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Abstract. The Carbon Capture Simulation Initiative (CCSI) is developing state-of-
the-art computational modeling and simulation tools to accelerate the 
commercialization of carbon capture technology. The CCSI Toolset consists of an 
integrated multiscale modeling and simulation framework, which includes extensive 
use of reduced order models (ROMs) and a comprehensive uncertainty quantification 
(UQ) methodology. This paper focuses on the interrelation among high-performance 
computing, detailed device simulations, ROMs for scale-bridging, UQ and the 
integration framework. 

 

1. Introduction 
The Carbon Capture Simulation Initiative (CCSI) is a partnership among national 
laboratories, industry, and academic institutions that is developing state-of-the-art 
computational modeling and simulation tools to accelerate the commercialization of carbon 
capture technologies from discovery to development, demonstration, and ultimately the 
widespread deployment to hundreds of power plants. The resulting CCSI Toolset will provide 
end users in industry with a comprehensive, integrated suite of scientifically validated 
models with uncertainty quantification, optimization, risk analysis, and decision-making 
capabilities. The CCSI Toolset will incorporate commercial and open-source software 
currently in use by industry and will develop new software tools as necessary to fill 
technology gaps identified during execution of the project. The CCSI Toolset will  

(1) enable promising concepts to be more quickly identified through rapid computational 
screening of devices and processes;  

(2) reduce the time to design and troubleshoot new devices and processes;  



(3) quantify the technical risk in taking technology from laboratory-scale to commercial-
scale; and  

(4) stabilize deployment costs more quickly by replacing some of the physical 
operational tests with a virtual power plant.  
 
CCSI is part of DOE/NETL’s comprehensive CCS RD&D program, part of the 

president’s plan to overcome the barriers to the widespread, cost-effective deployment of 
CCS within 10 years [1]. It has been estimated that using today’s commercially available 
CCS technologies will add approximately 80 percent to the cost of electricity for a new 
pulverized coal (PC) plant and approximately 35 percent to the cost of electricity for a new 
advanced gasification-based plant. Thus, an important part of the CCS RD&D effort is the 
development of the next generation of technologies for carbon capture that have the potential 
to reduce these costs to less than a 30 percent increase in the cost of electricity for PC power 
plants and less than a 10 percent increase in the cost of electricity for new gasification-based 
power plants [2]. For PC plants, the majority of the increased costs result from the parasitic 
loads (steam and power) required for the CO2 capture and compression processes, which 
decrease the power generating efficiency (and the net output) by approximately one third.  

Taking promising new power plant technologies from concept to commercial scale 
could take 20–30 years because of the need to manage the overall risk of the scale-up 
process. Typically, several incremental steps are taken during scale-up, ensuring that the risk 
in each step is as small as possible. CCSI will provide validated simulation tools that will 
accelerate the commercial deployment technologies developed under the CCS RD&D 
program. Science-based models will be used in conjunction with pilot-scale data to allow 
larger steps to be taken earlier with greater confidence, thereby reducing the time and 
expense required for achieving commercial deployment of carbon capture technology.  

Recent experience in other industries such as aerospace and the automotive industry 
has demonstrated that simulations can be used to accelerate the development of technology 
[3–5]. The challenge addressed by CCSI is to use the recent advances in simulation 
technology and to develop a science-based capability to assess and mitigate the risk of 
scaling up carbon capture technologies.  

The CCSI Toolset will incorporate high performance computation capabilities, high-
resolution device-scale simulations and uncertainty quantification. The device-scale 
simulations will allow study of fine-scale and complex characteristics. Reduced-order models 
(ROMs) will be developed from the high-resolution simulations to enable scale-bridging and 
to develop detailed, computationally efficient models that will ultimately run on end-user 
computers. Uncertainty quantification, reduced-order model development, and validation of 
reduced order models will require high-performance computing resources. This paper 
describes the overall goals and approach of CCSI. It then provides a detailed discussion of 
the computational approach for high-resolution device-scale simulations and uncertainty 
quantification. The final section describes our approach for developing the integration 
framework that ties together the multiple simulation packages,  uncertainty quantification 
tools, reduced-order model development tools, and the supporting computational architecture 
we are building to support these activities. 

