
1 

 

Parallelization in Time: Applications to Plasma Turbulence

L. A. Berry1, W. Elwasif1, J. Reynolds-Barredo2,3, D. Samaddar4, R.
Sanchez3 and D. E. Newman2

1Oak Ridge National Laboratory, P. O. Box 2008 MS 6169, Oak Ridge
TN 37831, USA
2University of Alaska, Fairbanks AK, USA
3University Carlos III de Madrid, Madrid, Spain
4ITER Organization, Saint Paul Lez Durance, France

Email: berryla@ornl.gov

Abstract. Parareal is an iterative algorithm that, in effect, achieves
temporal decomposition for a time-dependent system of differential or
partial differential equations. A solution is obtained in a shorter wall-clock
time, but at the expense of increased compute cycles. The algorithm
combines a fine solver that solves the system to acceptable accuracy with
an approximate coarse solver. The critical task for the successful
implementation of parareal on any system is the development of a coarse
solver that leads to convergence in a small number of iterations compared
to the number of time slices in the full time interval, and is, at the same
time, much faster than the fine solver. Fast coarse solvers may not lead to
sufficiently rapid convergence, and slow coarse solvers may not lead to
significant gains even if the number of iterations to convergence is
satisfactory. We find that the difficulty of meeting these conflicting
demands can be substantially eased by using a data-driven, event-based
implementation of parareal. For this implementation, for example, tasks
for one iteration do not wait for the previous iteration to complete, but are
started when the needed data are available. For given convergence
properties, the event-based approach relaxes the speed requirements on the
coarse solver by a factor of , where is the number of iterations
required for a converged solution. This may, for many problems, lead to
an efficient parareal implementation that would otherwise not be possible
or would require substantial coarse solver development.

1. Introduction
Modern high-performance computers utilize thousands to hundreds of thousands of

processors in parallel to support simulations with increasingly detailed descriptions of the
underlying science. However, the highly nonlinear nature of the time evolution of these
systems often leads to long (sometimes impossibly long) run times for simulations of
interest. For magnetic fusion, extended MHD [1,2] and short-wavelength plasma
turbulence [3] are two examples of this type of problem. For example, an ITER [4]
discharge may last a thousand seconds, while simulations of extended MHD and plasma
turbulence are limited to a very small fraction of that time for realistic physics. Advances

2 

 

in algorithms and use of ever-larger high-performance computing contribute to narrowing
this gap but, in many cases, may not be sufficient, and a range of algorithms will have to
developed and/or implemented in the future to address this general issue. In this paper we
discuss one such approach, parareal.

Parareal is an algorithm for effectively utilizing high-performance parallel computers
to, in effect, decompose the time domain to obtain the numerical solution to a time
dependent system of differential or partial differential equations in a shorter wall-clock
time at the expense of increased compute cycles [5]. Successful applications include
molecular dynamics [6], fluid dynamics [7], and plasma turbulence [8]. Parareal utilizes a
fine solver, , that, over time domains of interest, advances the target system with
acceptable accuracy. Functionally, is a propagator that advances the system state, for
example, from time and state to time and state . It is described by
notation with . The desired solution over the interval

 is then given by , where the initial conditions are given by
.
The second element of parareal is a coarse solver, . The coarse solver must be

much faster than the fine solver but will be less accurate. However, it must be sufficiently
accurate to enable rapid convergence. Techniques for developing a coarse solver include
reduced spatial resolution, reduced time resolution, different basis functions, or even a
simplified system of equations. While specific mathematical requirements (apart from
speed) are given in [5], the effectiveness of is, in practice, determined by testing. As
with , the notation is also used to describe . The wall-clock times for
executing a step of for the coarse and fine solvers are given by and ,

respectively, with the ratio denoted by . The notation will be employed to

distinguish between states for the coarse/fine solvers , for iteration index at the
end of slice . These states are explicitly the result of applying propagators to input
states. In addition to , a method for evaluating convergence; initial states and ;
and, if the states are not compatible, operators for transforming states between the coarse
and fine solvers are needed. Depending on the coarse solver, the incompatibility could
arise because of grid dimensions, basis sets, or even independent variable choice.
Whenever states are used as arguments or in an operator statement, use of the appropriate
transformation, for example, within , is implied and must be
carried out before the propagator is applied.

