. See also a similar approach for implicit Euler
[Auzinger et al., 1990]. We start by considering the truncated expansions

ŷi = y(xi) +

M∑

j=1

h j
(
a( j)(xi) + α

( j)

i

)

ẑi = z(xi) +

M∑

j=1

h j
(
b( j)(xi) + β

( j)

i

) , (5.5)

such that

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f
(
ŷi, ẑi

)
g
(
ŷi, ẑi

)
)
+ O

(
hM+2

)
(5.6)

is satisfied.

a) The smooth functions a(x) and b(x) depend on ε but are independent of h. The pertur-

bation terms α
( j)

i
and β

( j)

i
, ∀i ≥ 1, depend smoothly on ε and ε/h. We also consider (3.12a) and

(3.12b) satisfied.

M = 0. This case is easily verified.

M = 1. We insert (5.5) in (5.6) and compare the smooth coefficients of h2:

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.7a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) . (5.7b)

By Lemma C.2, the initial value b(1)(0) is uniquely determined by a(1)(0). Differentiating
εz′(x) = g(y(x), z(x)) gives

εz′′(x) = gy(x) y
′(x) + gz(x) z

′(x) ,

and inserting it in (5.7b) at x = 0 yields

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(ε) , (5.8)

with known right-hand side. The perturbation terms up to O(h2) give

α(1)
i+1
− α(1)

i
= h fy(xi)α

(1)
i
+ h fz(xi)β

(1)
i
, (5.9a)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)

(
α(1)
i+1
− α(1)

i

)
− hgz(0)

(
β(1)
i+1
− β(1)

i

)
= hgy(xi)α

(1)
i
+ hgz(xi)β

(1)
i
. (5.9b)

Next we try to eliminate as many terms in (5.9) as possible by replacing fy(xi) with fy(0), gy(xi)
with gy(0), and so on. With xi = ih, the following substitution is of order h: fy(xi)− fy(0) = O(h)
for i ≤ 1. Then we are left with


α(1)
i+1
− α(1)

i
= h fy(0)α

(1)
i
+ h fz(0)β

(1)
i
+ O(h2)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)

(
α(1)
i+1
− α(1)

i

)
− hgz(0)

(
β(1)
i+1
− β(1)

i

)
= hgy(0)α

(1)
i
+ hgz(0)β

(1)
i

.
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After further cancellations we obtain

α(1)
i+1
− α(1)

i
= h fy(0)α

(1)

i
+ h fz(0)β

(1)

i
+ O(h2)

ε
(
β(1)
i+1
− β(1)

i

)
− hgy(0)α

(1)
i+1
− hgz(0)β

(1)
i+1
= O(h2)

. (5.10)

In the second expression of (5.10), we note that β(1)
i+1

is multiplied by ε, whereas α(1)
i+1

is not and
thus can be ignored (for ε≪ h). Then we get

α(1)
i+1
− α(1)

i
= h fz(0)β

(1)
i

(5.11a)

ε
(
β(1)
i+1
− β(1)

i

)
= hgz(0)β

(1)
i+1
. (5.11b)

We next analyze the solutions of (5.7), (5.11) when substituted in (5.6). From (5.11b) we
obtain

β(1)
i+1
=

(
I −

h

ε
gz(0)

)−1
β(1)
i
,

β(1)
1
=

(
I −

h

ε
gz(0)

)−1
β(1)
0
,

β(1)
2
=

(
I −

h

ε
gz(0)

)−1
β(1)
1
=

(
I −

h

ε
gz(0)

)−1 (
I −

h

ε
gz(0)

)−1
β(1)
0
=

(
I −

h

ε
gz(0)

)−2
β(1)
0
,

with

β(1)
i
=

(
I −

h

ε
gz(0)

)−i
β(1)
0
. (5.12)

Substituting (5.12) in (5.11a) and using (3.12b), we get

α(1)
i+1
− α(1)

i
= h fz(0)β

(1)
i
= h fz(0)

(
I −

h

ε
gz(0)

)−i
β(1)
0
,

α(1)
i
= α(1)

i+1
− h fz(0)

(
I −

h

ε
gz(0)

)−i
β(1)
0
, α(1)

i+1
= α(1)

i+2
− h fz(0)

(
I −

h

ε
gz(0)

)−(i+1)
β(1)
0

α(1)
i
= α(1)

i+2
− h fz(0)

(
I −

h

ε
gz(0)

)−(i+1)
β(1)
0
− h fz(0)

(
I −

h

ε
gz(0)

)−i
β(1)
0

α(1)
i
= α(1)

i+2
− h fz(0)



(
I −

h

ε
gz(0)

)−(i+1)
+

(
I −

h

ε
gz(0)

)−i β
(1)
0
,

α(1)
i
= α(1)∞ − h fz(0)

∞∑

k=1

(
I −

h

ε
gz(0)

)−k (
I −

h

ε
gz(0)

)−i+1
β(1)
0
,

α(1)
i
= −h fz(0)

(
−
h

ε
gz(0)

)−1 (
I −

h

ε
gz(0)

)−i+1
β(1)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)−i+1
β(1)
0
. (5.13)

Expression (5.13) at i = 0 with ε ≤ h yields

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(εh) . (5.14)

In the previous relationwe used (5.8) and (3.12a) to bound β(1)
0
. From consistency assumptions

(3.12a) (i.e., a( j)(0) + α
( j)

0
= 0 , b( j)(0) + β

( j)

0
= 0), with (5.8) and (5.14) and Lemma C.2, we
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have that the coefficients a(1)(0), b(1)(0), α(1)
0
, β(1)

0
are uniquely determined; moreover, we have

a(1)(0) = O(εh) and b(1)(0) = O(ε) (α(1)
i
= O(εh), β(1)

i
= O(ε) ). Now the relation (5.6) can be

verified forM = 1, ε ≤ h, as follows. Replacing (5.5) in (5.6) gives

h
(
α(1)
i+1
− α(1)

i
+ y′

)
+ h2

(
1

2
y′′ +

(
a(1)

)′
(x)

)
=

= h
(
f (x)

)
+ h2

((
α(1)
i
+ a(1)(x)

)
fy(x) +

(
β(1)
i
+ b(1)(x)

)
fy(x)

)
+ O

(
h3

)
,

hε
(
β(1)
i+1
− β(1)

i
+ z′

)
+ h2

(
1

2
εz′′ + gy(0)

(
α(1)
i
− α(1)

i+1

)
+ gz(0)

(
β(1)
i
− β(1)

i+1

)
− z′gz(0) − y′gy(0) + ε

(
b(1)

)′
(x)

)
=

= h
(
g(x)

)
+ h2

((
α(1)
i
+ a(1)(x)

)
gy(x) +

(
β(1)
i
+ b(1)(x)

)
gz(x)

)
+ O

(
h3

)
.

Smooth terms a(1)(x),
(
a(1)

)′
(x), b(1)(x),

(
b(1)

)′
(x) will cancel all O(1) terms according to (5.7)

except for the perturbation terms, which require α(1)
i
= O(h2) and β(1)

i
= O(h). It follows that

relation (5.6) is satisfied for α(1)
i
= O(εh) and β(1)

i
= O(ε), ε ≤ h.