2. Overview of CCSI 
The CCSI Toolset is being developed around three industrial challenge problems 

(ICPs) applicable to existing PC power plants, which generate nearly half the electricity in 



the United States and emit about a third of all CO2 from U.S. sources. Ninety-five percent of 
the coal-based CO2 emissions projected to be released from 2010 through 2030 will originate 
from existing PC power plants, and a recent analysis suggests that roughly 325 coal-fired 
generating units accounting for roughly two-thirds (200 GW) of current U.S. coal-based 
generating capacity are suitable for carbon capture.  

Solid-sorbent-based post-combustion capture technology was chosen as the first ICP 
for CCSI because significant work remains to define and optimize the reactors and processes 
needed for successful sorbent capture systems. Sorbents offer an advantage because they can 
reduce the regeneration energy associated with CO2 capture, thus reducing the parasitic load. 
Most of the work on sorbents has been restricted to developing the sorbent itself [6], with 
only recent studies considering the design of the reactor system and integration with the 
power plant [7]. Since solid-sorbent systems are at the start of the traditional process 
development cycle, this initial ICP will accelerate the analysis of options for this emerging 
technology. The CCSI Toolset will help identify promising solid-sorbent processes and 
accelerate the scale-up from 25 MWe to commercial demonstration scales.  

Solvent-based postcombustion capture will serve as the second ICP. Commercial 
solvent developers have already completed process design and analysis for first-generation 
solvents, and these are being tested in various pilots; however, advanced solvents are 
currently in the middle of the traditional process development cycle, moving from pilot scale 
to commercial demonstration, so CCSI development can build logically on the prior 
developments for solid sorbents, chronologically matching current industrial development of 
advanced solvents.  Oxy-combustion is the third ICP because of the expected timelines for 
oxy-combustion pilot and demonstration projects.  

As shown in Table 1, the CCSI team is organized into three focus areas and ten Task 
Sets (TSs) to address the challenges in multiscale and multiphysics modeling and analysis, 
software implementation, and industrial applications.  
 
Table 1 CCSI Task Sets by Focus Area 
Physicochemical Models and 
Data 
1. Basic Data and Models 
2. Particle and Device Scale 

Models 
3. Process Synthesis and Design 
4. Plant Operations and Control 

Analysis & Software 
5. Integration Framework 
6. Uncertainty Quantification  
7. Risk Analysis and Decision 

Making 
8. Software Development 

Support 

Industrial Applications 
9. Industrial Challenge 

Problems 
10. Industrial 

Collaboration 

 
The Physicochemical Models and Data focus area consists of four TSs that address the 
challenge of developing science-based modeling tools for various CCS processes considered 
in the ICPs. The models range from particle-scale reaction kinetics models, to device-scale 
CFD models, to steady-state process synthesis and design models, to dynamic plant 
operations and control models. Several commonly used commercial and open-source 
software such as FLUENT®, Aspen Plus®, DYNSIM®, and MFIX will be used to build the 
models. Unlike other modeling efforts, the simulation and design activities at the different 
length scales (e.g., CFD and process system) will be integrated so that information and 
insight will continually flow between scales in order that each scale can benefit from insights 



at the other scales. Much of this information flow will result from an integration framework 
being built by the second focus area.  

The Analysis & Software focus area includes four TSs that will develop the capability 
to integrate different models and software packages, to quantify uncertainties in model 
predictions, to develop optimal designs based on integrated models, and to conduct risk 
analysis. An additional TS will support software development across all the TSs. Realizing 
the vision of an integrated and coherent multiscale software environment for the design, 
analysis, and optimization of carbon capture systems requires an approach that effectively 
enables the flow of information between the scales of interest.  