The iterative state update is the defining element of parareal. The update for the input
state for the present iteration, present time slice is . The

notation is used to distinguish between a state that is the result of a propagator,

or , and the state that is the result of the linear combination of states defined in
the previous sentence that constitutes the parareal iterate. If needed, operators to
transform states for one solver space to the other are implied. This update depends only

3 

 

on fine results from the previous iteration, thus allowing all the fine tasks for a given
iteration to proceed in parallel after the sequential coarse steps are completed for that
iteration.

The statement of the parareal algorithm in the previous paragraphs naturally leads to a
sequential implementation of parareal that alternates sequential execution of coarse tasks
and parallel execution of fine tasks. However, we note that the state update does not
require that all of the coarse steps for a given iteration be completed before starting the
fine step that depends on that update. A given fine step i can be started as soon as the

 parareal update (using results from the coarse step) is completed. This
suggests that a data-driven, event-based implementation might be possible. Since some
coarse tasks can be done in parallel with fine tasks, there is the expectation that the need
for a very fast coarse solver might be at least partially reduced.

Details of the classical, sequential parareal implementation are presented in Section 2.
The steps are discussed in detail in order to provide background for describing the
improved implementation that is described in Section 3. The performance of the two
implementations is analyzed in Section 4 for the plasma turbulence application presented
in [8]. Section 5 shows how computational work may be reduced from the standard
parareal algorithm by extending the total simulation time as slices converge. This
technique may be effective when the total simulation time is exceeds capability of the
coarse e.g., when the convergence error is or order unity. A summary and future research
are presented in Section 6. Both the sequential and event-based parareal algorithms were
implemented by using a lightweight Python framework, the Integrated Plasma Simulator
(IPS) that was developed for multiphysics simulations of magnetically confined fusion
plasmas [9, 10, 11] and is described in the Appendix.

2. Sequential Parareal

The workflow for sequential parareal implementation follows from the algorithm
description present in the previous section. However, the details are slightly different for
the first, second, and subsequent iterations. These details are described below in order to
provide background for the event-based workflow.

First iteration:
1. Compute (sequentially) for . The total execution time

for this step is given by .
2. Calculate  by applying the fine propagator to . For , the  

are obtained from using the coarse- to fine-grain transformation if needed.
All the operations in this step can be done in parallel. The wall-clock time is given by

, giving a total execution time for the first iteration of .

4 

 

3. Since there are no prior iterations, no convergence tests are possible.*

Second iteration
1. For the first coarse step, compute . The slice, with state , is

converged since it is given by , the “exact” solution. For slices

, (sequentially) compute using

.

2. Apply the fine propagator to for and to for
, all in parallel.

3. Test for convergence for . A convergence test for is not required
because on the third iteration slice will be converged since , the
“exact” solution. Designate the first nonconverged slice by . The total time for the
second iteration is again . For , the total time is again .

Subsequent (kth) iterations
1. As in the second iteration, for compute and then

(sequentially) using for
. We are (again) using the fine output from the last

converged slice on the previous iteration as the input to the first nonconverged slice
during the next iteration.

2. Following “2” above, apply the fine propagator to for , and, in

parallel, to for
.

3. Test for convergence for . A convergence test for is not
required because on the third iteration slice will be converged since

, the “exact” solution. The total time is again . This
estimate is high because the actual number of coarse tasks is smaller than but is
sufficiently accurate to provide an understanding of trends as is done in the next
section.
In Reference [8], the parareal algorithm was successfully applied to a model plasma

turbulence using a single-executable with complex internal management of the MPI calls.

