
Extending adaptive sparse grids for stochastic collo-

cation to hybrid parallel architectures

Richard K. Archibald,1 Ralf Deiterding,1 and John Jakeman2

1Computer Science and Mathematics Division, Oak Ridge National Laboratory,
P.O. Box 2008, MS-6367, Oak Ridge, TN 37831
2Department of Mathematics, Purdue University, 150 N. University St., West Lafayette,
IN 47907-2067

E-mail: deiterdingr@ornl.gov

Abstract. We are developing an adaptive sparse grid library tailored for emerging
architectures that will allow the solution of stochastic problems of unprecedented size.
This paper gives a brief overview of the problem at hand and presents initial results for a
small GPU-based cluster. An outlook on large-scale distributed memory parallelization
and our hybrid design approach is also included.

1 Stochastic collocation

In a stochastic simulation, one is typically interested in the relationship between the variables
that drive the system (inputs) and the system response (outputs). For the “forward problem,”
the inputs Z = (Z1, . . . , Zd) are random variables with distributions that we assume to be
known. The outputs are some known functions g of the simulation state u = u(x, t;Z), which
depends on Z and the deterministic variables x and (possibly) time t. The mapping from Z to
g(u) can be given abstractly by the function G

Z 7→ G(Z;x, t) , g(u(x, t;Z)). (1)

The key idea behind stochastic collocation is to select a set of nodes in the random space and
then conduct a repetitive deterministic simulation at each node.

Consider the direction Zi, and let {G(Zi,j)
mi
j=1} be the mapping applied to the numerical

solution at these nodes. We can approximate the one-dimensional component of the solution u
over the range of Zi using the interpolation formula

Gi[G] =

mi∑
j=1

G(Zi,j) · φi,j(Zi), (2)

where φi,j is the interpolating basis. The solution in the entire space can obviously be approx-
imated by tensor products of one-dimensional approximations. That is,

GN = Gi1 ⊗ · · · ⊗ Gid . (3)

The difficulty is the curse of dimensionality, as the number of terms (or nodes) grows expo-
nentially fast and renders the construction useless for even moderately high dimensions, for
example, d > 5. A popular approach is the Smolyak sparse grid construction [1]

GN =
∑

N−d+1≤|i|≤N

(−1)N−|i| ·
(
d− 1

N − |i|

)
· (Gi1 ⊗ · · · ⊗ Gid) . (4)

Without too much detail, it suffices to realize that this formula is nothing but a (complex) subset
of the full tensor construction. The number of nodes required by the Smolyak formula grows
only logarithmically with the dimensionality, while keeping most of high-order approximation
properties intact.

1

2 Sparse grids with adaptation

The types of basis functions are dependent on the type of one-dimensional grids employed. The
most frequently used [2, 3], and simplest choice for our purpose, are the multilinear piecewise
basis functions, which are based on the one-dimensional formula

φi,j(Z) = max(1− |2iZ − j|), 0 < j < mi (5)

where, without loss of generality, we have assumed that Z ∈ [0, 1]. These 1D basis functions
can be used to form a set of d-dimensional basis functions

φi,j(Z) =

d∏
n=1

φin,jn(Zn) . (6)

With the basis function Eq. (5), an equivalent formulation to the one by Smolyak, Eq. (4), is
to construct an interpolant hierarchically, that is,

GN,d(Z) =
∑
|i|1≤N

gi(Z), gi(Z) =
∑
j∈Bi

vi,j · φi,j(Z) ∈Wi, (7)

where
Bi = {jn = 1, . . . ,min , j odd n = 1, . . . , d} (8)

and vi,j is known as the hierarchical surplus. The hierarchical surplus represents the contribution
of the associated basis function to the interpolant. This approach splits up the interpolant into
contributions from hierarchical difference spaces

Wi = span {φi,j | j ∈ Bi} . (9)

Each point in the sparse grid exists only in one subspace, as depicted in two dimensions in
Figure 1. Sparse grids can be used to delay the curse of dimensionality by selecting the difference
spaces Wi so that decreasing importance is given to the higher-dimensional subspaces. This is
achieved by choosing all Wi with |i|1 ≤ l.