In addition to technical risks, the development and deployment of new technology 
pose various economic and legal risks. Modeling and simulation can address some of the 
technical and economic risks through the use of predictive computer models, if the 
uncertainties inherent in the modeling process can be determined. Uncertainties that need to 
be addressed are related to the data used to describe the physicochemical models, coupling 
the results of one simulator to another, and in the extrapolation into poorly known regions of 
parameter space needed to explore new design scenarios. The assessment of economic and 
legal risks is possible only if a well-defined process is in place for assessing the propagation 
of uncertainties, sensitivity analysis, model reduction, model validation and calibration, and 
risk analysis of large-scale multi-physics technical models.  

The Industrial Applications focus area consists of two TSs: Industrial Challenge 
Problems and Industrial Collaboration. The Industrial Collaboration TS is responsible for 
developing a strong collaboration between the industry partners and other CCSI partners and 
for ensuring that CCSI models are applied to support commercial decisions that will 
accelerate capture deployment. The Industrial Challenge Problems TS is responsible for 
working with industry partners to develop and refine the three ICPs. The ultimate objective 
of accelerating the deployment of capture technology requires that the tools and 
methodologies developed provide information necessary to support investment decisions by 
equipment suppliers and utility companies. Our industry partners will help ensure that CCSI 
understands these information requirements and can communicate simulation results in a 
manner appropriate to aid decision makers.  

3. Device-Scale Simulation and ROMs 
Since most of the proposed concepts for carbon capture [11] have multiphase reactive 

flow at the core of the system, we will use multiphase computational fluid dynamics (CFD) 
to simulate the device-scale performance in terms of flow properties, outlet composition, 
temperature, and pressures. The CFD predicted device-scale performance under different 
operating conditions will be used in creating device-scale ROMs for the subsequent tasks in 
process synthesis, control, and uncertainty quantification. We focus our discussions in this 
paper on our first industrial challenge problem (ICP-A), namely, carbon capture with solid 
sorbent.  For ICP-A, the gas-particle device under investigation may be a fluidized bed [12], 
packed bed, or moving bed; and the simulation tool developed should permit analysis of all 
these different options.  In general, CFD approaches for modeling multiphase reactors can be 
categorized into two types [13]: 

1. An implicit multifluid Eulerian-Eulerian (EE) formulation in which both the 
fluid (carrier) phase and the particulate (dispersed) phase are treated as 
interpenetrating continua. This “multifluid” approach treats each phase as a 
fluid field fully coupled (i.e., interpenetrating). 



2. An Eulerian-Lagrangian (EL) formulation in which the particle phase is 
discretely tracked and the each particle follows Newton’s laws. 

 
The EL formulation can be further classified into a resolved discrete particle model 

(RDPM) and an unresolved discrete particle model (UDPM).  In RDPM the near-particle gas 
flow (e.g. particle boundary layer) is resolved.  This would imply a simulation technique in 
which the resolution of the gas phase conservation equations is smaller than the particle size.  
UDPM is reliant on sub-models (e.g., drag, heat, and mass transfer correlation) to account for 
interactions between the particle phase and the gas phase.  In most cases the discrete element 
method (DEM) [14] would be classified under UDPM.  These classifications are depicted in 
Figure 1.  

 

 
Figure 1. CFD model classification: (1) discrete bubble, (2) Eulerian-Eulerian, (3) UDPM, 
(4) RDPM, and (5) Lagrangian-Lagrangian (from van der Hoef et al. 2008). 

 
Clearly, the scientific challenge in accurately modeling a full-scale reactor is the large 

disparity of physical scales in the reactor. The overall flow structure can be characterized in 
the order of meters, yet these overall flows are influenced by the particle-level properties 
such as particle size, particle-particle collision, and particle-gas reaction rate.  Since the 
reactor may contain hundreds of millions of physical particles, it is neither computationally 
feasible nor physically necessary to have one single simulation to cover the entire reactor and 
represent all the time and length scales.  Hence, the computational challenge is to develop a 
coarse-graining strategy that can accurately and efficiently pass the particle-scale reactions 
and interactions to the overall device scale flow simulations.   

