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Abstract.  We are concerned with the chaotic flow fields of turbulent mixing.
Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov
unstable flows. The goal of a converged simulation for this problem is to obtain
converged solutions for such micro solution features as the joint probability dis-
tributions of the temperature and species concentration, as well as the macro
features such as the edges of the mixing region. Here we introduce parameterized
subgrid models of mass and thermal diffusion, to define LES that replicate the
micro features observed in the DNS. The Schmidt numbers and Prandtl numbers
are chosen to represent typical liquid and gas parameter values. The viscosity,
and thus the Reynolds number, is allowed to vary through a range of values, to
allow exploration of both DNS and LES regimes. Our main result is to explore
the dependence of these solutions on mesh and Reynolds number.

1. Introduction

The turbulent mixing considered here is initiated by impulsive acceleration. It
is produced by a shock wave passing through a layer separating two fluids of
distinct densities. When the layer is perturbed (or not normal relative to the
shock wave), vorticity is deposited on the interface by the shock passage. This
vorticity causes the interface to roll up and become unstable. Upon a second
shock wave passage, the interface enters an extremely chaotic regime. This
problem is known as the Richtmyer-Meshkov (RM) instability. We consider a
circular geometry, with a converging circular shock at the outer edge, and inside
this, two fluids separated by a perturbed circular interface. The problem was
previously described in detail (Yu 2006, Masser 2007, Lim 2007 AMAS, Lim
2007 CMAME). The chaotic aspects of the mixing following reshock challenge
some convential ideas of computational science while supporting others. For this
reason, the problem is of fundamental scientific interest, and may shed light on
differing views for the computation of turbulent mixing flows.

A central issue in the modeling of turbulent mixing is to combine the some-
what distinct numerical methods which have evolved to deal separately with
shocks (capturing) and with turbulence (high order algorithms with subgrid
scale models). Our use of dynamic subgrid scale (SGS) models from the turbu-
lence modeling community combined with a front tracking and shock capturing
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code is an original contribution to this goal. It is distinct from the common
strategy of a filter to allow specialized algorithms tuned to either shocks or
turbulence if they occur with spatial or temporal separation. Our strategy is
to preserve the gradients of the capturing codes and even to sharpen them, as
the tracking allows steeper gradients for the contact discontinuities or slightly
smeared miscible boundaries between distinct fluids than can be obtained with
an untracked shock capturing solution. The goal is to preserve (or enhance) the
computational efficiency of the capturing codes in regard to a high density of
geometrically complex solution gradients. Rather than try for more decades of
Kolmogorov spectrum from the turbulence, we hope to have large eddy simu-
lation (LES) convergence of critical observables of the flow, with a coarser grid
description than would be accessible to turbulence style algorithms. However,
rather than give up on detailed physical accuracy for the micro observables, as
is more or less the strategy of the capturing codes, we hope to have converged
simulations of finite Schmidt and Prandtl number effects. This is in contrast to
statements made by authors of some capturing codes, that these codes contain
a numerically determined effective viscosity, and presumably numerical Schmidt
and Prandtl numbers which are otherwise not quantified, when run in a LES
level of grid resolution.

The fluid interface, at late time, is volume filling. The Reynolds number
and transport coefficients (viscosity, mass diffusion, and heat conductivity) are
given dimensionlessly as Re = UL/vy, the Schmidt number Sc = v /D, and
the Prandtl number Pr = vy /a. Here vy is the kinematic viscosity, D the mass
kinemaic diffusivity and o = % the kinematic thermal diffusion rate. k is the

heat conductivity, p the density and ¢, the specific heat at constant pressure. U
and L are characteristic velocity and length scales. We consider typical transport
cases 1, g from Table 1.

