Nonuniformly Communicating Noncontiguous Data:
A Case Study with PETSc and MPI

P. BALAJI, D. BUNTINAS, S. BaLAY, B. SMITH, R. THAKUR AND W. GROPP

Technical Report:
Argonne National Laboratory (ANL/MCS-P1380-1006)

Nonuniformly Communicating Noncontiguous Data:
A Case Study with PETSc and MP{

P.Balaji D.Buntinas S. Balay

B. Smith R. Thakur W. Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
{balaji, buntinas, balay, bsmith, thakur, grg@mcs.anl.gov

Abstract

Due to the complexity associated with developing paralpgiliaa-
tions, scientists and engineers rely on high-level sofwémraries

libraries assist developers by providing abstractionsniathemati-
cal operations, data representation and management dfepag-
outs of the data, while internally using communicationdities such
as MPI and PVM. With high-level libraries managing data layo
and communication internally, it can be expected that thegpmize
application data suitably for performing the library opemas opti-
mally. However, this places additional overhead on the it
communication library by making the data layout noncortigglin
memory and communication volumes (data transferred by eeps
to each of the other processes) nonuniform. In this paperanee
lyze the overheads associated with these two aspects (mimoous
data layouts and nonuniform communication volumes) in tirgext
of the PETSc software toolkit over the MPI communicationdity.
We describe the issues with the current approaches used byHi2P
(an implementation of MPI), propose different approacloesandle
these issues and evaluate these approaches with micrbrbarics
as well as an application over the PETSc software libraryr ©u
perimental results demonstrate close to an order of matgmiton-
provement in the performance of a 3-D Laplacian multi-got/er
application when evaluated on a 128 processor cluster.

1 Introduction

Developing large-scale parallel applications and sinnorhat
has been a cumbersome and inherently daunting task, o
to the complexity of current generation parallel systems:
cordingly, scientists and engineers rely on high-leveigaife
libraries such as PETSc [1, 2], ScaLAPACK [3] and PESSL
ease implementation and minimize the development cycle
quired to parallelize their application. These high-leseft-
ware libraries internally use parallel communicationdities

such as the Message Passing Interface (MPI) [6] or the Pﬁ
allel Virtual Machine (PVM) [20] to move appropriate dat

between processes as needed.

*This work was supported by the Mathematical, Informatiamj &om-
putational Sciences Division subprogram of the Office of &gbed Scientific
Computing Research, Office of Science, U.S. Department efdsn under
Contract DE-AC02-06CH11357.

TThe authors would like to thank Prof. Panda and his team fraChio
State University for allowing us access to their 64-nodeniBfind cluster.

$This author’s work was also supported in part by the Nati®eiknce
Foundation Grant #0702182.

A

4

Most scientific applications formulate the physical equa-

tions corresponding to problems in discrete numerical form

Similarly, they represent the domain on which they intend to

such as PETSc, ScaLAPACK and PESSL to ease this task. SSQjve the equation into a grid of data points. Such formaiati

m%holves representing the problem domain (1-D, 2-D or 3-D)

as a structured grid, unstructured grid or adaptive mesth, an
evaluating the discretized equations using the associktd
High-level software libraries assist such a representatip
providing abstractions for mathematical operations, depa
resentation and management of parallel layouts of the data a
required by the application.

With the high-level libraries managing the data layout in-
ternally, it is only intuitive for them to choose to organihe
data in representations suitable for performing the ljpop-
erations optimally. However, this places additional oeath
on the underlying communication library in two aspects:

Noncontiguous data layout: Since the overall data layout
is optimized for the library operations, the partial datatth
needs to be communicated to other processes tends to be laid
out noncontiguously in memory. For example, representing a
2-D grid as a contiguous vector might be optimal for compu-
tation. However, if a process needs to communicate a column
of the grid to its neighbor, this partial data is now noncguti
ously laid out in memory with a uniform stride.

Nonuniform communication volumes: In grid layouts
(e.g., structured grids) several applications commuaioaty
(or mostly) with their immediate neighbors. Depending on
the mapping of data to processes in each dimension (e.g., a
[Qcess could potentially manage a nonsquare region in a 2-
(érid) and different discretization models (e.g., star oxb
type stencils, as will be described in Section 2), the amount
6 data communicated to different neighbors can be differen
E'é_short, depending on the way the high-level library masage
data, a process can communicate vastly different volumes of
data with each of the other processes in the system.
'J_n this paper, we analyze the overheads associated with
ese two aspects (noncontiguity in data layout and nooonif
mity in communication volumes), in the context of the PETSc
software toolkit over MPI. We describe the issues with cur-
rent approaches used by MPICH2 [17] (an implementation of
MPI) and its derivatives (e.g., MVAPICH2 [10] from Ohio
State University) and propose different approaches for han
dling these issues. Specifically, for the first aspect (nénun
form data processing), we propose a new dual-headed lookup-
based design for handling inefficiencies with noncontiguou

data processing. For the second aspect (nonuniform commu- -eve! of Abstraction

nication volumes), we describe multiple designs for défer Application Codes
operations that support nonuniform communication volumes

(e.g.,MPI _Al | gat herv, VPl _Al'l t oal | w).
SNES 4 (Time Stepping)