M = 2. We again insert (5.5) in (5.6) and compare the smooth coefficients of h3:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.16a)

= a(2)(x) fy (x) +
1

2

(
a(1)

)2
(x) fyy (x) + a(1)(x)b(1)(x) fyz (x) + fz (x) b

(2)(x) +
1

2

(
b(1)

)2
(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.16b)

= gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x)

(
a(1)

)2
(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2 ,

which has the same form as (5.2). Equation (5.16a) gives

(
a(2)

)′
(x) = a(2)(x) fy (x) + fz (x) b

(2)(x) + c(x, ε) ,

c(x, ε) = −
1

6
y′′′(x) +

1

2

(
a(1)

)2
(x) fyy (x) + a(1)(x)b(1)(x) fyz (x) +

1

2

(
b(1)

)2
(x) fzz (x) .

Using εz′(x) = g(y(x), z(x)) yields

εz′′′(x) = gy(x) y
′′(x) + gz(x) z

′′(x)+

+
(
gyz(x)z

′(x) + gyy(x)y
′(x)

)
y′(x) +

(
gzz(x)z

′(x) + gyz(x)y
′(x)

)
z′(x) ,

and then inserting it in (5.16b) gives

ε
(
b(2)

)′
(x) = gy (x) a

(2)(x) + gz (x) b
(2)(x) + d(x, ε) ,

d(x, ε) = −
1

6

[(
gyz(x)z

′(x) + gyy(x)y
′(x)

)
y′(x) +

(
gzz(x)z

′(x) + gyz(x)y
′(x)

)
z′(x)

]

+
1

2
gy(0) y

′′(x) +
1

2
gz(0) z

′′(x) + gy(0)
(
a(1)

)′
(x) + gz(0)

(
b(1)

)′
(x)

−
1

6

(
gy(x) y

′′(x) + gz(x) z
′′(x)

)
+
1

2
gyy (x)

(
a(1)

)2
(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2 .
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Further, by evaluating at x = 0 we obtain

ε
(
b(2)

)′
(0) = gy (0) a

(2)(0) + gz (0) b
(2)(0) + d(0, ε) ,

d(0, ε) = −
1

6

[(
gyz(0)z

′(0) + gyy(0)y
′(0)

)
y′(0) +

(
gzz(0)z

′(0) + gyz(0)y
′(0)

)
z′(0)

]
+

+
1

3
gy(0) y

′′(0) +
1

3
gz(0) z

′′(0) + gy(0)
(
a(1)

)′
(0) + gz(0)

(
b(1)

)′
(0)+

+
1

2
gyy (0)

(
a(1)

)2
(0) + gyz (0) a

(1)(0)b(1)(0) +
1

2
gzz (0) (b

(1)(0))2 .

It follows from Lemma C.2 and d(0, ε) = O(1) that

gy (0) a
(2)(0) + gz (0) b

(2)(0) = O(1) . (5.17)

Just as in the M = 1 case, for the perturbations we require

α(2)
i+1
− α(2)

i
= h fz(0)β

(2)
i

(5.18a)

ε
(
β(2)
i+1
− β(2)

i

)
= hgz(0)β

(2)
i+1
, (5.18b)

and

β(2)
i
=

(
I −

h

ε
gz(0)

)−i
β(2)
0
, (5.19a)

α(2)
i
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)−i+1
β(2)
0
, (5.19b)

α(2)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)
β(2)
0
, (5.19c)

are obtained just as for (5.12), (5.13), and (5.14), respectively. The values a(1)(0), b(1)(0), α(1)
0
, β(1)

0
are uniquely determined by (3.12a), (5.17), and (5.19c). We again remark that using Lemma
C.2 together with (5.16) gives a(2)(0) = O(h) and b(1)(0) = O(1); moreover, by using (3.12a) we

obtain that α(2)
i
= O(h) for ε ≤ h. The verification of (5.6) for M = 2 is tedious, but it can be

shown to be satisfied in general by considering the following remarks. The coefficients of h1

can be ignored because they vanish for large i’s. The assumption (5.3) gives β(1)
i
= O

(
ε2−i

)
and

β(2)
i
= O

(
2−i

)
. These terms can also be neglected; however, in practice, they can give additional

convergence regimes that quickly vanish. The convergence (H → 0, H/ε → ∞) will have
different slopes that are determined by the ratio of H and ε.

This analysis gets complicated for M ≥ 3; however, we do not need to go any further to
understand the error behavior in practical applications.

b) The second part of the proof consists in estimating a bound on the reminder term just
as we did for the proof of Theorem 3.1, that is, differences ∆yi = yi − ŷi and ∆zi = zi − ẑi.
Subtracting (5.6) from (3.6) and eliminating ∆yi and ∆zi gives

(
I 0

−hgy(0) εI − hgz(0)

) (
yi+1 − yi
zi+1 − zi

)
−

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
=

= h

(
f
(
yi, zi

)
g
(
yi, zi

)
)
− h

(
f (ŷi, ẑi)
g(ŷi, ẑi)

)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−hgy(0) εI − hgz(0)

) (
∆yi+1
∆zi+1

)
−

(
I 0

−hgy(0) εI − hgz(0)

) (
∆yi
∆zi

)
=
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= h

(
f
(
yi, zi

)
− f

(
ŷi, ẑi

)
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+2

)

 ,

(
I 0

−gy(0)
ε
h I − gz(0)

) (
∆yi+1
∆zi+1

)
=

(
I 0

−gy(0)
ε
h I − gz(0)

) (
∆yi
∆zi

)
+

+

(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 ,

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

(
I 0

−gy(0)
ε
h I − gz(0)

)−1 (
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+

+

(
I 0

−gy(0)
ε
h I − gz(0)

)−1 

O

(
hM+2

)

O
(
hM+1

)

 .

We obtain

(
∆yi+1
∆zi+1

)
=

(
∆yi
∆zi

)
+

+




I 0

O(1)
(
ε
h I − gz(0)

)−1


(
h
(
f
(
yi, zi

)
− f

(
ŷi, ẑi

))
g
(
yi, zi

)
− g

(
ŷi, ẑi

)
)
+



O

(
hM+2

)

O
(
hM+1

)

 .

By using (5.3) and ε ≤ hwe have

∥∥∥∥∥I +
(
ε

h
I − gz(0)

)−1
gz(0)

∥∥∥∥∥ =
∥∥∥∥∥∥∥

(
I −

h

ε
gz(0)

)−1∥∥∥∥∥∥∥
≤
ε

ε + h
≤

1

2
. (5.20)

We therefore obtain (3.22) with |ζ| < 1 and H sufficiently small. Using the same procedure as

in the proof of Theorem 3.1, we obtain
∥∥∥∆yi

∥∥∥ + ‖∆zi‖ = O
(
hM+1

)
.

A close inspection of (5.4) reveals that the global error has different regimes when ε ≤ h.
We now focus on the global error expansion of the stiff component (5.4), which gives the
following leading term:

Z j1 =

(
I −

h

ε
gz(0)

)−n j+1 (
hb(1)(0) + h2b(2)(0)

)
= h2

(
I −

h

ε
gz(0)

)−n j+1

b(2)(0) .