Scale bridging 
We are developing predictive capabilities at three distinctive scales with ROMs as the 

scale-bridging methodology (Figure 2).  First, we are developing a detailed single-particle 
model in which the inhomogeneity within the particle is explicitly resolved; the pore 
structure and composition changes resulting from the interaction with the external 
environment will be modeled, including the possibility that such changes at the interior of the 
particle are nonuniform. These morphological changes affect the accessibility of the reaction 
sites and hence the overall reaction rate. The particle properties to be considered include 



diameter, pore morphology, bulk density, specific area, composition, heat conductivity, and 
heat capacity, as well as its diffusion properties and reaction kinetics with CO2 as obtained 
from ab initio calculations provided and possibly lattice Boltzmann simulations of nanopores.   

Next, we will develop effective lumped models with a cloud of particles that 
incorporate the parametric results obtained from the detailed single particle model. The size 
of the simulation domain (cloud size) is comparable to the grid size in typical coarse grid 
reactor CFD simulations with the particles fully resolved. The periodic gas-particle flow 
domain will be subjected to various thermal hydrodynamic conditions, and the outcome of 
this task will be a law, that is, a reduced order model, relating the effective reaction kinetics 
of a cloud of particles to the average particle phase volume fraction and the prevailing local 
hydrodynamic conditions. Results on various cloud size will also elucidate the required 
computational resolution needed in the device scale CFD simulations for various types of 
solid sorbents and under different hydrodynamic conditions. A similar subgrid strategy was 
demonstrated by [15] for a coarse-grid simulation of gas-particle flow using MFIX to 
account for the effects of the unresolved mesoscale instability structures. 

The ROM will be validated against experimental data. The approach is to propose a 
candidate lumped kinetic model based on the results in this task and validate it with some 
controlled experiments. Any directly measured model parameters will be input into the 
model. The other parameters will be calculated to minimize the error between the model 
behavior and experimental measurements. For a particular solid sorbent with specific 
properties, reaction parameters from experiments include system pressure, CO2 and H2O 
partial pressure, flow rates, and temperature or heat input. These require temporally resolved 
measurements of exit gas temperature, exit gas composition, particle mass, and particle 
temperature. 
 

 
 
Figure 2. Approach for up-scaling from particle scale to device-scale CFD models. 
 

On the reactor scale, coarse-grid CFD simulations will be performed. At this scale, 
each simulation cell is assumed to have uniform thermal hydrodynamic and reaction 
properties, and the particles within each cell are assumed to evolve identically with the 
lumped reaction kinetics laws obtained from the cloud model. Similarly subgrid or (subfilter) 
closures for the Eulerian fields are necessary for tractable simulations of these larger systems.  
These subgrid models would include phenomena such as turbulence and gas-solid drag.  
Models such as MPIC [16] or Dense DPM [17] represent a hybrid model in which the motion 



of the particles are treated in a Lagrangian sense but some of the interactions and particle-
collisions, in the case of MPIC, are treated in an Eulerian sense.   

From the device-scale CFD results, ROMs will be generated to relate the device scale 
performance measures to the design parameters such as reactor geometry and sorbent 
properties and the operational parameters such as temperature, flow rates, and chemical and 
physical compositions of the feed streams. The complexity of the ROM to capture the 
performance at the device scale will have to be determined on a case-by-case basis depending 
on the features of a given device scale design and on the specific needs of the process scale. 

4. Uncertainty Quantification  
Uncertainty quantification (UQ) is now recognized as an essential component of the 
computational investigation of complex, multiphysics, multiscale system behavior. UQ is the 
study of the accuracy and reliability of scientific inferences and provides quantified 
confidence measures that can be used to inform decision making involving simulations such 
as those that will be produced by the CCSI. CCSI is leveraging the significant advances and 
expertise from the DOE National Nuclear Security Administration Advanced Simulation and 
Computing Program and the Office of Science Advanced Scientific Computing Research 
programs. The main objective of these efforts will be to develop a set of computational tools 
for UQ to be integrated into current simulators. 