  
* Convergence tests can be implemented in a number of ways. For the BETA application, the normalized
difference of a time-averaged energy measure of the fine solver was used. Thus convergence tests could be
applied only on the second iteration. If the comparison were made between a measure of convergence that
could be applied between fine and coarse states, then convergence tests could have been applied on the first
iteration.

5 

 

For the present effort, we used the fine, coarse, converge, coarse-to-fine, fine-to-coarse,
and parareal-advance methods (five independent executables) from that effort to recreate
the algorithm within the IPS simulation framework.

An IPS simulation is formulated in terms of components. While many definitions are
possible for a component, for our purposes a component implements a particular
functionality with defined data interfaces to other components. Thus, to implement
parareal, we implemented coarse, fine, and converge components. In addition, a driver
component controlled the sequence of component operations, calling the coarse, fine, and
converge components sequentially for each iteration. These components are, at the
simplest level, Python wrappers for the executables that carry out the operations
described in the previous section.

The Python components developed for this application can serve as templates for new
applications with only relatively small changes to the scripts. As result, the additional
programming for each new application at the parallezation level, for example, MPI
communicator management, required to integrate the coarse, fine, and converge tasks
within one executable is not necessary.

The convergence history for one run with this new implantation is shown in Figure 1.
The total time for the
simulation was

 where is a
characteristic ion diamagnetic
drift time. This interval was
divided into slices of
length each. A total
of 1,024 processors (128 nodes
with eight processors each)
were used in the run. The fast
Fourier transforms in the fine
and coarse solvers were
parallelized using eight and
four processors each,
respectively. The VODPK [12]
adaptive integrator was used in
the fine solver while fourth-
order Runge-Kutta was used in
the coarse solver. Convergence

was attained in 14 iterations using a tolerance of 1.5e-6 on the time-integrated energy for
each slice. Additional detail can be found in [8]. There were no differences between the
present results and those previously obtained by executing the component elements of
parareal within one executable: the numerical algorithms were the same; thus the results
are the same.

Iterations to convergence is one measure of performance for parareal. A better
measure is the wall-clock gain. At the simplest level, with , the gain H is given
by the ratio of the time for a full solution with the fine solver applied sequentially, ,

Figure 1. Convergence history for a 160-slice beta
simulation using parareal. No values are shown for the
first iteration as there is no data from a “zeroth”
iteration.

6 

 

to the parareal wall-clock time or . Finite will modify the time per

iteration from to and decrease the gain to

 (0.1)

where, again, .
As discussed previously, this expression slightly overestimates the impact of

because only on the first iteration will N sequential coarse solves be required, but it is
sufficiently precise to understand the trends. The gain expression by itself is not
particularly useful because K is a function of N and the “goodness” of the coarse solver.
It does make clear, however, that there is a tradeoff between and K in optimizing H. If
we make the reasonable assumption that there is a trend for better coarse solvers to result
in smaller K but have larger , the net gain will be reduced when . For this
case, even if the system converges more rapidly, the extra sequential time taken by the
coarse solver could well reduce the net gain. For example if were reduced by a factor
of two at the expense of going from one to four, the net gain would be reduced by
20%.

The impact of a too-slow coarse solver can be seen in Figure 2. The processor
utilization during the ~14000
second sequential run of Figure 1
is shown, and the periods for
coarse tasks (with very low
utilization) and fine tasks (near
100% utilization) can be clearly
distinguished. Well over half of
the time was spent in the
sequential coarse computations.
The average processor utilization
was limited to ~30% because the
condition was not met.
Meeting this condition and also
obtaining convergence in a small
number of steps are the central
issue for the application of
parareal to a particular
application.

3. Event -Based Parareal
During development of the IPS implementation of parareal, it became clear that while

an implementation based on following the steps outlined in the previous section was, in a
sequential programming sense, logical, it was also unduly restrictive and resulted in time

Figure 2, Processor utilization for the simulation
displayed in Figure 1. The peak utilization falls off
for wall times over 11,000 seconds because the
number of fine updates is no longer large enough to
occupy the number of available processors.