We further consider gz(0) ∝ −1, and with H = h/n j we have

T j1 =

(
H

εn j

)2 (
1 +

H

εn j

)−n j+1

b(2)(0) ,

Z j1 = ε
2T j1b

(2)(0) .

The error propagates through the extrapolation tableau through (2.3a). Similar to the behavior
of the global error for the linearly implicit method [Hairer andWanner, 1993, p. 438], the first
subdiagonal (T j j−1) with n1 = 1 gives

T j j−1 = const.
(
H

ε

)2−n2
+ O

((
H

ε

)2−n2)
,

where the constant is determined by (2.3a). This suggests a superposition of the convergence

slopes predicted for DAEs and a factor O
(
ε2

)
.
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5.2. Pure-IMEX Method. We now consider the Pure-IMEX method applied to SPP (5.1)
to give (3.25).

T 5.2 (Global error expansion for the extrapolated Pure-IMEX method applied to
stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition (5.3) the numerical
solution of (3.25) possesses for ε ≤ h a perturbed asymptotic expansion of the form

yi = y(xi) + ha(1)(xi) + h2a(2)(xi) + O(h
3)− (5.21a)

− ε fz(0)g
−1
z (0)

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb(1)(xi) + h2b(2)(xi) + O(h
3)− (5.21b)

−

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions a(1)(0) = O(h),
a(2)(0) = O(h), b(1)(0) = O(1), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the same
assumptions (5.2), (5.5), and instead of (5.6) one obtains

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h

(
f
(
ŷi, ẑi

)
g
(
ŷi, ẑi

)
− hgy(0) f

(
ŷi, ẑi

)
)
+



O

(
hM+1

)

O
(
hM+1

)

 .

(5.22)

For M = 1 we obtain

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.23a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) − f (x)gy(0) .

(5.23b)

Equation (5.23b) leads to

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ f (0)gy(0)︸    ︷︷    ︸
O(1)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(1) (5.24)

with known right-hand side. The perturbation terms up to O(h2) give the same expression as

in the W-IMEX case (5.9) that yields (5.10) and eventually (5.11). The values for α(1)
i

and β(1)
i

are given by (5.13) and (5.12), respectively. By using the consistency assumptions (3.12a) and
(5.12) we obtain

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(h) , (5.25)

which yields a(1)(0) = O(h) and b(1)(0) = O(1) (α(1)
i
= O(h), β(1)

i
= O(1)). With these assumptions

(5.22) can be verified.
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For M = 2 we have the following expansion:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.26a)

= a(2)(x) fy (x) +
1

2

(
a(1)

)2
(x) fyy (x) + a(1)(x)b(1)(x) fyz (x) + fz (x) b

(2)(x) +
1

2

(
b(1)

)2
(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.26b)

= − fy(x)gy (0) a
(1)(x) − fz(x)gy (0) b

(1)(x)+

+ gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x)

(
a(1)

)2
(x) + gyz (x) a

(1)(x)b(1)(x) +
1

2
gzz (x) (b

(1)(x))2 ,

which has the same form as (5.2). We obtain again (5.17) and (5.19). Using b(2)(0) = O(1) yields
a(2)(0) = O(h) and b(1)(0) = O(1). The rest is similar to the proof of Theorem 5.1

The convergence behavior of this method is very similar to the one discussed for the
W-IMEX scheme (Sec. 5.1); however, in this case the superposition of the error has a factor of
O (ε).

5.3. Split-IMEXMethod. We consider the Split-IMEXmethod applied to SPP (5.1) to give
(3.37).

T 5.3 (Global error expansion for the extrapolated Split-IMEX method applied to
stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition (5.3) the numerical
solution of (3.37) possesses for ε ≤ h a perturbed asymptotic expansion of the form

yi = y(xi) + ha(1)(xi) + h2a(2)(xi) + O(h
3)− (5.27a)

− ε fz(0)g
−1
z (0)

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

zi = z(xi) + hb(1)(xi) + h2b(2)(xi) + O(h
3)− (5.27b)

−

(
I −

h

ε
gz(0)

)−i+1 (
hb(1)(0) + h2b(2)(0)

)
,

where xi = ih ≤ H with H sufficiently small independent of ε. The smooth functions a(1)(0) = O(εh),
a(2)(0) = O(h), b(1)(0) = O(ε), b(2)(0) = O(1).

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the same
assumptions (5.2), (5.5), and thus (5.6) becomes

(
I 0

−hgy(0) εI − hgz(0)

) (
ŷi+1 − ŷi
ẑi+1 − ẑi

)
= h




f
(
ŷi, ẑi

)

g
(
ŷi + h f

(
ŷi, ẑi

)
, ẑi

)
− hgy(0) f

(
ŷi, ẑi

)

 +



O

(
hM+2

)

O
(
hM+2

)

 .

(5.28)

For M = 1 we obtain

(
a(1)

)′
(x) +

1

2
y′′(x) = fy (x) a

(1)(x) + fz (x) b
(1)(x) , (5.29a)

1

2
ε z′′(x) − gy(0) y

′(x) − gz(0) z
′(x) + ε

(
b(1)

)′
(x) = gy (x) a

(1)(x) + gz (x) b
(1)(x) + f (x)

(
gy(x) − gy(0)

)
,

(5.29b)
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Equation (5.29b) leads to

gy (0) a
(1)(0) + gz (0) b

(1)(0) = −
1

2

(
gy (0) y

′ (0) + gz (0) z
′(0)

)

︸                            ︷︷                            ︸
εz′′(0)

+ ε
(
b(1)

)′
(0) ,

gy (0) a
(1)(0) + gz (0) b

(1)(0) = O(ε) (5.30)

with known right-hand side. We continue with an in-depth analysis for the rest of the proof
because some derivations are not obvious. The perturbation terms up to O(h2) give the same
expression as in the W-IMEX case (5.9) that yields (5.10) and eventually (5.11):

α(1)
i+1
− α(1)

i︸     ︷︷     ︸
(5.11a)

=�����
h fy(xi)α

(1)
i
+ h fz(xi)β

(1)
i︸     ︷︷     ︸

(5.11a)

, (5.31a)

ε
(
β(1)
i+1
− β(1)

i

)

︸         ︷︷         ︸
(5.11b)

+ h



−
��������(
α(1)
i+1
− α(1)

i

)
gy(0) −



β(1)
i+1︸︷︷︸

(5.11b)

− �
�β(1)
i︸︷︷︸
O(h)



gz(0)



= (5.31b)

= h
(
�����
gy(xi)α

(1)
i
+����
gz(xi)β

(1)
i

)
+ h2

(
����
α(2)
i
gy(x) +�

�β(2)
i
gz(x)

)
.