Since the interpolation subspaces are constructed hierarchically, adaptation is provided nat-
urally for sparse grids. An intrinsic refinement indicator can be developed based on the magni-
tude of the hierarchical surplus, vi,j. A typical two-dimensional adaptive sparse grid is shown in
the left graphic of Figure 2, where the sketch additionally denotes the subspace level l, in which
each approximation point resides. It is apparent that the organization of an adaptive sparse

l=0

W
00

W
01

W
02

W
10

W
11

W
20

l=1 l=2

Figure 1: Left: 2D uniform sparse grid with three levels.
Right: Assignment of grid points to polynomial subspaces
Wi. The domain of influence of each point is indicated.

grid represents a considerable
problem to computer science.
Points are clustered along lines,
the spacing is quite irregular,
and the hierarchical nature of the
construction complicates the ac-
cess to the point data. In particu-
lar, efficient parallel implementa-
tions for high-dimensional adap-
tive spare grids are currently not
available, thereby severely limit-
ing the applicability to realistic
large-scale stochastic collocation
methods.

2

3

0 4

4

43

3

3

3

3

33

3

3 3

3

32

2

2

2

24 44

4

4

4

44 4

4

4

4 4

4

1

1

4

3

3

3

3

3

3

3

32

2

2

4

4

4

4

4

4

4 41

33 3

3

33

3

2

2

22 1

Figure 2: Two-dimensional adapted sparse grid using five subspace levels l = 0, . . . , 4. The left
sketch notes the subspace level for each approximation point used. The right graphic visualizes
the domains of the respective highest level in different gray shades and shows a generalized
space-filling curve used for decomposition.

3 Parallelization

In the following, we detail our design approach for the development of an adaptive sparse grid
library for hybrid architectures. To our best knowledge, no such effort has been attempted so
far for higher-dimensional sparse grids, and some of the description in here just sketches the
concepts that we are currently pursuing. In Section 3.1, we discuss the first promising results
utilizing GPUs effectively on a small hybrid cluster to speed the evaluation of the hierarchical
surpluses and for sparse grid interpolation. Section 3.2 sketches the domain decomposition
approach for a large adaptive sparse grid that we are implementing to achieve strictly local
sparse=grid operations on compute nodes.

3.1 Graphics processing units

Graphics processing units (GPUs) will be a prominent component of future designs of exascale
supercomputing systems. Individual processor cores in GPUs are optimized to provide high
levels of performance for large amounts of data streaming through a memory hierarchy in single
instruction multiple thread (SIMT) mode. Optimal performance on GPUs requires abundant
low-level SIMT parallelism.

As a first prototype, we have developed a sparse-grid coefficient transformation and inter-
polation code for nonadapted sparse grids that pursues the parallelization idea of mapping each
hierarchical subgrid Wi to a single-thread block. The approach follows the three general require-
ments to maximize GPU performance, which are in decreasing order of importance sufficient
parallelism, coherent memory access, and coherent flow control. Additionally, the code is de-
signed to distribute any block of the sparse grid across a small number of hybrid nodes. On any
particular hybrid node, the sparse grid information is passed between multicore CPU and GPU
in further refined subgrid blocks. High-order reconstruction algorithms are used within this
block where the beneficial accuracy is achieved with computational efficiency through shared
memory spaces.

Figure 3 displays the strong scaling of the sparse-grid construction code on one to eight
hybrid nodes with all communication costs accounted for in the timings. The sparse grid used
for these tests utilizes high-order hierarchical Lagrangian interpolation [2] in 14 dimensions and

3

6 levels of uniform refinement, with a total of 38,760 subgrids that altogether contain 1,009,905
grid points. The code was run on Yona at the Oak Ridge Leadership Computing Facility, a
hybrid 16-node system with each node containing two sockets, with a 6-core Opteron 2435 in
one socket and a NVIDIA Fermi GPU C2050 in the other. For reference, we display the strong
scaling of using two multicore CPUs per node as opposed to a hybrid GPU/multicore CPU node.

12CPU vs 6CPU/1GPU 24CPU vs 12CPU/2GPU 48CPU vs 24CPU/4GPU 96CPU vs 48CPU/8GPU
101

102

Computational Resource

C
om

pu
ta

tio
na

l T
im

e
(S

ec
)

Sparse Grid Computational Times (d=14, n=6, nsubgrid=38760)

Multicore Nodes
Hybrid Nodes

Figure 3: Scaling of high-order sparse grid reconstruction,
comparing multicore with hybrid nodes.