Uncertainties can arise in many different forms.  First, there are uncertainties 
associated with the set of governing equations to describe the physical or chemical processes. 
Then, there are uncertainties in how one subsystem should be coupled to the rest of the 
system. Moreover, many parameters to describe material properties are computed from data 
generated from independent experiments, and uncertainties abound in these data sets. In 
addition, some physical processes may not be adequately accounted for in the simulation 
model, giving rise to the “missing physics” uncertainties. Furthermore, uncertainties arise 
when one uses simulators to extrapolate from well-known regions of parameter space to 
other regions of interest as for example when one is exploring new design scenarios. 
Quantifying uncertainties can be a monumental task that requires major advances in high-
performance hardware and software technologies. 

The first step in a UQ study is to identify all possible sources of uncertainties in the 
system to be modeled. This is followed by the characterization of these uncertainties as 
model or parameter forms. Parametric uncertainties can further be classified as aleatoric 
(associated with some probability distribution) or epistemic (the probability distributions are 
not known). Subsequently, different methods are used to propagate these uncertainties 
through the model. The uncertain model outputs of interest then are analyzed and the effects 
of uncertainties assessed. In performing these steps are needed, many numerical and 
statistical techniques such as those for forward uncertainty propagation, sensitivity analysis, 
dimension reduction, response surface analysis, and model calibration.  

UQ approaches are often categorized as nonintrusive and intrusive. For a generic 
multiphysics application characterized by both linear and nonlinear components, nonintrusive 
methods use sampling or collocation procedures, which typically employ a (large) number of 
deterministic simulations to generate output statistics. On the other hand, intrusive methods, 
such as generalized polynomial chaos, typically require a reformulation of the mathematical 
models and thus may require substantial code modification. Since the CCSI simulator will 
heavily leverage existing modeling codes, most of which do not contain embedded UQ 
capabilities, the program must initially focus on nonintrusive UQ methods to understand 



sensitivities of each simulator component to its input parameters and data, as well as the 
uncertainties associated with other causes.  

In order to facilitate a UQ study, three components are essential: a well-defined UQ 
strategy, a relevant UQ toolkit, and an adequate hardware/software infrastructure to handle 
the logistics of large ensemble calculations and analyses. In the following subsections, we 
illustrate each of these three components in more details. 

4.1. UQ Strategy 
Having a UQ strategy at the beginning phase of the project is critical to the success of a UQ 
study. Conclusions that can be made about the model are valid only with respect to the 
assumptions made in the beginning. Without a well-thought-out plan, much manpower and 
computer cycles can be wasted. For example, a UQ study performed on CCSI models can be 
formalized into the following phases: 

1. Define the objectives of a UQ study, and identify the model to be studied. 
2. Identify the sources of uncertainty to be propagated, and characterize them (this 

includes the available experimental data and their uncertainties). 
3. Design computer experiments to propagate uncertainties. 

- If the model has many uncertain parameters, dimension reduction may be needed. 
- If the model is expensive to evaluate, response surfaces/surrogates are needed. 
- Accurate and efficient designs are always needed to propagate uncertainties. 
- “Importance” sampling for calibration with experimental data may be needed. 
- Specialized designs for sensitivity analysis may be needed. 

4. Analyze the impact of uncertainties on model prediction. 
- Probability of system failure or non-compliance with regulations. 
- The ability to predict a “hold-out” (from calibration) system accurately. 

5. Conduct expert review and publish findings. 

We will tailor this general methodology for three ICPs, each modeling a different 
physical process: solid solvent, liquid solvent and oxy-combustion. In each case we follow a 
gradual approach for the development of the full-scale model, at each step introducing 
complexities such as number of devices in the design, the complexity of each device, and a 
dynamic (instead of static) process. The development of the UQ capabilities follows a similar 
path: we will first demonstrate the applicability of UQ tools to individual components or 
devices of a given model, followed by an extension to components of higher internal 
complexity and to process designs consisting of multiple devices. This workflow will be 
applied to each of the case studies, hardening the UQ tools and ensuring the general 
applicability of the developed capabilities. 