The values for α(1)
i

and β(1)
i

are given by (5.13) and (5.12), respectively. By using the consistency
assumptions (3.12a) and (5.12) we obtain

α(1)
i
= −h fz(0)

(
−
h

ε
gz(0)

)−1 (
I −

h

ε
gz(0)

)−i+1
β(1)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)−i+1
β(1)
0

and

α(1)
0
= ε fz(0)g

−1
z (0)

(
I −

h

ε
gz(0)

)
β(1)
0
= O(h) β(1)

0
= O(εh) , (5.32)

which yields a(1)(0) = O(εh) and b(1)(0) = O(ε) (α(1)
i
= O(εh), β(1)

i
= O(ε)). With these assump-

tions (5.22) can be verified.

For M = 2 we have the following expansions:

(
a(2)

)′
(x) +

1

6
y′′′(x) = (5.33a)

= a(2)(x) fy (x) +
1

2

(
a(1)

)2
(x) fyy (x) + a(1)(x)b(1)(x) fyz (x) + fz (x) b

(2)(x) +
1

2

(
b(1)

)2
(x) fzz (x) ,

1

6
ε z′′′(x) −

1

2
gy(0) y

′′(x) −
1

2
gz(0) z

′′(x) − gy(0)
(
a(1)

)′
(x) − gz(0)

(
b(1)

)′
(x) + ε

(
b(2)

)′
(x) =

(5.33b)

= − fy(x)gy (0) a
(1)(x) − fz(x)gy (0) b

(1)(x) + a(1)(x) fy(x)gy(x) + b(1)(x) fz(x)gy(x)+

+ gy (x) a
(2)(x) + gz (x) b

(2)(x) +
1

2
gyy (x)

(
a(1)(x) + f (x)

)2
+ gyz (x)

(
a(1)(x) + f (x)

)
b(1)(x) +

1

2
gzz (x)

(
b(1)(x)

)2
,
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which have the same form as (5.2). We also have

α(1)
i+1
− α(1)

i︸     ︷︷     ︸
(5.31a)

+ h
(
α(2)
i+1
− α(2)

i

)
=�����
h fy(xi)α

(1)

i
+ h fz(xi)β

(1)

i︸     ︷︷     ︸
(5.31a)

+ (5.34a)

+ h2
(
����
fy(xi)α

(2)
i
+ fz(xi)β

(2)
i
+

1

2

(
α(1)
i

)2
fyy(xi) + α

(1)
i
β(1)
i
fyz(xi) +

1

2

(
β(1)
i

)2
fzz(xi)

)
,

ε
(
β(1)
i+1
− β(1)

i

)

︸         ︷︷         ︸
(5.31b)

+ h



ε
(
β(2)
i+1
− β(2)

i

)
−

��������(
α(1)
i+1
− α(1)

i

)
gy(0) −



β(1)
i+1︸︷︷︸

(5.31b)

− �
�β(1)
i︸︷︷︸
O(h)



gz(0)



− (5.34b)

− h2


�

�������(
α(2)
i+1
− α(2)

i

)
gy(0) +



β(2)
i+1
− �

�β(2)
i︸︷︷︸
O(h)



gz(0)



=

= h
(
�����
gy(xi)α

(1)
i
+����
gz(xi)β

(1)
i

)
+ h2

(
����
α(2)
i
gy(x) +�

�β(2)
i
gz(x)

)
+

+ h2



α(1)
i

fy(x)
(
gy(x) − gy(0)

)

︸            ︷︷            ︸
O(h)

+β(1)
i
fz(x)

(
gy(x) − gy(0)

)

︸            ︷︷            ︸
O(h)

+

+
1

2

(
α(1)
i

)2
gyy(xi) + α

(1)

i
β(1)
i
gyz(xi) +

1

2

(
β(1)
i

)2
gzz(x)

)
.

We obtain again (5.17) and (5.19). Using b(2)(0) = O(1) yields a(2)(0) = O(h) and b(1)(0) =
O(1). The rest is similar to the proof of Theorem 5.1.

The convergence behavior of this method is asymptotically similar to the one discussed
for the W-IMEX scheme (Sec. 5.1).

6. Numerical Results for Extrapolated IMEX Applied to StiffODEs. We investigate the
numerical properties of the proposed extrapolated IMEX methods applied to stiff ODEs. We
consider two stiff ordinary differential equations: stiff van der Pol and an example proposed
by Hairer and Lubich [1988]. We also consider for comparison several IMEX Runge-Kutta
schemes: [ARS(implicit stages, explicit (effective) stages, classical order)] (Ascher-Ruuth-Spiteri)
developed by Ascher et al. [1997]; [PR (implicit stages, explicit (effective) stages, classical
order)] (Pareschi and Russo) introduced by Pareschi and Russo [2000]; and the [ARK or-
der (embedded order) stages] (Additive Runge-Kutta) methods developed by Kennedy and
Carpenter [2003]. All IMEX Runge-Kutta methods require solving a (non)linear system of
equations. The implicit part of the ARK methods is of ESDIRK type, namely, explicit first
stage with the same value on the diagonal of the Butcher tableau, which improves the com-
putation efficiency.

The implementation is done in MatlabR© by using high-precision (64-digit) arithmetic. The
experiments consist in integrating the problem by taking successively smaller steps H and
computing the L1 error norm for each step size. We compare the results of the proposed IMEX
methods and the above-mentioned IMEX Runge-Kutta schemes with a third-order reference
solution computed with the stiff solver RODAS 3 [Sandu et al., 1997] and a step size of 10−9.
The nonlinear solver used in the computation of the reference solution and in the IMEXRunge-
Kutta methods is implemented with classical Newton iterations. The process is stopped when
the difference between sequential iterates is below 10−25.
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F. 6.1. Local error vs. step size for the stiff solution component of the van der Pol equation using extrapolated linearly
implicit and IMEX methods for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps, namely, the optimal k for
each method’s T3 k, T6 k, T9 k, T12 k.

6.1. Van der Pol. We consider the van der Pol equation (see [Hairer and Wanner, 1993;
Boscarino, 2007])

y′ = z

ε z′ =
(
1 − y2

)
z − y

=

(
z
0

)

︸︷︷︸
= f (y,z)

+

(
0(

1 − y2
)
z − y

)

︸                ︷︷                ︸
=g(y,z)

(6.1)

with [Boscarino, 2007]

y(0) = 2 , z(0) = −
2

3
+

10

81
ε −

292

2187
ε2 −

1814

19683
ε3 + O

(
ε4

)
, ε = 10−5 . (6.2)

The stiff part is represented by z or g(y, z). In Figure 6.1 we show the error for the stiff solution
component (z) of the van der Pol equation using extrapolated linearly implicit and IMEX
methods (2.4) for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps, that
is, optimal k for each method’s T3 k, T6 k, T9 k, T12 k extrapolation terms. The specific terms are
selected from Table 9.1 for each method. The convergence rates correspond to the theoretical
expectations, the error decreases until it reaches O(ε) for Pure-IMEX and O(ε2) for the others.

We compare the extrapolated IMEX methods with several IMEX Runge-Kutta methods.
In Figure 6.2 we show the L1 error norm of the local errors of the stiff component for second
and third-order PR methods, two third-order ARS methods, and third- to fifth-order ARK
methods. The order reduction phenomenon can be clearly seen. The convergence behavior is
explained in detail in [Boscarino, 2007].
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F. 6.2. Local error vs. step size for the stiff solution component of the van der Pol equation using several IMEX
Runge-Kutta methods and T6,5 Split-IMEX for comparison.