7 

 

inefficiency. For example, in the first iteration, the first coarse task and first fine task
could be carried out in parallel. Similarly, subsequent fine tasks could be performed as
soon as the preceding coarse task was complete. For the second iteration the first fine task

 could be carried out as soon as the fine task from the proceeding iteration
and preceding time slice was complete. This realization led to the concept of a data-
driven, event-based implementation of parareal. The algorithm and the data employed are
the same, but task execution is started just as soon as the required data are available.

Component dependencies—coarse, fine, and converge, enclosed in the three groups
of rows enclosed by dark boarders and labeled by the bold task name in the first
column—are summarized in Table 1 for all time slices except the first in a given
iteration. Rows under the bold label designate the source of the dependency. The second
through fourth columns refer to each of the three principal types of iterations described in
the previous section. Dependencies are indicated by a darkened box in the table. These
dependencies were extracted from the detailed descriptions in the previous section.

As a simple example, consider the coarse task for the third slice, of the second
iteration, . The column labeled and in Table 1 shows the coarse
dependences of slice , iterations and and the fine dependence of slice

, iteration .
If we assume that a simulation length converges in iterations, an

approximate gain can be estimated that is sufficiently accurate to understand the scaling
characteristics of the implementation. To derive this estimate, we assume a convergence
history where there are no converged slices until the last iteration. For this case, the data
dependencies lead to the sequence of tasks

. This leads to a total
time for the iterations of . The resulting gain is

 (0.2)

Table 1. Component dependencies
Dependencies

for (k,i) th
bold task

and

and

and

Dependency i-1 1, i-1 1, i 2, i-1 2, i k-1, i k, i-1 k, i

coarse
coarse

converge
fine

coarse
converge

converge
fine

8 

 

The event-based execution flow was implemented by using IPS event services and
dependencies equivalent to those in Table 1. This implantation was applied to the same
case as described in Section 2. The convergence history for the new implementation was
the same as shown in Figure 1 for the original parareal work flow, as were the detailed
numerical results. However, the total wall-clock simulation time decreased by

over 50% and the processor
utilization increased by over
50% as presented in Figure 3
The initial ramp to near 100%
utilization is a result of the time
required for all fine tasks to start,

, while the falloff was
caused by the lack of fine tasks
to execute in parallel as the
simulation converged. This
demonstration validated the
premise that an event-based
parareal could have better
performance.

4. Analysis of Event-Based Parareal
In order to understand the performance characteristics of the event-based parareal

implementation, two studies were conducted. The first used a test simulation case for
BETA using the fourth-order Runge-Kutta coarse solver. The second used the empirical
convergence model that was developed in [8].

The test case, with and , converged in seven iterations. Gain
properties were varied by artificially increasing the coarse solver time, by a “sleep”
command in the coarse solver. These results are summarized in Figure 4 as a function of

 with and designating the average of, respectively, fine and coarse tasks
in the simulation. Beta varied from less than five () to almost a hundred (),
encompassing the range of interest for the gain models described in Section 2. The
measured simulation speedup times were based on the ratio of to the simulation
wall-clock time. The predictions of both the event-based (Eq. (0.2),

, and sequential (Eq. (0.1)) models are

Figure 3. Processor utilization for the event-based
parareal implenention. The processor utilization is
now over 70%.

9 

 

also shown in Figure 4. The measured simulation times for the event-based
implementation show gains of over two even when the sequential model values were less

than one. For large , as
suggested by the modeling, the
event-based and sequential
models are converging to the
same gain, , and
are within ~30% of the measured
values. The s at which a 50%
reduction in gain is observed is
consistent with
for the event-based
implementation and for
the sequential version.