Table 1.  Transport coefficients considered in this paper.

case Schmidt Prandtl
1 (liquid) 103 50
g (gas) 1 1

2. Equations and Algorithms

We study the compressible Navier-Stokes equations with viscosity, mass diffu-
sion and thermal conductivity, for two miscible species initially separated by a
sharp interface. The primitive equations describe the DNS limit, in which trans-
port effects are resolved. A measure of this limit, as applied to the momentum
equation, is the criteria Agmesh > 1 where Agmesh = Ax/Az and A is the
Kolmogorov length scale,

Ak = (/)4 (1)

where
e=vlS|?, (2)
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S is the strain rate tensor
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defined in terms of the velocity v and for any matrix A = A;;,
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LES start from a filter, or averaging procedure applied to the primitive
equations of compressible flow. We adopt what is known as an implicit filter,
namely a grid block average. In this case the quantities in the defining equa-
tions are averaged over a grid block. New terms, arising from the average of
the nonlinear terms, are introduced into the equations. We use a conventional
definition of these terms, a dynamic definition following refs. (Germano 1991,
Moin 1991, Ma 2006). The subgrid models are parameterized dynamically. For
DNS, these terms have little effect.

We write the filtered continuity, momentum, energy and concentration equa-
tions of two miscible fluid species in an inertial frame. The filtered quantities
are considered to be mesh block averages, and denoted with an overbar, while
mass averaged quantities are denoted with a tilde.
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where the subgrid scale (SGS) variables are the 7;j, ng), qZ(T), qi(v) and qlw)

Detailed definitions of the closure terms are standard and are given in a
subsequent publication.

The parabolic Navier-Stokes equations are solved via operator splitting,
with separate solution steps for the hyperbolic and pure diffusion parts of the
equations. The hyperbolic solutions are by the front tracking FronTier algorithm
(Du 2005). The interface hyperbolic updates are split into normal and tangential
operators defined at front points. The interior hyperbolic update uses a Godunov
finite difference solver based on the MUSCL algorithm (Woodward 1984, Colella
1985). A sharp (tracked) interface in the hyperbolic update uses ghost cells
(Glimm 1981) in the interior state update to eliminate (Liu 2007) transport
related numerical mass and thermal diffusion across the interface.
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An explicit solver, for both the interior and the front state parabolic solvers,
with possible time step subcycling is sufficient to allow a stable computation for
most of the transport parameter range considered. For some parameter values
and for some variables, an implicit solver is used.

The FronTier numerical Schmidt and Prandtl numbers are oo, and the code
allows efficient simulation of any desired (physical) Schmidt or Prandtl number.

3. The Joint Probability Distributions for Concentration and Tem-
perature

The joint pdf for the temperature and species mass concentrations of the fluid
mixture is defined as a function of time and radius, assuming that the probability
data is collected from the angular variation in space. To create the pdfs from the
simulation data, we collect the temperature and concentration variables along
a band of constant radii within the mixing zone. Mixed cells are not averaged,
but each cell fraction contributes its own concentration fraction and temperature
with its own probabilities (proportional to area). The concentration fractions
and temperatures are then binned.

The liquid joint pdfs are bimodal, with peaked mass fractions of nearly pure
fluid, highly correlated with temperature, so that the heavy material is hotter.
The gas pdfs are concentrated near a curve in concentration-temperature space,
joining the light to the heavy fluid concentrations. The origin of this shape
could be explained by the following process: First the shock heats the heavy
fluid, so it is hotter. Then portions of the heavy and light fluid diffuse into one
another, so that the temperature pdf at fixed concentration is determined from
the temperature pdf of the pure fluids before mixture through diffusion. We
display typical plots of the pdfs representative of these types.
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Figure 1.  Case 1: Reynolds number dependence of the joint pdfs of light
species and temperature at time ¢ = 90. The data has been collected into
10 x 10 bins. Left to right: Re = 300, 6000, 600,000. The mesh is 400 x 800
in all cases.
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400x800, Re=312, Sc=1, Pr=1 400x800, Re=4.8k, Sc=1, Pr=1
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Figure 2.  Case g: As is Fig. 1.
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