The computational cost of the extrapolated IMEX methods increases linearly with each
additional extrapolation step. For T jk one needs j( j+ 1)/2 right-hand-side evaluations. In con-
trast, for an si-implicit, se-explicit-stage IMEX Runge-Kutta scheme, one needs ≈ [(se − si) + si
× # of Newton iterations] function evaluations. In this study we do not focus on the actual
computational cost, which can change with the implementation and application.

6.2. Example from [Hairer and Lubich, 1988]. In this section we present a second stiff
differential equation example presented in [Hairer and Lubich, 1988]:

y′ = −y
ε z′ = −

(
1 + y

)
z + y2

=

(
−y
0

)

︸  ︷︷  ︸
= f (y,z)

+

(
0

−
(
1 + y

)
z + y2

)

︸                  ︷︷                  ︸
=g(y,z)

(6.3)

with

y(0) = 0.3 , z(0) = 0.06923086345026332 , ε = 10−6 .

In Figure 6.3 we show the same results for the stiff solution components obtained after one
step (H) with the extrapolated linearly implicit and proposed IMEX methods using the same
setting as in the previous section (6.1).

In Figure 6.4 we present the stiff component local errors using several IMEX Runge-Kutta
methods. The conclusions mirror the ones presented in Section 6.1.

7. Numerical Results for PDEs. We next investigate the discretization accuracy of the
advection-reaction (time-dependent) PDE using the W-IMEX, Pure-IMEX, and Split-IMEX
schemes. In this section we use x as the spatial variable and t as the temporal variable. The
implementation is carried out in MatlabR© with double precision.

The estimated numerical order of convergence is computed by using the L1 error norm
given by L1(= ∆x/m

∑m
i=1 |Erri|), where m is the number of variables, at the final time using

different step sizes (H).
We also discuss the order reduction phenomenon due to stiff boundary or source terms

[Sanz-Serna et al., 1987; Sanz-Serna and Verwer, 1989; Carpenter et al., 1995] and explore
numerically the behavior of the proposed IMEX methods in such cases.

7.1. Advection-Reaction Equation. We start with the advection-reaction PDE and use
the setting described in Hundsdorfer and Ruuth [2007a]:

yt + α1 yx = −k1y + k2z + s1
zt + α2 zx = k1y − k2z + s2

,
0 < x < 1
0 < t ≤ tmax

,
α1 = 1 , k1 = 106 , s1 = 0
α2 = 0 , k2 = 2k1 , s2 = 1

, (7.1)
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F. 6.3. Local error vs. step size for the stiff solution component of equation 6.3 investigated in [Hairer and Lubich, 1988]
using extrapolated linearly implicit and IMEXmethods for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps.
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T 7.1
Numerical orders for the advection-reaction PDE with extrapolated W-IMEX|Pure-IMEX|Split-IMEX schemes (tmax = 1,

m = 400)

(1)|1.0|(1)

(1)|1.0|(1) 2.0|1.0|2.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|1.9|3.0

1.2|1.0|1.2 2.0|1.0|2.0 3.0|2.0|3.0 (4)|(2)|(4)

1.0|1.0|1.0 2.0|1.0|2.0 3.0|2.0|3.0 4.0|(3)|4.0 5.0|(2)|5.0

1.0|1.0|1.0 2.0|1.0|2.0 3.0|2.0|3.0 4.0|(3)|4.0 (5)|3.0|(5) (6)|2.3|(6)

1.0|1.0|1.0 (2)|1.0|(2) 3.0|2.0|3.0 4.0|3.1|4.0 (5)|(4)|(5) (6)|(3)|(6) (6)|(2)|(6)
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(a) Solution at t = 1 (b) Inflow function

F. 7.1. Illustration of (a) the advection-reaction solution and (b) the boundary inflow term (y(0, t)).

with

y(x, 0) = 1 + s2x , z(x, 0) =
k1
k2

y(x, 0)+
1

k2
s2 y(0, t) = 1 − sin(12t)4 .

This example has two physics components: advection and reaction. We treat the advection
term explicitly and the reaction term implicitly because of its numerical stiffness.

For the spatial discretization we use the fourth order central finite difference scheme for
the interior points and third order biased schemes at the domain boundaries. We consider a
uniform grid: xi = i∆x, i = 1 . . .m with ∆x = 1/m. The solution components for m = 400 at
t = 1 and the inflow boundary condition are displayed in Figure 7.1. The inflow boundary
profile is propagated inside the domain through the first component of (7.1).

The experimental orders are shown inTable 7.1. They are in accordancewith the theoretical
predictions, with some components having slightly more optimistic results, which is expected
because the linearity of this example makes W-IMEX and Split-IMEX equivalent.

The W-IMEX and the Split-IMEX schemes give the best results, while the Pure-IMEX
scheme is slightly inferior. We note that the experimental orders increase with the addition
of more terms in the extrapolation tableau. Although not seen here, with a more complex
example we conjecture that theW-IMEXmethod will have a higher order of convergence than
the Split-IMEX.

In Fig. 7.2.b we show the CPU time versus the global error of the Split-IMEX method
compared to ARK orders 3–5 [Kennedy and Carpenter, 2003] and IMEX-BDF orders 2–5
[Hundsdorfer and Ruuth, 2007b] methods. The implementation is done in FORTRAN by
using quad precision. For the Split-IMEX scheme we consider orders up to 18. The linear
system is solvedwith LAPACKLU factorization. The timing experiments are performed on an
eight-core processor. The Split-IMEXmethod compareswell with RK and LMmethods on low
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F. 7.2. a) The exact solution (top) and the forcing (bottom) used to illustrate the order reduction phenomenon. b) Global
error vs. CPU time for the advection-reaction equation at tmax = 1 solved with IMEX-BDF (orders 2 (green), 3 (blue), 4 (red), 5
(black)), ARK (orders 3 (blue), 4 (red), 5 (black)), and the proposed Split-IMEX method for different extrapolation terms (up to
order 18) using a sequential (light-gray) and a straightforward OpenMP parallelization (dark gray) on a eight-core processor.

accuracy and is superior for high-accuracy results. We further considered a straightforward
OpenMPparallelization of the extrapolation row calculations. The timing results show that on
a 8-core machine, Split-IMEX is superior in efficiency to the considered LM and RK methods.
No effort has been made to optimize the parallel performance, but additional improvements
seem possible by optimizing the code and by employing more CPUs. Moreover, LMmethods
in general and IMEX-BDF in particular may become unstable if the eigenvalues of the implicit
term are relatively large and close to the imaginary axis, whereas the proposedmethods allow
for A-stability on the implicit part.