The difference between
measured and modeled gains for
all s is likely due to two
factors. First, peak values of
for each iteration are typically a
factor of 2 or more larger than
the average because the VODPK
integrator adapts time steps to
achieve a given precision. For

both sequential and event-based implementations, peak values of have a larger impact
on the gain than does the average. This can most readily be seen for the sequential
version where the time to complete fine steps for a given iteration is determined by the
longest . The effect of peak on the event-based algorithm is not as obvious but can
clearly slow progress when it is that particular iteration and the slice is a critical
dependency. The drops in processor utilization during the first two-thirds of the
simulation in Figure 3 are almost certainly due to this phenomenon. Second, with respect
to the sequential implementation, the number of coarse tasks is overestimated by a factor
of about 2, because the simple gain model assumes that coarse tasks are needed for
each iteration, while the actual number depends on how far convergence has progressed.

To extend our understanding of the performance potential for event-based parareal
from one particular run to a broad range of conditions for BETA, we used the empirical
model developed in [8] for the convergence characteristics coarse solvers based on the
VODPK and second- and fourth-order Runge-Kutta time-integrators. The result of this
analysis was an expression for the number of iterations required for convergence,

, for each of the three integrators. This empirical model was based on the
observation that the qualitative behavior of a given coarse solver could be characterized
by a series of slow convergence iterations (~a few slices per iteration) up until a time
followed by a faster rate of convergence, slices per iterations, at time with a linear

Figure 4. Comparison of speedups for the sequential
(squares) to the event-based (circles)
implementations. Corresponding model calculations
are shown in the dashed and dash-dot lines. The
solid line indicates the ideal gain (. for
this test problem for the BETA mode lusing the
RK4 coarse solver. The simulations had and

 and converged in seven iterations.

10 

 

ramp for times between and . Estimates for these constant coefficients were found
from the properties of large number of runs for each of the coarse integrators. Despite the
large uncertainties and variability in these parameters, they could still be used as a semi-
quantitative model that was sufficient to analyze convergence trends. The analysis in this
paper uses the parameters obtained in [8].

The model values for for the three coarse solvers were used in the
approximate gain expressions presented in Sections 2, Eq. (0.1) and 3, Eq. (0.2). Two
types of scaling for a particular coarse solver were analyzed: weak scaling, where is
held fixed, and strong scaling, where the total time, , was held fixed. In both cases

, the number of time steps, was varied. The number of processors (or groups of
processors if the problem utilizes spatial domain decomposition) is also equal to N.

Figure 5 presents the results of the strong-scaling model for both the sequential and
event-based implementations. Figure 6 present the results for weak-scaling analysis. For
all cases, the event-based implementation has substantially improved performance. For a
600-slice simulation, strong scaling performance is three (fourth-order RK) to seven
(VODPK) times better. More important, the improvement in performance is greatest for
the poorest-performing solver for the sequential implementation. Thus the coarse solver

Figure 5. Strong-scaling (increasing slices,
fixed simulation time) model
results are presented for three coarse solvers:
diamonds=>VODPK integrator;
squares=>second-order Runge-Kutta; and
circles=>fourth-order Runge-Kutta. For each
solver, two estimates of wall-clock gain or
speed up are shown—the lower curve for the
standard implementation of parareal and the
upper for the event-based algorithm.

Figure 6. Weak-scaling (fixed
per processor) model results are presented
for three coarse solvers:
diamonds=>VODPK integrator;
squares=>second-order Runge-Kutta; and
circles=>fourth-order Runge-Kutta.. For
each solver, two estimates of wall-clock
gain or speed up are shown—the lower
curves (open symbols) for the standard
implementation of pararal and the upper
curves (filled symbols) for the event-based
algorithm.

11 

 

that would be judged as not useful (VODPK) now results in gains that that are greater
than were found with the best coarse sequential coarse solver (fourth-order RK). The
same behaviors are observed for the weak-scaling analysis. In addition, the optimum in
gain previously observed when the number of slices is ~ is no longer observed.