Some of the UQ objectives are to identify the most important sources of uncertainties, 
to study the effect of uncertainties on the effectiveness of CO2 capture, to inform our risk 
assessment team of potential vulnerability, and to guide subsequent uncertainty reduction 
efforts. 

4.2. UQ Toolkit 
The selection of methods and tools is an important part of our UQ effort. Inappropriate 
choices of methods will result in wrong conclusions. For example, many classical sensitivity 
methods such as standardized regression coefficients (SRCs) are based on the assumption 
that the model input-output relationships are linear, and violation of this assumption may 
result in faulty conclusions. For our carbon capture process and device models, we anticipate 



nonlinear input-output relationships with unknown functional form. Thus, our selected UQ 
methods will largely be nonparametric. However, we do expect the function to be somewhat 
smooth. 

We anticipate that our more sophisticated simulations will have a large number of 
uncertain parameters. Thus, we will need screening methods to down-select the parameters to 
a manageable number (say, ~10). Again, classical methods such as SRC and perturbation 
methods are largely inadequate. We will use nonparametric screening methods such as the 
Morris design and other stratified designs for this purpose. 

To construct response surfaces or surrogates (these are sometimes also called reduced 
order models), we need space-filling designs together with effective and efficient 
interpolation schemes. Many space-filling designs exist, such as quasi-Monte Carlo, Latin 
hypercube, orthogonal arrays, and spectral collocations. For interpolation schemes, we will 
investigate Gaussian process and cubic splines (we may use polynomial regression if 
appropriate). We will adaptively increase the sample size and use rigorous validation 
techniques to ensure the accuracy of the response surfaces. 

The choice of model output uncertainty representation depends on the nature of the 
uncertainties. For aleatoric uncertainties, the proper choice is the posterior probability 
distributions. For epistemic uncertainties, the upper and lower bounds for the model outputs 
may be more informative, even though the distributions may still enable insights. 
Propagation of uncertainties will be through the cheap surrogates, and thus the sample size is 
usually not a major concern. 

Bayesian inferences are popular for model calibration. The idea is to first prescribe 
initial distributions for the uncertain parameters (called priors). Then a likelihood function is 
developed relating model prediction and data. These are then combined in the Bayes formula 
to compute the posterior distributions. Again, for epistemic uncertainties, the posterior 
bounds may be more relevant. 

Global sensitivity analysis methods based on variance decomposition are more 
suitable for nonlinear models since they are nonparametric methods. Since these methods 
require large sample sizes for accuracy reasons, they are generally analyzed on the cheap 
surrogates. The major sensitivity indicators from these methods are first-order, second-order, 
and total-order sensitivity indices, which express numerically the percentage of the model 
output variance attributed to each uncertain parameter.  

Another form of uncertainty has not been addressed above, namely, model form 
uncertainties. For expensive models that rely on response surfaces, this type of uncertainty 
may introduce added complexity. One research task is to investigate how to efficiently 
propagate this type of uncertainty. 

To employ the methods described above, we need an enriched set of statistical tools. 
Instead of developing our UQ toolkit, our approach will be to leverage, as much as possible, 
existing state-of-the-art UQ tools. Some of these tools are available at the DOE national 
laboratories and they include, for example, the DAKOTA framework from Sandia National 
Laboratories and the PSUADE toolset from Lawrence Livermore National Laboratory, as 
well as other efforts in development. If existing tools do not provide appropriate capabilities, 
it will be important to understand those limitations and to develop new approaches for 
characterizing uncertainty. 