Apart from proposing and describing the different designs,
?linear E%}Ee?tions Solv;rs

o

we also experimentally evaluate each of them to illustriage t (Nonlinear Equations Solv

|n§ff|C|en<_:|es assc_)uated with existing approaches andehe _ <SP e o
efits obtainable with our approaches. Next, we evaluatesur i [(Krylov Subspace MethOLLIPrecondltlone
tegrated framework (comprising of all our new designs) with [Matrices J [Vectors J [Index Set%
the PETSc toolkit to understand the impact of these designs o

high-level software libraries. Finally, we evaluate owarfre- [BLAS J [LAPACK J [MPI J

work with a 3-D Laplacian multi-grid solver application ogi

the PETSc library over MPI. Our experimental results demon-
strate that most current approaches do not follow any sephis
ticated mechanisms to enhance the nonuniform data process- procesi Boundary

Figure 1: PETSc Architecture

ing and communication and use identical mechanisms as uni 0
form data processing; this leads to significant loss in thre pe :(
formance and scalability of applications. On the other hand e¢—e e j IIIIIIIIIIIIIIIIIIII

sophisticated schemes specifically tuned for nonunifortada 75 7 9=
communication can avoid such inefficiencies and achievie hig :
performance. For example, with our framework, we could
achieve close to an order of magnitude improvement in the :
performance of a 3-D Laplacian multi-grid solver applioati @ Local Data PointO Ghost Data Point
on a cluster of 128 processors.

Figure 2: Ghost Points: Bordering portions of process’ local data that
is used for computation

2 The PETSc Toolkit objects across processors (Figure 2). However, to evaluate
The Portable Extensible Toolkit for Scientific Computatiolecal function, each process requires its local portionhef t
(PETSc) was developed in the Mathematics and Computeta as well as its bordering portionsgirost positionsthat
Science Division at the Argonne National Laboratory. PET@&ce owned by the neighboring processes. This data layout pat
is a set of software tools for users writing large-scale igppl tern presents three interesting challenges in commuaoitati
tion code involving solutions to Partial Differential Edioms (i) noncontiguous data layout, (ii) nonuniform communioat
(PDEs). Application domains currently using PETSc includ®lumes to different processes and (iii) nonuniform setrof p
Nanosimulations, Biological sciences, Fusion, Geoseignccesses that are communicated with.
Environmental/Subsurface flow, Computational Fluid Dyram Noncontiguous data layout: Application data is repre-
ics, Wave propagation and others. sented in a PETSc vector object which is a contiguous array
Figure 1 describes the abstract components of PETSc. Likeeach processor. When this data corresponds to a multidi-
other high-level software libraries, PETSc provides aesaft mensional structured grid, the array values are contigoous
data structures and routines to create vectors, matricek, the first dimension but strided on the other dimensions. Fur-
distributed arrays (sequential and parallel). It also mtes ther, each grid point might have multiple field values (fay.e.
routines for linear and nonlinear numerical solvers to lEduspressure, temperature, x-velocity and y-velocity) whiat g
in applications written in C, C++, Fortran and Python. Timestored interlaced in the PETSc vector. This representation
stepping methods and graphics are incorporated as well. lows PETSc to perform the required mathematical operations
PETSc utilizes MPI for inter-process communication whili@ an efficient manner. Now, when the data corresponding to
providing implicit message passing for the applicatios., it the ghost points needs to be communicated to a neighboring
transparently handles the moving of data between procegzesess, PETSc uses MPI to perform this data transfer effi-
without requiring the application to directly call any dat@ns- ciently. However, from MPI's perspective, the data thatdsee
fer routines. This includes handling parallel data layqdpés- to be communicated is now laid out in a noncontiguous man-
allel vectors and matrices), communicating ghost poinadater. As we will see in Section 3, handling this efficiently is a
(data points that are needed for computation, but reside omoa-trivial issue that needs to be addressed.

different process memory) and others. Nonuniform communication volumes: Depending on the
_ discretization model used, the number of neighbors thad nee
2.1 Handling Parallel Data Layouts to be contacted by a process and the volume of data that needs

As mentioned earlier, PETSc provides mathematical abstrigtP€ transferred to each neighbor differs. For example, Fig
tions like matrices, vectors, and utilities like distribdtarrays Ure 3 illustrates two such discretization models, namely bo

to represent a grid in a parallel manner, thus distributiagd tYPe Stencil and star-type stencil. As shown in the figure, in

3.1 Issues with Noncontiguous Data

MPI provides a mechanism to describe noncontiguous mem-
ory regions, using MPHerived datatypes Once a derived
datatype has been created describing the noncontiguous re-
gion, it can be passed as a parameter to MPI communication
functions and the MPI library will handle sending the noncon
tiguous data. In this way, the use of datatypes in an apjgitat
simplifies coding. The alternative to using MPI datatypdeiis

the programmer to explicitly pack the noncontiguous data in

a contiguous buffer then send that buffer, and on the receiv-
ing side, the programmer would have to receive the data into a
contiguous intermediate buffer and unpack it.