One can see that a single hybrid
node is comparable to two multi-
core nodes. It is also noted that
the current code does all calcu-
lations on the GPU using only
one core of the multicore CPU
for communication, thereby al-
lowing the future possibility for
additional work to be performed
on the other cores. Further-
more, scaling declines for this
high-order reconstruction algo-
rithm when the number of nodes
become very large.

3.2 Distributed memory

The inherent assumption for parallelization on distributed-memory petascale architectures (us-
ing MPI) is that already on such systems (adaptive) sparse grids will be encountered that
are too large to allow aggregation of the data on a single node and that communication costs
are non-neglectable. Under these assumptions, the hierarchical nature of the sparse grid ap-
proximation becomes the greatest obstacle in devising and implementing efficient data access
and parallelization strategies. As depicted in Figure 1, the geometric domain of influence of
each approximation point is shrinking successively in a non-trivial manner for higher levels
in the subgrid space hierarchy. Yet, evaluation of the interpolation formula, Eq. (7), requires
knowledge of all hierarchical surpluses, through all levels of the hierarchy in whose domain of
influence an arbitrary point Z comes to lie. Our first-pursued design approach to this problem
is to combine the locality-preserving properties of space-filling curves [4] with the efficiency of
a local hash-based data access to the approximation point data [3, 5]. Basically, the space-
filling curve will be used to define an ordering of the geometric regions at the highest level of
local adaptation, which can easily be split into portions of similar size, yielding load-balanced
distributions. Here, we assume a workload estimation criterion based on the number of approx-
imation points in each geometric region. A sketch depicting a generalized space-filling curve in
two space dimensions is shown on the right of Figure 2.

The approach assigns the approximation space unambiguously to compute nodes and the
key idea for a strictly local sparse-grid interpolation is then to distribute all points, whose
domain of influence overlaps with the locally assigned domain, to the same node. Clearly, this
concept must involve the utilization of some halo points, with values synchronized by parallel
communication whenever the decomposition changes. In particular, coarser-level points will
have to be replicated; for example, the data associated to l = 0 will be available on every node.
A decomposition of the adaptive sparse grid of Figure 2 to four nodes, based on the shown space-
filling curve, is depicted in Figure 4. The sketches of Figure 4 show all approximation points that
are required to allow a strictly local evaluation of Eq. (7). In contrast to domain-decomposition

4

Figure 4: Domain decomposition of the adaptive sparse grid of Figure 2 to four processors for
distributed interpolation based on a generalized space-filling curve.

techniques on conventional grids, knowledge of hierarchical approximation points outside of the
local domain is required. Since fairly general point distributions will be encountered in practice,
each node will employ a local hash table for data storage and efficient access.

4 Conclusions and outlook

The described strategies for MPI and GPU parallelization are obviously complementary and
can be applied in unison thanks to the strict locality preservation of the distributed memory
approach. Our current emphasis is on the development of a d-dimensional space-filling curve
algorithm and communication routines for general, distributed sparse grids to evaluate our
design approach on available parallel hybrid systems. Further, we are developing advanced
criteria tailored for sparse grids to detect and refine discontinuities in the stochastic space
effectively and reliably [6, 7].

Acknowledgments

This work is sponsored by the Office of Advanced Scientific Computing Research, Applied
Mathematics Research Program; U.S. Department of Energy (DOE) and was performed at the
Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725.

References

[1] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes
of functions. Soviet Math. Dokl., 4:240–243, 1963.

[2] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 1–123, 2004.
[3] M. Griebel. Adaptive sparse grids multilevel methods for elliptic PDEs based on finite

differences. Computing, 61:151–179, 1998
[4] H. Sagan. Space-Filling Curves. Springer-Verlag, New-York, 1994
[5] T. Schiekofer and G. Zumbusch. Software concepts of a sparse grid finite difference code.

In Hackbusch, W. and Wittum, G., editors, Proc. 14th GAMM Seminar. Concepts of Nu-
merical Software, Notes on Numerical Fluid Mechanics. Vieweg, 1998.

[6] R. Archibald, A. Gelb, R. Saxena, and D. Xiu. Discontinuity detection in multivariate space
for stochastic simulations. J. Comput. Phys., 228(7):2676–2689, 2009.

[7] J. Jakeman, R. Archibald, and D. Xiu. Characterization of discontinuities in high-
dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys., 230(10):3977–
3997, 2011.

5

	Stochastic collocation
	Sparse grids with adaptation
	Parallelization
	Graphics processing units
	Distributed memory

	Conclusions and outlook