4.3. UQ Hardware/Software  
The need to run large ensemble of simulations implies the great extent to which high-
performance computers will be needed for UQ studies. In addition to computer cycles, a 
great deal of logistics is involved in managing large numbers of runs ranging from job 
scheduling and monitoring to I/O and storage, fault tolerance, and user interfaces. Thus, in 
order to facilitate easy access to the UQ tools and to manage a large number of simulation 
runs, a framework for workflow management is needed. Advanced scientific computing 
techniques will be valuable in the development of such an end-to-end UQ engine for CCSI. 

In summary, a major UQ goal is to predict the performance within an operating 
envelope and quantify the uncertainty in the prediction in order to reduce the technical risk 
associated with the project. In order to accomplish this, it will be necessary to identify the 
critical performance parameters and develop a method for translating system simulation 
results into performance predictions with uncertainty. In addition, we will determine the 
sensitivity of performance predictions to the uncertainty in the component models and 
integration methods that constitute the system simulation in order to assess current state of 
uncertainty in the component models or integration methods that cause the most sensitivity. 
Case studies of failures in large-scale demonstrations will be used to identify gaps in 
component models and integration methods. We will then develop new or reduce uncertainty 
in existing component models and integration methods identified in the above steps. 

5. Integration Framework 
The integration framework in CCSI integrates the software tools implementing the 
simulation capabilities into a seamless, multiscale simulation environment. The services 
provided by the integration framework include data management, user interfaces, analysis 
capabilities, ROMs, and interaction among the CCSI software tools. The resulting CCSI 
software will enable the incorporation of a large number of pre-existing commercial and 
open-source software packages. The conceptual view of the resulting CCSI framework is 
shown in Figure 3.  

 
Figure 3. Conceptual CCSI Integration Framework showing examples of the software tools 
that will be integrated into the CCSI environment. 

 
In this paper, we focus on the framework components to enable execution of CFD and 

process simulations in support of UQ and to enable ROM development. Our initial ROM 
development focus is on implementing and automating the PCA-based ROM development 
techniques laid out in [8] and the ROM development processes developed in the Advanced 



Process Engineering Co-Simulator project [9–10]. The ROM techniques discussed in the 
device scale and UQ sections will also be implemented. 
 To understand the industry practice, we conducted a survey of the major industrial 
carbon capture participants to identify the set of software in normal use for simulation. The 
initial CFD tool identified as most broadly in use is Fluent, with AspenPlus and Aspen 
Custom Modeler being identified for process simulation. These commercial software tools 
along with MFIX (an open source CFD simulation capability) are the initial target for CCSI 
integration. Integration of these tools will enable users to quickly adopt the new CCSI 
software since they will be able to leverage their trained core of workers and long experience 
in using these tools as well as their libraries of simulations developed in the software. The 
CCSI Toolset will bring to their simulation environment new, higher-level capabilities such 
as optimization, uncertainty quantification, and reduced-order model development. 

Dealing with existing commercial software technologies is a significant integration 
challenge because of hardware platforms, operating systems, and licensing diversity. For 
example, the AspenPlus software runs on Microsoft Windows and the uncertainty 
quantification software runs on Linux platforms, and some CCSI modeling and simulation 
capabilities can be run on a laptop while others will require larger-scale computing. UQ and 
ROM development both need the ability to run a large number of simulations in order to 
develop a mapping of the input space to the output space.  

We are developing a web services-based, client-server framework to provide the 
infrastructure for the cross-tool simulation execution capability. The web-services framework 
will enable and manage both local and remote execution of simulations as well as data 
passing between components. Workflow software will provide the coordination and tracking 
of the executions. This design will allow the UQ and ROM development software to run a 
large number of simulations in order to test the design space using different input 
combinations and gather the resulting outputs without requiring the software packages to run 
on the same machine. It will also provide web-based interfaces for monitoring executions and 
results. CCSI is leveraging existing component interchange standards and formats such as 
CAPE-OPEN, ActiveX/COM, and SOAP to interconnect the framework and software tools.  