a star-type stencil, each process has to communicate with twLet us consider an 8x8 2-D matrix where each element con-
neighbors in each dimension, i.e., 4 processes in a 2-D gfits of three double-precision floating-point values (Fég).
The volume of communication in each dimension is the sanlde date in the first column of the matrix would be laid out
but could differ across dimensions (e.g., if a process masmagoncontiguously in memory as shown in Figure 5. Figure 6
a nonsquare portion of the grid). A box-type stencil is mofepicts a datatype that could be used to describe this column
complicated with respect to the communication patternhis t Datatypes are defined recursively, where a new datatype is
model, each process has to communicate with four neighb@dt up from other datatypes. In this case a single matrix el
in each dimension, two along the sides and two along the c®ent is described bya@ntiguousiatatype of threeloubles
ners. The interesting aspect in this communication patgern’he column of these elements is described bgetor with a
that the volume of data communicated to the neighbors tRgideof eight, of the element datatype.
share a side is typically much larger than the volume of dataAlthough the MPI implementation can use network oper-
communicated to the neighbors that share only a corner. Fajfons which can directly send from or receive into noncon-
ther, as the dimensionality of the grid increases, the numbetiguous buffers, e.gwr i t ev in the sockets API, these gen-
different volumes that need to be communicated could pot&rally perform well only for datatypes which adensei.e.,
tially increase quadratically. which have medium to large segments of contiguous data. For
Nonuniform set of processes to communicate withAs Sparsenoncontiguous datatypes, which consist of many short
mentioned earlier, applications solving PDEs typically-pecontiguous segments, it is often more efficient to pack the da
form communication only with their neighbors. This is hardito an intermediate buffer before sending (Figure 7). Fur-
dled with PETSc using MPI collective operations (e} _ ther, most MPI implementations perform packing of the data
Al | t oal | w) where each process communicates a non-zéf the actual communication from the packed buffer in a
amount of data to its neighbors and zero data to the rest of Bieelined manner to improve performance. Accordingly, an
processes. This can be considered to be a special case ofnfiggmediate buffer of a certain size (depending on theljpipe
previous aspect (nonuniform communication volumes), ®utfd granularity) is allocated and data packed into it.
relevant to note separately due to its potential to minirttiee ~ The arrow in Figure 6 shows how much of the derived
impact of skew if designed appropriately. It is to be noteat thdatatype has been processed and copied into the intermedi-
all processes perform communication with a set of procesaés buffer by the MPI implementation and represents the cur-
during the collective operation, but each process doesam+ ¢ rentcontextof the datatype. This context is internally stored
municate with every other process. Thus, if a set of procesB¥ the MPI implementation, so that when the next portion of
are delayed, if appropriately designed, the collective mam the datatype is packed (due to the pipelining of packing and

nication operation should not delay a process which does A@fmunication), the datatype processing can quickly teloa
belong to the set of delayed processes. the context and continue from there instead of re-searching

through the datatype for the appropriate context.
. . While the context-based datatype processing is efficient in
3 UnderStand|ng upper-layer require- ine simple case where there is no additional processing be-
ments on MPI tween pipeline events, in real implementations this islyahe
_) S) case. For example, before each data packing event, MPICH2
In this section we describe implications of the requiresenyamines the derived datatype to see whether it is sparse or
from upper-layers (such as high-level software librari@s) yense in order to decide whether or not to pack the data into
MPI. Specifically, we analyze MPICH2 (a high-performancg, intermediate buffer, i.e., it performs a look-ahead andb-
open-source MPI implementation from Argonne Nationgl,eq datatype. Thus, the context of the derived datatype is
Laboratory) and its derivate MPIimplementations (€.9. AV jncremented by the look-ahead amount. In case the datatype
PICH2 over the InfiniBand network from the Ohio State Unjyns out to be sparse, data packing needs to be perforntad fro
versity), and identify design issues that affect its calfglid he previous context — this is a problem since our current con

handle the requirements from upper layers. text is already incremented by the look-ahead amount! Cur-

Proc 0 Proc 1 ProcQ Proc 1

Box-type stencil Star-type stencil

Figure 3: Data Layout Models: Box-type Stencil and Star-type Stencil

0 8 16 192

384
v (EEAaN EEpIN E2S

\ Figure 5: Noncontiguous memory layout of the first column of the matrix.

\ vector (count=8, stride=8)
‘ contiguous (count=3) contiguous (count=3) contiguous (count=3)

[doublddoubl{doublé | | [doubl{doublddoublé [doublddoublddouble eee

/ Figure 6: MPI datatype describing the first column of the matrix.

- [4 oo
\ \ s s ///’ _-7
v ’ - -
\ \ L L _ - _ -
\ \ -

N N /L *:,/’/ copy buffer

Figure 4: An 8x8 2-D matrix. Each element con- Figure 7: Packing part of the first column of the matrix.
sists of three doubles.
rently, this problem is dealt by re-searching the entireveer
datatype for the appropriate context. This search time,-how
ever, increases quadratically with the size of the derivetd d
type. In Section 4.1 we present an optimization to the data
processing code in MPICH2 to eliminate this overhead.

Large Message

3.2 Issues with Nonuniform Communication
Volumes

A common model in scientific applications is to repeatedly
perform a computation phase followed by a communication
phase in which all processes communicate at the same time.

To support such models, MPI defines collective Communid:égure 8: Allgatherv Ring Algorithm for Large Messages — One large

. message in the communication volume set can sequentialize the entire
tion operations in which all processes send and receive RQ¥munication operation
tions of data. For instance in théPl _Al | gat her () op-
eration, each process specifies the data to be sent to ail ofeeause of the large imbalance of message sizes, most of the
processes, as well as the buffer into which it will receive thime only one process will be sending and one process will
data from each of the other processes. In this operation Heereceiving a large message; the other processes will pe idl
amount of data that each process sends is required to bewihiging for the next message. Thus, the communication time
same, i.e., the volume of data communicated by each proggssid be dominated by the large message being passed around
should be uniform. MPI also provides a variant of this opergye ring. Figure 8 illustrates this problem.
tion calledMPI _Al | gat her v()) which allows each process In some collective communication patterns used by scien-
to send a different amount of data, i.e., the volume of datfic applications, each process may have different datend s
communicated by each process could be nonuniform. to different processes. MPI provides thel _Al | t oal | ()
MPICH2 collective communication operations have be@peration to support such a pattern for uniform communica-
optimized for uniform communication patterns. Howevetion volumes (i.e., each process sends the same volumeaof dat
when there is a large difference between the amount of dgf@ach of the other processe®Pl _Al | t oal | w() opera-
that is sent by each process, these operations perform sighris the nonuniform communication volume counterpart fo
optimally. Consider the case where the processesMllL MPI _Al | t oal | (). As a special cas&/Pl _Al | t oal | wW()
Al | gat herv() and one process has a large amount of dafigo provides support for a communication pattern wherh eac
to send, while the others have small amounts of data to sefécess sends and receives data from some processes, but not
Because the total amount of data to be sent is large, MPIChEtessarily from every other process — this is achievedé-sp
uses theing algorithm which is optimal for large messageiying zerocommunication volume for the other processes in
(in the uniform communication volumes case). In the ring ahe collective operation. For instance, this operation loan
gorithm, the processes are arranged in a logical ring anld eased to perform a nearest-neighbor communication pattern,
process receives data from its predecessor and sends dajght@e processes are arranged logically in a grid and eaeh pro
its successor. If each process were to send the same ameg§ exchanges data only with the processes adjacent to it in
of data, the communication would be well balanced, and eagb grid. Note that in this operation, every process is engha