7.2. Boundary/Source Order Reduction. Extrapolation methods with explicit methods
such as the treatment of f in the proposed IMEX schemes can be represented as explicit Runge-
Kutta methods, which have the stage order equal to one. These methods suffer from order
reduction. To illustrate the boundary/source order reduction phenomenon, we consider a
classic test initial value problem with a nonlinear source proposed in [Sanz-Serna et al., 1987]:

∂y

∂t
= −
∂y

∂x
+ b(x, t) ,

0 ≤ x ≤ 1
0 ≤ t ≤ 1

,
y(0, t) = b(0, t)
y(0, t) = y0(x)

, (7.2)

with the initial condition y0(x) = 1 + x and (left) boundary and source term defined by
b(x, t) = (t− x)/(1+ t)2. The exact solution, y(x, t) = (1+ x)/(1+ t), and the forcing are illustrated
in Figure 7.2. Because the solution is linear in space, the first order upwind can be used in the
space discretization without introducing discretization errors.

7.2.1. The Order Reduction Phenomenon. Order reduction due to stiff boundary or
source terms is discussed in [Brenner et al., 1982]. Sanz-Serna et al. [1987] show that Runge-
Kutta methods with p ≥ 3 suffer from order reduction. This theoretical result is also verified
in our numerical experiments. The discretization error is computed in the L∞ norm. Special
boundary/source treatment to avoid boundary/source order reduction have been discussed
in [Abarbanel et al., 1996; Carpenter et al., 1993; Pathria, 1997; Calvo and Palencia, 2002;
Carpenter et al., 1995; Sanz-Serna and Verwer, 1989; Sanz-Serna et al., 1987].

Case 1: Classical order retention. Here we consider a fixed spatial resolution: ∆x = 1/100.
The numerical orders are displayed in Table 7.2.

Case 2: Order reduction. Herewe refine in space and time maintaining a CFL of 0.5 [Laney,
1998]. In this case we notice order reduction to second order. The numerical orders are
displayed in Table 7.3.
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T 7.2
Illustration of the classical order retention

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
1.003
1.001 2.153
1.001 2.002 3.155
1.001 2.001 2.862 4.325
1.001 2.001 2.794 4.010 5.244

0.976
0.986 1.62
0.990 1.69 2.354
0.992 1.71 2.449 2.851
0.994 1.73 2.494 2.954 3.569

T 7.3
Illustration of the order reduction phenomenon

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
0.999
0.998 1.900
0.997 1.899 2.032
0.997 1.898 2.032 2.006
0.997 1.898 2.031 2.033 2.019

0.913
0.917 1.010
0.918 1.010 1.014
0.919 1.010 1.014 1.015
0.919 1.010 1.014 1.015 1.006

7.2.2. Avoiding Order Reduction. One way to avoid order reduction is by integrating
the Dirichlet boundary condition along with the solution [Carpenter et al., 1995]. For example
(7.2) we have

∂y

∂t
= −

[
0

F(y)

]
+

[
b′(0, t)
b(x, t)

]
, F(y) ≈

∂y

∂x
, y(x, t) =

[
b(0, t)
y(x, t)

]
, (7.3)

with the same initial condition.
The numerical orders are estimated just as before for the two settings:

Case 1: Classical order retention. Here we consider a fixed spatial resolution: ∆x = 1/100.
The numerical orders are displayed in Table 7.4.

Case 2: Order reduction. Here we refine both in space and time maintaining a CFL of 0.5.
In this case we notice order reduction to third order. The numerical orders are displayed in
Table 7.5.

The equivalence between the extrapolation methods and explicit or implicit Runge-Kutta
methods has the potential to allow the strategy to avoid order reduction applied to Runge-
Kutta to be applied just as well to the extrapolationmethods and extrapolated IMEXmethods.

8. Implementation Considerations. In this section we present a few implementation
considerations for the extrapolation methods, extrapolated IMEX, and extrapolation methods
applied to stiff systems.

Construction of extrapolation methods. The extrapolation methods can be described as a set
of increasingly accurate composite schemes. Lower-order embedded approximations are com-
puted sequentially, which provides necessary information for a step size (H) control strategy
[Hairer andWanner, 1993]. Because each computational step in the extrapolation procedure is
a consistent approximation of the solution, these methods do not have predetermined number
of extrapolation steps (rows in extrapolation tableau), and hence one can consider an adaptive
order approach based on error approximations given by the embedded lower order meth-
ods. Very high order approximations are easily obtained with no limitation on the theoretical
achievable convergence order.

Implementation of extrapolation methods. To apply the proposed extrapolationmethods, one
needs to implement the base methods (2.4) and the extrapolation steps (2.3a). The Jacobian g′

is evaluated only at the beginning of the step. Therefore several computational simplifications
may occur, especially if g is linear.
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T 7.4
Extended system - classical order retention

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
1.003
1.001 2.002
1.001 2.001 3.003
1.001 2.001 3.003 4.174
1.001 2.001 3.003 3.877 4.360

1.000
1.000 2.001
0.999 2.002 2.461
0.999 2.002 2.530 3.150
0.999 2.002 2.560 3.248 3.699

T 7.5
Extended system - order reduction

Forward Euler Extrapolation Linear Implicit Euler Extrapolation
0.999
0.998 2.000
0.997 1.999 2.893
0.997 1.999 2.893 3.025
0.997 1.99 2.893 3.022 2.993

0.988
0.987 1.915
0.987 1.915 2.006
0.987 1.915 2.007 2.008
0.987 1.915 2.007 2.008 2.009

Cost, memory, and parallelization. In the classical setting (ε ≈ h), the extrapolation methods
are less efficient than the popular Runge-Kutta or linear multistep schemes for the same
classical order of accuracy. It is not clear, however, whether the proposed IMEX methods are
less efficient because that they do not necessitate nonlinear solver iterations. Moreover, the
extrapolation methods can be parallelized very easily [Rauber and Rünger, 1997]. Each entry
on the first extrapolation tableau column (T j,1) can be computed independently. Moreover, the
computational cost is predetermined

Cost for T jk ∝
j( j + 1)

2
× function evaluations ,

and thus each entry can be optimally scheduled on multiprocessor or multicore architectures.
This strategy can lead to more efficient overall implementations with the total computational
cost∝ j. In contrast, the IMEXRunge-Kuttamethodshave a computational cost proportional to
the number of implicit stages multiplied by the number of iterations required by the nonlinear
solver.

The memory requirements for full extrapolation tableaux are proportional to j( j + 1)/2.
However, as we discuss below, for stiff problems, a large number of tableau entries need not
be computed, and thus the number of registers required in practice can be reduced.

Extrapolation methods for stiff systems. For stiff nonlinear problems, the diagonal entries
in the extrapolation tableau are typically not the best approximations for a given number of
extrapolation steps. The theoretical results indicate that the errors propagate in the diagonal
direction. The optimal entries in the extrapolation tableau are emphasized in Table 9.1 given
one of the three proposed IMEX methods or the linearly implicit one. This is equivalent
to starting the extrapolation procedure with a shifted harmonic sequence n j = ℓ, ℓ + 1, . . . ,
j = 1, 2, . . . , and ℓ ≥ 1 can be chosen to include the optimal values (see Table 9.1). If a
sufficiently large number of extrapolation steps is computed, then the diagonal and several
subdiagonal entries are not necessary, and hence cost andmemory requirements are alleviated.