Each pre-existing software tool is integrated into the web-services framework using 
its available interface capabilities. In the case of Aspen Plus, we are using the ActiveX 
interfaces to set inputs, monitor the simulation process, and gather outputs. A typical Aspen 
Plus process simulation has thousands of parameters, inputs, and outputs. However, only a 
small number of these variables can actually be varied and need to be monitored. The Aspen 
Plus graphical interface makes it relatively easy to find the parameters, inputs, and outputs 
that can be varied; however, programmatically they are difficult to separate from the rest of 
the variables, and the allowed operating range of these variables is even harder to find. The 
framework will provide a user interface to allow the designer of the simulation to specify the 
parameters, inputs, and outputs of the simulation as well as the operating range for each 
variable. The results of this specification process get stored in a configuration file with the 
simulation. When the simulation is run within the CCSI framework, this configuration file 
guides the programmatic interface to the correct variables and parameters within Aspen Plus. 
The configuration file also enables automation of the interfaces to the higher-level tools such 
as UQ by defining the interesting variables and parameters along with their operating ranges.  
The UQ and ROM software use that information to design and execute their simulations. 



 The remaining unresolved issue in this architecture is the ability to run a large number 
of simultaneous simulations. Many of the commercial simulation vendors assume that 
simulations are run sequentially on a small number of resources, and their per seat licensing 
restricts the number of simultaneous simulations that can be executed. We are working with 
vendors to identify appropriate licensing models and ease these restrictions, which are 
otherwise limiting the ability for high-resolution simulations to be run in large numbers 
simultaneously. The alternative and parallel solution we are pursuing is ROM development. 
Although a large number of high-resolution simulations are required to develop the ROM, 
once the ROM is available, it can significantly reduce the number of additional high-
resolution simulations needed to support UQ, optimization, and decision support. 

The initial, smaller-scale demonstration problems, as well as initial uncertainty 
quantification, optimization, and risk management computations will be run primarily using 
institutional computational resources at PNNL’s NW-ICE system (20 teraflops IBM system); 
LANL’s 20, 100, and 200 teraflops systems accessed through the Institutional Computing 
Program, LLNL’s 43.5 Teraflops Ansel Linux cluster; and NETL computer clusters. For the 
more computationally intensive, full-scale simulations, the CCSI team will use the resources 
at NETL’s Simulation-Based Engineering User Center (SBEUC), which will provide over 
200 teraflops of computing power starting in 2012. The primary purpose of SBEUC is to 
facilitate CCSI and a project in storage simulation. In addition, we are in the process of 
obtaining high performance computing resources through DOE’s National Energy Research 
Scientific Computing program. We anticipate that peak computational resource requirements 
will be 100 million CPU-hours per year. 

6. Summary  
CCSI is using advanced computing to support its overall goals of accelerating the 
commercial development of carbon capture technologies. Advanced computing is supporting 
the development of detailed, multiscale device models through the development of detailed 
ROMs that enable computationally efficient scale-bridging from the particle scale to device 
scale. In addition, advanced computing is critically important for conducting the large 
numbers of simulations required for conducting comprehensive UQ of both device models as 
well as complicated systems. This comprehensive, end-to-end UQ methodology is essential 
for identifying, quantifying, and ultimately reducing technical risk, thus facilitating 
commercial decision-making. To enable these activities, we are building an integration 
framework to manage connectivity among various cross-platform software tools consisting of 
simulators and UQ tools. 

Thus, over five years, CCSI will develop an integrated, validated suite of models and 
computational tools for accelerating the development and deployment of carbon capture 
technology. CCSI will address the key industrial challenge of quantifying and reducing the 
level of uncertainty in simulation results and will enable the prototyping of designs with 
greater confidence and provide a uniform platform for evaluating options. More important, 
the CCSI Toolset will support decision making to move to larger scales, more quickly and 
with better designs, thereby considerably reducing the cost and time required for the 
commercialization of carbon capture technology. Throughout the CCSI project, we are 
working closely with end-users in the carbon capture industry to obtain input to and regular 
feedback on products. 
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