process’ capacity would be fully utilized through contimso ing data with some processes, hence it is participatingen th
sending and receiving. On the other hand, in our example,

Small Messag

operations; the process just does not communicateevigny Non-eontiauous Application Bufers
other process in the system. A/A/ f \\
Because the MPICH2 collective communication operation
are optimized for uniform communication volumes, ¥l _
Al | t oal | w() operation assumes (from a performance stan X
point) that the same amount of data is sent and received be conextz conertt
tween every two processes. So, cases where the communica- Look-ahead Processin
tion volumes are nonuniform might not be handled in the most
efficient way. SpecificallyyPl _Al | t oal | W) implementa-
tion requires each process to send and receive a message to ev
ery other process in a round-robin manner. This approach has
two major disadvantages. First, if a process has no data-to ex
change with another process, sending and recezengpytes the derived datatype. This context rolls forward within the
of data (as is with the current implementation of MPICHatatype allowing the MPI library to analyze the structufe o
and its derivatives) adds an additional synchronizatiepbe- the datatype and make a decision on the algorithm to be uti-
tween the two processes. For example, in the case of nealigsid (for sparse and dense derived datatypes). A second im-
neighbor communication, each process will only have datagortant functionality of this context is to maintain a litdata
exchange with a few other processes, regardless of the mungf@ments that have been parsed by the look-ahead mechanism,
of processes in the application. Second, let us consideg-a $@., this context maintains pointers to the data and thgtlen
nario where process 1 has to send a large message to pragiesach element it has parsed through.
2 and a small message to process 3. Now, in the round-robiffhe second context is utilized for the actual processing of
if process 2 comes before process 3, the data to be sent to fire-datatype, including packing the data if needed and com-
cess 2 is processed before that of process 3. In cases whermilmicating the appropriate data in a pipelined fashion.sThi
processing overhead is large (e.g., if the data is nonaentigontext, instead of directly parsing through the actuatyaie,
ous), process 3 could be significantly delayed. On the otliiest parses through the list of data elements that wereexdeat
hand, if the smaller messages are sent out first, this canblpehe first context. Once it has parsed through these element
avoided. In Section 4.2 we present optimizations to MPICHtZcontinues parsing the actual datatype from the point her
collective communication operations for nonuniform commthe look-ahead had completed.
nication volumes. There are two primary advantages of this approach. First,
this approach is not intrusive into the datatype strucisiese
A ; ; only the first context modifies them; the second context only
4 RedeSIQnmg MP1 Communication works on the copy created by the first context. This allows the
In this section, we describe different approaches to hathéle remaining components in the MPI library that rely on datatyp
issues pointed out in Section 3. In Section 5, we evaluate puscessing to be not affected by these alterations. Setiisd,
schemes independently as well as with PETSc-based appliggproach keeps track of the initial context of the datatypk a

Intermediate Buffer Communicate

Figure 9: Dual-context Look-ahead Design

tions to understand the benefits achievable. hence completely eliminates the need to re-search theygatat
)] for the appropriate context.
4.1 Processing Noncontiguous Data The only disadvantage of this approach is that it has to main-

As described in Section 3.1, approaches used by current Ng# & copy of the pointers and lengths of the data that thee firs
implementations to handle noncontiguous data rely on gentfontext parses through. However, it is to be noted that the
uous parsing of the derived datatype. If a look-ahead need§4rrent implementation only parses through a small number
be performed within the datatype to understand if the postio®f data elements (e.g., 15); thus this overhead is negéigibl

of the datatype are sparse or dense, such continuity isTihi. €ven moderately large datatypes.

results in the algorithm having to search the derived dpta&y) . L

each step to find the position till where it had previouslysear 4-2 Handling Nonuniform Communication

and continue from there. Thus, the searching time needed to Volumes

find the previous position increases quadratically withsitze As described in Section 3.2, current collective operations
of the derived datatype. are highly ill-equipped to deal with applications which use
In this section, we present a new approach to handle suchsnuniform communication volumes, i.e., not all processes
sues with derived datatype processing, namely a dual-xbnt@ng or receive the same amount of data. When the differ-
look-ahead approach (figure 9). The primary idea of this &hce in the communication volumes is large, several tiiss th
proach is to utilize two contexts to parse the datatype &mbtgesylts in sequentialization of the communication. In some
of one. These two contexts can be thought of as snapshotgfes, this can also result in increased skew making the app!
the layout of the derived datatype. cation more sensitive to load imbalance and system noise.
The first context is primarily utilized for look-ahead in or- | this section, we propose different designs for two such
der to understand the structure of the upcoming portions@filective communication operations that deal with nonuni

form communication volumes, namelP! _Al | gat her v o0 Qe /Qf

(Section 4.2.1) ant¥Pl _Al | t oal | w(Section 4.2.2). Q:ao ‘ F
4.2.1 Enhancing MPLAllgatherv - O0=—0 O /Of
When the total size of the data that needs to be communicafzd——0O" oo 3 C/

is large,MPI _Al | gat her v currently uses a ring algorithm Phase 0 Phase 1 Phase 2