9. Discussion. In this paper we construct extrapolated implicit-explicit discretization
methods that allow one to efficiently solve problems that have both stiff and nonstiff compo-
nents. Thesemethods arewell suited for the time integration ofmultiphysicsmultiscale partial
differential equations. We propose three new extrapolation methods: W-IMEX, Pure-IMEX,
and Split-IMEX. These methods have very low implementation costs and can easily reach
very high orders of accuracy. The W-IMEX method resembles the linearly implicit scheme
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in implementation and performance. However, the W-IMEX scheme does not require the
evaluation of the entire Jacobian, which makes it computationally cheaper.

The closely related Pure-IMEX and Split-IMEX methods are truly implicit-explicit meth-
ods. The Split-IMEX method has the explicit part sequentially decoupled from the implicit
one and has more favorable properties than the Pure-IMEX method.

The methods under investigation can attain a very high discretization order for ODEs,
index-1 DAEs, and PDEs in the method of lines framework. In this study we have not
extensively assessed the efficiency of these methods. However, numerical tests indicate that
they compare well with existing IMEX RK and LM methods and are superior when even a
straightforward OpenMP parallelization is considered.

The proposed extrapolated IMEX methods parallelize very well and are apt to be im-
plemented on the emerging multicore computational architectures. They have low-order
embedded approximations by construction, which facilitates implementations of error control
mechanisms. Moreover, they do not require a predetermined number of steps, making them
very robust by allowing variable-order strategies.

Numerical results with stiff ODEs, DAEs, and PDEs illustrate our theoretical findings. In
our numerical experiments, the Split-IMEX scheme performed best in terms of efficiency and
accuracy.
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T 9.1
Theoretical local extrapolation orders for linearly implicit, W-IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs. Boldface fonts represent the “best” or optimal choice for a given

number of steps.

Orders (r jk) for component y jk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

1 2|2|2|2 ���a(2)(·) ���a(3)(·) ���a(4)(·) ���a(5)(·) ���a(6)(·) ���a(7)(·) ���a(8)(·) ���a(9)(·) ���a(10)(·) ���a(11)(·) ���a(12)(·)

2 2|2|2|2 3|3|2|3
3 2|2|2|2 3|3|2|3 4|3|3|3
4 2|2|2|2 3|3|2|3 4|3|3|3 5|4|3|4
5 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|3|4
6 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|4|5 6|5|3|4

7 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|4|5 6|5|3|4

8 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|5|6 7|6|4|5 6|5|3|4

9 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 7|6|4|4 6|5|3|4

10 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 8|7|5|6 7|6|4|5 6|5|3|4

11 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

12 2|2|2|2 3|3|2|3 4|3|3|3 5|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|7|8 9|8|6|7 8|7|5|6 7|6|4|5 6|5|3|4

1 2 3 4 5 6 7 8 9 10 11 12

Orders (s jk) for component z jk for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

1 2|2|1|2 ���b(2)(·) ���b(3)(·) ���b(4)(·) ���b(5)(·) ���b(6)(·) ���b(7)(·) ���b(8)(·) ���b(9)(·) ���b(10)(·) ���b(11)(·) ���b(12)(·)

2 2|2|1|2 2|2|2|2
3 2|2|1|2 2|2|2|2 3|3|2|3
4 2|2|1|2 2|2|2|2 3|3|3|3 4|4|2|3
5 2|2|1|2 2|2|2|2 3|3|3|3 4|4|3|4 4|4|2|3
6 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|3|4 4|4|2|3

7 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|4|5 5|5|3|4 4|4|2|3

8 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|4|5 5|5|3|4 4|4|2|3

9 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|5|6 6|6|4|5 5|5|3|4 4|4|2|3

10 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

11 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

12 2|2|1|2 2|2|2|2 3|3|3|3 4|4|4|4 5|5|5|5 6|6|6|6 7|7|7|7 8|8|6|7 7|7|5|6 6|6|4|5 5|5|3|4 4|4|2|3

1 2 3 4 5 6 7 8 9 10 11 12
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T 9.2
Numerical local extrapolation orders for the van der Pol equation using the linearly implicit, W-IMEX, Pure-IMEX methods and for the trigonometric equation using the Split-IMEX scheme

(based on L1 error norm). These results can be compared with the theoretical ones presented in Table 9.1.

Orders component y jk (linearly implicit|W-IMEX|Pure-IMEX) for van der Pol and (|Split-IMEX) for the trigonometric example

2.0|2.0|2.0|2.0

2.0|2.0|2.0|1.9 3.0|3.0|2.0|3.0

2.0|2.0|2.0|1.9 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|2.9 5.0|4.0|3.0|4.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|3.0|4.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|3.9 5.1|5.0|4.0|4.9 6.1|5.1|3.0|5.1

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.1|5.0|5.0|4.9 6.2|6.0|4.0|6.0 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|4.9 6.2|6.0|5.0|6.0 8.4|5.8|4.0|5.8 5.9|5.0|3.0|5.0

2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0 4.0|3.0|3.0|3.0 5.0|4.0|4.0|4.0 5.2|5.0|5.0|4.9 6.2|6.0|6.0|6.0 7.3|7.0|5.0|7.0 7.0|6.0|4.0|6.0 6|4.9|2.9|4.9

1 2 3 4 5 6 7 8 9

Orders component z jk (linearly implicit|W-IMEX|Pure-IMEX) for van der Pol and (|Split-IMEX) for the trigonometric example

2.0|2.0|1.0|2.0

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0

2.0|2.0|1.0|2.2 2.0|2.0|2.0|2.0 3.0|3.0|2.0|3.0

2.0|2.0|1.0|1.8 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|2.0|3.0

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|3.0|4.0 4.1|4.1|2.0|3.1

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|3.0|4.0 3.9|4.0|2.0|3.1

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|4.0|5.0 4.6|4.8|3.0|4.0 3.9|4.0|2.0|3.2

2.0|2.0|1.0|1.9 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|5.0|4.9 6.0|6.0|4.0|4.9 5.0|5.0|3.0|4.0 3.8|3.9|1.9|3

2.0|2.0|1.0|2.0 2.0|2.0|2.0|2.0 3.0|3.0|3.0|2.9 4.0|4.0|4.0|3.9 5.0|5.0|5.0|4.9 6.0|6.0|5.0|6.0 6.2|6.1|4.0|5.0 4.9|5.0|3.0|4.0 4|4|2|3

1 2 3 4 5 6 7 8 9
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Appendix A. Linearly Implicit Euler Method.
In this sectionwe review the linearly implicit method. Consider the implicit Eulermethod

applied to problem (1.1) under smoothness assumptions:

yi+1 = yi + hF
(
xi+1, yi+1

)
,

= yi + h
(
J
(
yi+1 − yi

)
+ F

(
xi+1, yi

))
+ O(h2)

= yi + h
(
J
(
yi+1 − yi

)
+ F

(
xi, yi

)
+ O(h)

)
+ O(h2) ,

where J is an approximation to ∂F∂y (xi, yi). Then the linearly implicit Eulermethod is given by

(I − hJ)
(
yi+1 − yi

)
= hF

(
xi, yi

)
.