5. Dynamic Slice Addition

The previous sections have focused on reducing the wall-clock time completing a
simulation, albeit at the expense of compute cycles. In many cases, improvements in
compute efficiency over the traditional parareal algorithm can be obtained. This
possibility can be seen in Figure 1 where, in this 160-slice simulation, we see that after
about 30 slices the convergence error changes from the 10-8 to 10-3 range to over 10-1.
This suggests that the coarse solver is, in some sense, not effective past the range
and that calculations with the coarse solver and related fine solve runs are “wasted.” In
order to test this observation, the IPS components were modified to add additional slices
as early

time slices converge. These
slices were started using the
same initialization as
employed to start the
simulation as described in
Section 2. The results of this
modification are shown in
Figure 7. While the simulation
took four additional iterations
to converge (eighteen versus
fourteen), the computational
work has been reduced by a
factor of ~4. In addition, only
30 (or a few more, depending
on details) processor groups
are required for minimum
wall-clock time, as opposed to
the 160 required for the result
in Figure 1, thus realizing a

factor of ~20 improvement in processor utilization. 

6. Summary and Future Research

Sequential and event-based parareal algorithms have been implemented using the IPS
framework. For this project, the target application was BETA, a model plasma turbulence
application. However, the Python-based IPS allows development of parareal for new
applications with a minimum of code modifications. Target applications include fusion
transport simulations, gyrokinetic turbulence simulations, and extended MHD.
Implementation of the event-based algorithm required only superficial modification of
the application code used in the sequential implementation. Event-based parareal
provides the potential for successful development of parareal to applications for which

Figure 7. Convergence history for a 160-slice beta
simulation using parareal with dynamic slice addtion.

12 

 

previous efforts have not been successful, as well as improved performance for
applications with successful parareal solvers. The key to this improvement is recognizing
the data dependencies of parareal and beginning work on any task for which the data are
available. As a result, requirements on the coarse solver are reduced from to

.

Acknowledgements
Research funded in part by Spanish National Project No. ENE2009-12213-C03-03.

Part of the research was carried out at the University of Alaska Fairbanks, funded by the
DOE Office of Science Grant No. DE-FG02-04ER54741. Work supported in part by the
U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors are
grateful for grants of supercomputing resources at the University of Alaska’s Arctic
Region Supercomputing Center (ARSC) in Fairbanks.

Appendix Implementation of Parareal Using the IPS

Implementation of parareal as described in Section 3 can be a daunting task. It, for
example, requires a good understanding of how to manage multiple MPI communicators
in order to control and launch the multiple executables for the fine and coarse solvers on
different groups of processors and/or nodes. In order to reduce the programming burden
for new parareal applications and to reduce the time for developing a successful parareal
application, parareal was implemented using the Integrated Plasma Simulator (IPS).

The IPS is a lightweight Python framework for large parallel computers that provides
services for multiphysics (or, more generally, multicomponent of any simulations for
domain) simulations with file-based communication between components [9, 10, 11].
The IPS manages computing resources, launches tasks, moves input and output files,
locally archives data, and provides event services using a publish and subscribe model.
These functions are implemented in a set of managers as displayed in Figure 8. The IPS
is shown running on a head node as is the case for Compute-Node Linux high-
performance computers such as the Cray XT-5. (We note that the IPS, which has run on a
wide range of systems including Cray XT-5s and “standard” Linux clusters, does not
work on systems like the Blue Gene because of limitations on how multiple, independent,
executables can managed.) Component executables are launched from the IPS as standard
mpirun or aprun processes with a return to the IPS when finished.

13 

 

Simulations are composed
of a set of components, each of
which implements a needed

functionality. The needed functionality for parareal is provided by coarse, fine, and
converge components. These components are built from Python wrappers to (typically)
parallel MPI application codes. An additional component, the driver, is a required
component that defines and controls the execution flow of a simulation or an algorithm.
Each component is required to implement Init, Step, and Finalize procedures, which can
be empty. Checkpoint and restart methods are also required if that functionality is
desired. A configuration file is used to specify component scripts, initial data files, input
and output files, and global and component-specific configuration parameters. Global
parameters (that can also be set and read by any component during a run by any
component) include the number of time slices, maximum iteration count, and
convergence status. Local configuration parameters include processor count for MPI,
paths to binaries and to static input files (e.g., fortran namelists), and runtime code
parameters.