(which is optimal for uniform communication). At every step
each node forwards the data it received in the previous etep t

the next node. If one node is sending a large amount of data

and the remaining nodes are sending small amounts of data

this would essentially sequentialize the transfer of thigda

message, thus taking O(N) time for communication, wire

is the number of nhodes participating in the operation. ®

On the other hand, if we can quickly identify the commu-
nication volumes of all the proccclessesy, we cgn design more Phase 0 Phase 1 Phase 2
sophisticated algorithms for nonuniform communicatioft vo Figure 11: Dissemination algorithm for five processes
umes. Thus, we break down this problem into two sub-
problems: (i) designing an efficient approach to quicklynide The first algorithm is a recursive doubling approach which
tify large nonuniformities in the communication volume sé$ used when power-of-two number of processes are partici-
and (ii) designing a more efficient algorithm based on tigating in the communication. The second algorithm is a vari-
knowledge of the nonuniform communication volumes. ant of the dissemination algorithm [8], and is used for non-
power-of-two number of processes. The recursive doubling

ume Set:We formulate this subproblem as an outlier detecti&llgor'thm prﬁceeds Icl;)gt N ptrrw]asest,hwhere n eacvr\lfligasigacr:]h
problem, i.e., we need to identify if a small subset of the CO@:OCGSS extc ?r&g(tas a ?}W' ?jn.o Er process. Ih ca ? as
munication volume set falls significantly outside the ranfe € amount ot data exchanged increases, as each pair ot pro-

the rest of the communication volume set. We do this by Cog_sses exchange not only their own data, but the data which

Figure 10: Recursive doubling algorithm for eight processes

Identifying Nonuniformities in the Communication Vol-

puting theoutlier ratio, using equation 1, and comparing thi €y ha_ve recelve(_j m_the previous phases. E|gure 10 shows
to a threshold value. the basic communication pattern for the recursive doulding

gorithm for eight processes.

The dissemination algorithm proceedgliog N phases. In
phasep, each process with rarnksends its data to the process
with ranki + 2P mod NV, and receives data from the process
with rank1 — 27 mod N, whereN is the number of partic-

In this equationCOVMVOL_SET is the set of communi- jpating processes. As with the recursive doubling algatith
cation volumes used by each of the processes in the sysfgBlamount of data sent and received in each phase increases
(note that this information is already available at each pipom the previous phase. Figure 11 shows the basic communi-
cess in anvPl _Al | gat her v operation),N is the number cation pattern for the dissemination algorithm.
of processes participating in the communication operatih The main benefit with both these algorithms is that the
OQUTLI ER.FRACT is the fraction of processes that have to h@ovement of the large outlier messages to all the processes i
outside the range of volumes encompassing the bulk of $gried out simultaneously by multiple process. For exampl
messages in order to calledtliers if we just consider the movement of one large message, the

In this equationk sel ect () allows us to determine thegata follows a binomial tree pattern, instead of the sedalent
kth smallest element of a set of elements. We utilize the dhttern in the previous ring algorithm.

gorithm by Floyd and Rivest to evaluatesel ect () in lin-

ear time. Thus, the entire mathematical formulation desci 4-2.2 Enhancing MPLAlltoallw

above can be obtained in linear time. It is to be noted tHagrrent algorithms for implementindvPl Al | t oal | w,

the existing approach parses through the entire communi@ain, do not carefully consider the overheads associatad w
tion volume set to identify the total communication voluméonuniform communication volumes. Specifically, if some
which already is linear time. With our current approach, waocesses either communicate significantly larger voluofies
are increasing the coefficient of the linear time taken, lmit rflata that requires preprocessing (e.g., noncontiguoastioait

its computational complexity. requires to be packed) as compared to the others or do not

_ - : . communicate at all, current algorithms perform subo al
Designing Efficient Algorithms based on the Communica- 9 P ptiyn

tion Vol ch teristics: Based on the k led fth In our approach, for each process, we divide the data to be
lon vVolume Lharaclerisics. Based on the knowleage ot th&., o, nicated to every other process into bins based on the
communication volumes that is obtained as described ab

QGiume of data to be communicated. If the data that is be-
?r’% communicated requires preprocessing, we processttie bi
containing small messages first, and then move to the bins con

k_select(COMM_VOL_SET, N)
k_select(COMM_VOL_SET, N x OUTLIER_FRACT)

1)

nificantly larger than the rest, we use two algorithms.

taining larger messages. In this approach, since the minges In Figure 12, we see that as the size of the matrix being
of the data is sequentialized by the host processor, remote fransposed increases, the time to perform the transpose in-
cesses that communicate only small amounts of data do cr@tase much faster for the original implementation (ladbele
have to wait for the larger data messages to be processed\fAPICH2-0.9.5), than for the optimized implementation
the existing approach, however, no such prioritizationds p (labeled MVAPICH2-New). For the 1024x1024 sized matrix,
formed potentially causing the wait times for processes thihe optimizations give over 85% improvement over the origi-
only communicate small amounts to be higher than requiredal implementation. This improvement is expected to furthe
Processes to which there is no communication are placedhicrease for larger matrices.
a separate bin, which is completely exempted. This reduce&igure 13 shows the breakdown of the time spent (normal-
unnecessary skew in the collective operation. In our impieed to 100%) in the transpose benchmark for the current ap-
mentation, we used three bingerosize messages, small mesgroach and the optimized approach. The figure shows the
sages (lesser than a threshold) and large messages. time spent performing communication, packing the data, and
searching for the currentlocation in the datatype. As etqukc