This method has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the base method,
for solving stiff ODEs of type (1.1) with (2.1), (2.3). In this study we consider J = F′(y) =
( f (y) + g(y))′.

Appendix B. Transfer Functions. The stability functions for methods (2.4) applied to (2.9)
are computed in the following way. For linear implicit Euler (2.4a) we have

yn+1 = yn + (1 − h (λ + µ))−1
(
hλyn + hµyn

)
,

yn+1 =
(
1 + (1 − h (λ + µ))−1 h

(
λ + µ

))
yn =

(
1 +

hλ + hµ

1 − h (λ + µ)

)
yn ,

R(z,w) = 1 +
z + w

1 − (z + w)
=

1

1 − (z + w)
.

The stability function for the W-IMEX scheme (2.4b) is given by

yn+1 = yn +
[
I − h g′(yn)

]−1 (
h f (yn) + h g(yn)

)
,

yn+1 =
(
1 +

(
1 − hµ

)−1 (
hλ + hµ

))
yn =

(
1 +

hλ + hµ

1 − hµ

)
yn , (B.1)

R(z,w) = 1 +
z + w

1 − w
=

1 + z

1 − w
. (B.2)

For the Pure-IMEX method (2.4c) we have

yn+1 = yn + h f (yn) +
[
I − h g′(yn)

]−1 (
h g(yn)

)
,

yn+1 =
(
1 + hλ +

(
1 − hµ

)−1 (
hµ

))
yn =

(
1 + hλ +

hµ

1 − hµ

)
yn ,

R(z,w) = 1 + z +
w

1 − w
=

1 − w + z − zw + w

1 − w
=

1 + z − zw

1 − w
. (B.3)

For the Split-IMEX (2.4d) method we obtain

yn+1 = y∗ +
[
I − h g′(yn)

]−1 (
h g(y∗)

)
; y∗ = yn + h f (yn) = yn + hλ yn

yn+1 = yn + hλ yn +
h g(yn + hλ yn)

1 − h g′(yn)
= yn + hλ yn +

hµ(yn + hλ yn)

1 − hµ

yn+1 =

(
1 + hλ +

hµ(1 + hλ)

1 − hµ

)
yn ,

R(z,w) = 1 + z +
w(1 + z)

1 − w
=

1 + z

1 − w
.
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Appendix C. Technical Lemmas. The following lemma is adapted from [Hairer and
Wanner, 1993, Lemma 3.9, chap. VI] and [Deuflhard et al., 1987, Lemma 2].

L C.1 (Bounded series). Let {un} and {vn} be two sequences of nonnegative numbers
satisfying componentwise

(
un+1
vn+1

)
≤

(
I 0
O(1) α + O(ε)

) (
un
vn

)
+M

(
h
1

)
(C.1)

with 0 ≤ α < 1 and M ≥ 0. Then the following estimates hold for ε ≤ ch, h ≤ h0 and nh ≤ Const:

un ≤ C (u0 +M)
vn ≤ C (u0 + (ε + αn)v0 +M)

(C.2)

Proof. The matrix in (C.1) is transformed to diagonal form and iterate to obtain

(
un
vn

)
≤ T−1

(
I 0
0 λn

)
T

(
u0
v0

)
+M

n∑

j=1

T−1
(
I 0
0 λn− j

)
T

(
h
1

)
,

where λ = α + O(ε) are the eigenvalues, and the transformation matrix T (composed of
eigenvectors) satisfies

T =

(
1 0
O(1) 1

)
.

The statement follows from the fact that (α + O(ε))n = O (αn) +O (ε) for ε ≤ ch and nh ≤ Const.

We continue with the following lemma that is first used in the proof of Theorem 5.1.

L C.2 ([Hairer and Wanner, 1993, chap. IV, Lem. 5.5]). Suppose that the logarithmic
norm of gz(x) satisfies

µ
(
gz(x)

)
≤ −1 for 0 ≤ x ≤ x . (C.3)

For a given value

a(0) = a(0) + εa(1) + · · · + εNa(N) + O
(
εN+1

)

there exists a unique
(
up to O

(
εN+1

))

b(0) = b(0) + εb(1) + · · · + εNb(N) + O
(
εN+1

)

such that the solutions a(x), b(x) of (5.2) and their first N derivatives are bounded independently of ε.

Proof. The proof is discussed in [Hairer and Wanner, 1993] and relies on introducing the
following finite expansions

â(x) =

N∑

i=0

εia(i)(x) , b̂(x) =

N∑

i=0

εib(i)(x)(x)

in (5.2) and compare the powers of ε. This leads to a differential-algebraic system, fromwhich
we obtain that a(0)(0) determines b(0)(0), b(0)(1) determines a(0)(1), and so on. Specifically, we
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have

(
a(0)

)′
(x) + ε

(
a(1)

)′
(x) + ε2

((
a(2)

)′
(x)

)2
= fy(x)

(
a(0)(x) + εa(1)(x) + ε2

(
a(2)(x)

)2)
+

+ fz(x)
(
b(0)(x) + εb(1)(x) + ε2

(
b(2)(x)

)2)
+ c(x, ε)+ O

(
ε3

)
,

ε
((
b(0)

)′
(x) + ε

(
b(1)

)′
(x) + ε2

((
b(2)

)′
(x)

)2)
= gy(x)

(
a(0)(x) + εa(1)(x) + ε2

(
a(2)(x)

)2)
+

+ gz(x)
(
b(0)(x) + εb(1)(x) + ε2

(
b(2)(x)

)2)
+ d(x, ε)+ O

(
ε3

)
.

By comparing the coefficients of ε0 we obtain the following DAE:

(
a(0)

)′
(x) = fy(x)a

(0)(x) + fz(x)b
(0)(x) + c(x, 0) ,

0 = gy(x)a
(0)(x) + gz(x)b

(0)(x) + d(x, 0) ,

which leads to

b(0)(x) = −g−1z (x)
(
gy(x)a

(0)(x) + d(x, 0)
)
,

(
a(0)

)′
(x) = fy(x)a

(0)(x) − fz(x)
[
g−1z (x)

(
gy(x)a

(0)(x) + d(x, 0)
)]
+ c(x, 0) .

The coefficients of ε1 give

(
a(1)

)′
(x) = fy(x)a

(1)(x) + fz(x)b
(1)(x) + c(x, 1) ,

(
b(0)

)′
(x) = gy(x)a

(1)(x) + gz(x)b
(1)(x) + d(x, 1) ,

which leads to

b(1)(x) = −g−1z (x)
(
gy(x)a

(1)(x) −
(
b(0)

)′
(x) + d(x, 1)

)
,

(
a(1)

)′
(x) = fy(x)a

(1)(x) − fz(x)
[
g−1z (x)

(
gy(x)a

(1)(x) −
(
b(0)

)′
(x) + d(x, 0)

)]
+ c(x, 1) .

These relations confirm that a(0)(0) determines b(0)(1), and a(1)(0) determine b(1)(0), and so on.
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