For the conventional, sequential, parareal implementation, the driver provides an
iteration loop in which the coarse, fine, and converge components are sequentially called.
Within each component, loops over time slices used to execute the coarse and fine
propagators and to test for convergence. The Resource Manager implements a task pool
“queue” for managing compute resources in the event that processor groups are not
currently available. Use of the task pool reduces the wall-clock gain from parareal but
increases overall processor utilization and allows longer simulations within constrained
resources. For the sequential parareal, first the coarse, then the fine, and finally the
converge calculations for a given iteration were completed before proceeding to the next
iteration.

For the data-driven, event-based implementation, tasks (coarse, fine, or converge)
were launched as the needed data was produced. Neither iteration nor time loops were
used. At completion, a given task published an event whose body contains data that, for
example, included iteration and slice indices, absolute paths to input files and, for the
converge component, the results of the convergence test. Components subscribe to events
on which they depend. When the first dependency is satisfied, a task is created, then,
when all dependences are satisfied, the task is launched. In order to begin the simulation,
required dependencies were satisfied manually as initial conditions.

In moving from the sequential to event-based implementations, none of the
underlying executables had to be changed. The same was true for the implementing the
dynamic slice addition capability.

References
[1] C.R. Sovinec, A.H. Glasser et al., J. Comput. Phys. 195 (2004) 355.
[2] L. Chacon, Comp. Phys. Comm. 163 (2004) 143.
[3] F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7

(2000) 1904.
[4] M. Shimada et al., Nuclear Fusion 47 (2007) S1.

Figure 8. Block diagram of the IPS framework.

14 

 

[5] J. Lions, Y. Maday, G. Turinici, “A parareal in time discretization of pde’s,” CR
Acad. Sci. I – Math. 332 (7) (2001) 661–668.

[6] L. Baffico, S. Bernard, Y. Maday, G. Turinici, G. Zérah, “Parallel in time
molecular dynamics simulations,” Phys. Rev. E 66 (5) (2002) 057706.

[7] P.F. Fischer, F. Hecht, and Y. Maday, in “Lecture Notes in Computational
Science and Engineering,” 2005, p. 2017.

[8] D. Samaddar, D.E. Newman, R. Sánchez, “Parallelization in time of numerical
simulations of fully-developed plasma turbulence using the parareal algorithm,” J.
Comput. Phys. 229 (18) (2010) 6558.

[9] W.R. Elwasif, D.E. Bernholdt, L.A. Berry, and D.B. Batchelor, “Components
framework for coupled integrated fusion plasma simulation,” in HPC-
GECO/CompFrame—Joint Workshop on HPC Grid Programming Environments
and Components and Component and Framework Technology in High-
Performance and Scientific Computing, Montreal, Canada, October 2007.

[10] S.S. Foley, W.R. Elwasif, A.G. Shet, D.E. Bernholdt, and R. Bramley,
“Incorporating concurrent component execution in loosely coupled integrated
fusion simulations,” Component-Based High- Performance Computing (CBHPC),
Karlsruhe, Germany, 16-17 October 2008.

[11] W.R. Elwasif, D.E. Bernholdt, A. Shet, S. Foley, R. Bramley, D.B. Batchelor, and
L. Berry, “The design and implementation of the SWIM integrated plasma
simulator,” in 18th Euromicro Int’l. Conf. on Parallel, Distributed and Network-
Based Processing (PDP), Pisa, Italy, 17-19 February 2010.

[12] S.D. Cohen and A.C. Hindmarsh. “CVODE, a stiff/nonstiff ODE solver,”
Computers in Physics 10 (2) (1996) 138-143.