: : because the original implementation loses its contextiwith
o Experlmental Evaluation the derived datatype each time it sends a portion of the non-
In this section, we evaluate the approaches described in Smntiguous data, the search time increases dramaticatly wi
tion 4 and compare them with the existing approaches. ‘e size of the matrix. In the optimized implementation we
perform microbenchmark-level evaluations of the proposkdve eliminated the search time altogether by using the dual
schemes in Sections 5.2 and 5.3. Evaluation with PET&mtext approach, and so the communication dominates the
benchmarks is performed in Section 5.4 and with the 3tine to perform the benchmark.
Laplacian multi-grid solver application in Section 5.5.

5.3 Evaluating Nonuniform Volume Collective

5.1 Experimental Testbed Communication

The testbed used in this paper consisted of two clusters: \We next evaluate the performance of our optimizations for
Cluster 1: 32-node cluster of dual Intel EM64T 3.6GHz prononuniform communication patterns using MPI benchmarks.
cessors, 2MB L2 cache, 2GB DDR2 400MHz SDRAM and |n the first benchmark, we measure the average latency of
Intel E7520 (Lindenhurst) chipset. We used RedHat AS4 WIU[D| Al gat her v when Process 0 sends a |arge amount of
the kernel.org kernel 2.6.16. data while the other processes send only one double (Fig-
Cluster 2: 32-node cluster of dual AMD Opteron 2.8GHzjre 14). The graph on the left shows the latencyVet _
processors, 1IMB L2 cache, 4GB DDR 400MHz SDRAM ang | gat her v for 64 processes as we vary the amount of data
NVidia 2200/2050 chipset. We used RedHat AS4 with the kekrat Process 0 sends while the graph on the right shows the
nel.org kernel 2.6.16. latency when Process 0 sends 32 KB of data as we vary the
Network: All 64 nodes in the machines were connected teumber of processes. For both cases, the latency of the origi
gether with Mellanox MT25208 InfiniBand DDR adapterfal implementation increases faster than our optimizedeémp
through a 144-port IB switch. mentation. We see up to a 20% improvement for 64 processes.
Software: We used the the OpenFabrics Gen2 stack as the unour next benchmark evaluates the performanceévieff _
derlying IB driver and verbs interface. Above this inteac| | t oal | wfor nonuniform communication. In this bench-
we used the MVAPICH2 implementation of MPI (which is @nark, processes are arranged in a logical ring and eachssroce
derivative of the MPICH2 stack from Argonne National Lathas a 10x10 matrix of doubles to exchange with its successor

oratory) over InfiniBand. Specifically, we used MVAPICH2and predecessor, but nothing to exchange with other presess
0.9.5 as the base case and compared it against our optimiza-

tions to it (labeled as MVAPICH2-New). 900 MVAPICH2-0.9.5 —+—
800 r MVAPICH2-New ——

5.2 Evaluating Noncontiguous Data Processing 5 |

Overheads 2 600
In this section, we evaluate our optimizations to the noncon :,>~/ igg I
tiguous datatype processing using a benchmark which sends a§
matrix from one process to another while transposing ithtent 300
benchmark the sender sends the data in column-major order 200 ¢
while the sender receives the data in row-major order, effec 100 |
tively transposing the matrix. Because of the noncontiguou 0 e 3
layout of the data being sent, the performance of this bench- 64x64 128x128 256x256 512x5121024x1024
mark is highly dependent on the performance of the MPI im- Matrix size

plementation’s noncontiguous datatype processing.
Figure 12: Performance of matrix transpose benchmark

100% 100%
o 80% r o 80% r 1
E £
o 60% r o 60% r 1
g g
@ 40% @ 40% 1
o | — o —
@] @ I]
& 20% f & 20% f
0% 0%
64x64 128x128 256x256 512x512 1024x1024 64x64 128x128 256x256 512x512 1024x1024
Matrix size Matrix size
Comm C—J Pack === Search == Comm C—J Pack === Search ==
Figure 13: Datatype processing breakup: (a) Current approach and (b) Proposed dual-context look-ahead approach
1800 w w w w w 1800 w w w
MVAPICH2-0.9.5 —— MVAPICH2-0.9.5 ——
1600 MVAPICH2-New - e 1600 | MVAPICH2-New - S
1400 | 1400]
) I o
5 1200 & 1200]
<= 1000 r =
> 2 1000 1
e 800 r = 800
5 |
LE 600 r E
400 | 600 1
200 | 400 1
0 ey " ‘ ‘ 200 : : : :
Y e S % % % Y 2 4 8 6 32 64
Messages size (in doubles) Number of Processes
Figure 14: MPI_Allgatherv Performance: (a) With varying problem size and (b) With varying system size
Figure 15 shows the results of this benchmark as the number of 1800 ‘ ‘ ‘ ‘
processes is varied. We see that the original implementetio I MVAPICH2-0.9.5 ——
iy - 1600 MVAPICH2-New -
much more easily impacted by any minor imbalance between 1400 |
processes as compared to our optimized implementatio® Not < 1200
that we did not add any artificial skew to the benchmark, but E‘n;
given that we used a combination of two different clusters in J 1000 |
our evaluation (32 Intel nodes and 32 Opteron nodes), some £ 800
skew is bound to be present between the processes. For theg 600 |
128 processor case we see over 88% improvement. The eval- 400
uation till 32 processes was done completely on the Opteron 200 t
cluster — the benefit in this case is about 50%. 0
2 4
5.4 PETSc Vector Scatter Benchmark Number of Processes
We also evaluated the benefit of our optimization at the PETSc _
library-level using a vector scatter benchmark to stress th Figure 15: MPI_Alltoallw performance

communication portion of PETSc. _)
In this benchmark, we create two 1-D grids of elemer?® multiple 1-D grid structures where the elements of each of

with one degree of freedom (i.e., each element is compri§E8 grid structures is distributed across the system.
of one double precision physical element). These 1-D grids'_Because of the poor performance of the original |mplemen-
are initially passed over to PETSC to lay them out in a paralf@tion: the PETSc library by default does not use the derived

manner across multiple processes. Once laid out, eachgsro@gtatypes or collective operations. Rather, it uses a hamet

scatters the elements in its portion of the first vector tguei 2/907ithm which explicitly performs the packing of data and

portions of the second vector. This benchmark emulates tﬂ%““d‘ﬁa‘ sends and receives to scatter the vector. T“*‘Heth
communication portion of applications that require to @per with this hand-tuned option, PETSc also has a mechanism to

use derived datatypes and collective operations for MPleémp4 processors. As the number of processors increases, howeve
mentations which optimize these routines. this gap decreases, and is less than 3% for 128 processes.

We compared the performance of PETSc for the three im-
plementations: (i) the default hand-tuned implementaian
beled as hand-tuned), (ii) using the implementation that u36 Related Work
derived datatypes and collective operations for the oalgirThere has been alot of previous work on optimizing the perfor
MPI (MVAPICH2-0.9.5) and (iii) using derived datatypes anthance of noncontiguous data transfers, including packiinlg a
collective operations with our optimized MPI (MVAPICH2-unpacking techniques [4, 18, 7] and approaches to utilizd-in
New). Figure 16 shows the results of this benchmark as Wgent network adapters [23, 24, 19]. However, none of these
varied the number of processes. The 1-D grid size is scagaproaches consider the search time to be a significanébottl
according to the number of processes, so the number of @leck. But, as we described in this paper, the search timénwith
ments managed by each process is constant across the geaphatatype increases quadratically with the datatype side a
The graph on the left shows the latency of the three impleecomes a significant bottleneck for large datatypes. I [18
mentations, while the graph on the right shows the percent#ige authors proposed an efficient mechanism to reduce this
improvement of the optimized implementation to the originaearch time in simple cases; however, with advanced schemes
implementation and the hand-tuned implementation. We sspecially those involving look-ahead, this scheme lokes i
that our optimized implementation shows a large improvemdagenefit. There has also been a significant amount of work
over the original implementation as the number of processor optimizing various collective operations including hob
increases: over 95% for 128 processors. cast[9, 13, 12, 14], reduce [16, 15], allgather [11, 14, All],

The hand-tuned implementation performs slightly bettiyall [22], etc. Most of this work has been for uniform volume
than our optimized implementation (almost 4% at 128 proemmunication. There has also been some limited work to op-
cesses). This indicates that there are more optimizathwats timize the performance of collective operations that penfo
we can apply to MPI. Also, note that though the hand-tunadnuniform volume communication [5]. However, the actual
implementation does perform better, it requires implenmgnt approaches proposed in this literature are to optimizeoperf
the packing and communication pattern explicitly, which imance based on network topology rather than the variation in
general complicates the library communication implementhe communication volumes between processes. In summary,
tion. By using MPI capabilities (derived datatypes and cdhis paper addresses an important problem and presernts vari
lective operations), these implementations can be siraglifious novel designs to tackle them in an efficient manner.
which may be a desirable trade-off considering the small per

formance gain from using a hand-tuned algorithm. 7 Concluding Remarks

5.5 3-D Laplacian Multi-grid Solver In this paper, we analyzed two kinds of overheads (noncon-

In this section, we evaluate the performance of a 3-D Lagtaciiguous data layouts and nonuniform volumes of communi-
multi-grid solver application that is modeled by the foliag Cation to different processes) that are typically createda

partial differential equation: byproduct of multi-layered structures containing at lehst
applications, high-level software libraries and the cominu
. O0u . Ou ou cation libraries. We used the PETSc software library and the
V=t—+j—+k—— (2)

ox dy 0z
BoundaryConditions : 0 < z,y,z <1

MPI communication library as examples of a case study and
noticed that current approaches in MPI implementations are
tuned to support contiguous and uniform data communication

A grid of size 100x100x100 s used with one degree of fregnq are ill-equipped to handle noncontiguous and nonumifor
dom. The data grid varies the values of the variants (X, Y, @mmunication, especially when used together. We designed
uniformly across the grid in each dimension. The applicatigophisticated approaches specifically optimized for nenun
itself utilizes PETSc to solve this equation using a muttétg form communication of noncontiguous data and demonstrated
solver. In our experiments, we evaluated the application §ynificant benefits in some cases. Specifically, our experi-
using three levels in the multi-grid to solve the equation. mental results demonstrate close to an order of magnitude im

As shown in Figure 17, the execution time of the applrovement in the performance of the 3-D Laplacian multétgri
cation using our optimized implementation continues to dggyer application on a 128 processor cluster.

crease even up to 128 processes. However, with the origim future, we would like to analyze overheads in other high-
nal implementation, the execution time increases aften82 pjevel libraries and software such as FLASH.

cesses. This indicates that the application using the dp#in
implementation scales better than when using the original i

P . etter th: 'g the orig References
plementation. Our optimized implementation gives almos] <. Balav. K. Buschel W b, Kaushik M. G. Krel

or Balay, K. Buschelman, W. Gropp, D. Kaushik, M. G. Krep
90% |mp_rovement in the exgcutlon time for 128 procgssg& L. C. Mclnnes, B. F. Smith, and H. Zhang. PETSc Web page, 2001.
When using the hand-tuned implementation, the application np:/mww.mes.anl.gov/petsc.
performs better than our implementation by just over 10% qu] S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Effici man-

agement of parallelism in object oriented numerical soféniraries.

35 T T T 100% ; . .
MVAPICH2-0.9.5 —— 0 MVAPICH2-New ——
30t MVAPICH2-New -/ = Hand-tuned ———
Hand-tuned - g 80% i
S 257¢ %
3 5 60% 1
- 20 ¢ g
> £
S 15t g 40% 1
g £
107 8 20%]
5t &
0 N . s . . 0%]
2 4 8 16 32 64 128 128
Number of Processes Number of Processes
Figure 16: PETSc Vector Scatter Benchmark: (a) Absolute Performance and (b) Percentage Improvement
90 T ; T 100% ; : :
MVAPICH2-0.9.5 —— MVAPICH2-New ——
80 MVAPICH2-New 1 £ gy | Hand-tuned
o I Hand-tuned -~ | e °
o 70 S
@ o}
o 60 r § 60% 1
1S S
= 50 r
= E 40%]
S 40t)
— (@]
g 30 % 20% 1
X 20 r o
w) o 0% 4
10 + s 4 o
0 I I I L 7 -20% I I I I
4 8 16 32 64 128 4 8 16 32 64 128

Number of Processes

Number of Processes

Figure 17: 3-D Laplacian Multi-grid Solver Application Evaluation: (a) Absolute Performance and (b) Percentage Improvement

In E. Arge, A. M. Bruaset, and H. P. Langtangen, editdisdern Soft- [13]

ware Tools in Scientific Computingages 163-202. Birkhauser Press
1997.

L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Derain
1. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitét Stanley,
D. Walker, and R. C. WhaleyScaLAPACK Users’ GuideSociety for
Industrial and Applied Mathematics, 1997.

S. Byna, W. Gropp, X.-H. Sun, and R. Thakur. Improving therfor-
mance of MPI Derived Datatypes by Optimizing Memory Accesst€.
In SC 2003.

A. Faraj and X. Yuan. Automatic Generation and Tuning d?MCol-
lective Communication Routines. I6S, 2005.

[6] MPI Forum. MPI: A Message Passing Interface.S@ 1993.

[7] W. Gropp, E. Lusk, and D. Swider. Improving the Perforroamf MPI
Derived Datatypes. IMPIDC, 1999.

Han and Finkel. An optimal scheme for disseminating infation. In
ICPP, 1988.

C.T.Hoand S. L. Johnsson. Distributed Routing Algarithfor Broad-
casting and Personalized Communication in Hypercubes.ICRP,

(3]

(4]

[17]
(18]

(5]

(8]

El

1986.

[10] W. Huang, G. Santhanaraman, H. W. Jin, Q. Gao, and D. Kd&a [22]
Design of High Performance MVAPICH2: MPI2 over InfiniBandn |
CCGRID 2006. 23]

[11] M. Jacunski, P. Sadayappan, and D. K. Panda. All-toB&6adcast on
Switch-Based Clusters of Workstations.IRDPS 1999.

[12] S. L.Johnsson and C.-T. Ho. Optimum Broadcasting anddPelized [24]

Communication in Hypercube$EEE TC 1989.

10

[14]

[15]

[16]

[19]

[20]

[21]

Manoj Kumar. Supporting Broadcast Connections in BeNetworks.
Technical Report RC 14063, IBM Research, May 1988.

S. Lee and K. G. Shin. Interleaved All-to-all Reliableo&dcast On
Meshes and Hypercubes. IGPP, 1990.

A. Mamidala, J. Liu, and D. K. Panda. Efficient Barrierdafllreduce
on IBA clusters using Hardware Multicast and Adaptive Algons. In
Cluster, 2004.

A. Moody, F. Petrini, and D. K. Panda. Efficient Reducgdithms on
the Quadrics Network. ItPDPS 2002.

MPICH2. http://www.mcs.anl.gov/mpi/

R. Ross, N. Miller, and W. Gropp. Implementing Fast aneLi&able
Datatype Processing. BuroPVM/MP| 2003.

G. Santhanaraman, J. Wu, and D. K. Panda. Zero-Copy Mfiveéd
Datatype Communication over InfiniBand. BuroPVM/MP| Sep 2004.

V. S. Sunderam. PVM: A Framework for Parallel and Dhatited Com-
puting. Concurrency: Practice and Experienc®(4):315-339, Decem-
ber 1990.

S. Sur, U. Bondhugula, A. Mamidala, H.-W. Jin, and D. l&néla. High
Performance RDMA Based All-to-all Broadcast for InfiniBa@tlisters.
In HiPC, 2005.

S. Sur, H. W. Jin, and D. K. Panda. Efficient and ScalabletcAAll
Exchange for InfiniBand-based Clusters.|@GPP, 2004.

V. Tipparaju, G. Santhanaraman, J. Nieplocha, and CP&hda. Host-
assisted Zero-copy Remote Memory Access Communicatiomfam-|
Band. InIPDPS 2004.

J. Wu, P. Wyckoff, and D. K. Panda. High Performance kenpéntation
of MPI Datatype Communication over InfiniBand. IRDPS 2004.

