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Abstract. Parareal is an iterative algorithm that, in effect, achieves 
temporal decomposition for a time-dependent system of differential or 
partial differential equations. A solution is obtained in a shorter wall-clock 
time, but at the expense of increased compute cycles. The algorithm 
combines a fine solver that solves the system to acceptable accuracy with 
an approximate coarse solver. The critical task for the successful 
implementation of parareal on any system is the development of a coarse 
solver that leads to convergence in a small number of iterations compared 
to the number of time slices in the full time interval, and is, at the same 
time, much faster than the fine solver. Fast coarse solvers may not lead to 
sufficiently rapid convergence, and slow coarse solvers may not lead to 
significant gains even if the number of iterations to convergence is 
satisfactory. We find that the difficulty of meeting these conflicting 
demands can be substantially eased by using a data-driven, event-based 
implementation of parareal. For this implementation, for example, tasks 
for one iteration do not wait for the previous iteration to complete, but are 
started when the needed data are available. For given convergence 
properties, the event-based approach relaxes the speed requirements on the 
coarse solver by a factor of , where  is the number of iterations 
required for a converged solution. This may, for many problems, lead to 
an efficient parareal implementation that would otherwise not be possible 
or would require substantial coarse solver development. 

1. Introduction 
Modern high-performance computers utilize thousands to hundreds of thousands of 

processors in parallel to support simulations with increasingly detailed descriptions of the 
underlying science. However, the highly nonlinear nature of the time evolution of these 
systems often leads to long (sometimes impossibly long) run times for simulations of 
interest. For magnetic fusion, extended MHD [1,2] and short-wavelength plasma 
turbulence [3] are two examples of this type of problem. For example, an ITER [4] 
discharge may last a thousand seconds, while simulations of extended MHD and plasma 
turbulence are limited to a very small fraction of that time for realistic physics. Advances 
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in algorithms and use of ever-larger high-performance computing contribute to narrowing 
this gap but, in many cases, may not be sufficient, and a range of algorithms will have to 
developed and/or implemented in the future to address this general issue. In this paper we 
discuss one such approach, parareal. 

Parareal is an algorithm for effectively utilizing high-performance parallel computers 
to, in effect, decompose the time domain to obtain the numerical solution to a time 
dependent system of differential or partial differential equations in a shorter wall-clock 
time at the expense of increased compute cycles [5]. Successful applications include 
molecular dynamics [6], fluid dynamics [7], and plasma turbulence [8]. Parareal utilizes a 
fine solver, , that, over time domains of interest, advances the target system with 
acceptable accuracy. Functionally, is a propagator that advances the system state, for 
example, from time and state  to time  and state . It is described by 
notation  with . The desired solution over the interval 

 is then given by , where the initial conditions are given by 
.  
The second element of parareal is a coarse solver, . The coarse solver must be 

much faster than the fine solver but will be less accurate. However, it must be sufficiently 
accurate to enable rapid convergence. Techniques for developing a coarse solver include 
reduced spatial resolution, reduced time resolution, different basis functions, or even a 
simplified system of equations. While specific mathematical requirements (apart from 
speed) are given in [5], the effectiveness of  is, in practice, determined by testing. As 
with , the notation is also used to describe . The wall-clock times for 
executing a step of  for the coarse and fine solvers are given by  and , 

respectively, with the ratio denoted by . The notation  will be employed to 

distinguish between states for the coarse/fine solvers , for iteration index  at the 
end of slice . These states are explicitly the result of applying propagators to input 
states. In addition to , a method for evaluating convergence; initial states  and ; 
and, if the states are not compatible, operators for transforming states between the coarse 
and fine solvers are needed. Depending on the coarse solver, the incompatibility could 
arise because of grid dimensions, basis sets, or even independent variable choice. 
Whenever states are used as arguments or in an operator statement, use of the appropriate 
transformation, for example,  within , is implied and must be 
carried out before the propagator is applied.  

The iterative state update is the defining element of parareal. The update for the input 
state for the present iteration, present time slice is . The 

notation  is used to distinguish between a state that is the result of a propagator,  

or , and the state  that is the result of the linear combination of states defined in 
the previous sentence that constitutes the parareal iterate. If needed, operators to 
transform states for one solver space to the other are implied. This update depends only 
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on fine results from the previous iteration, thus allowing all the fine tasks for a given 
iteration to proceed in parallel after the sequential coarse steps are completed for that 
iteration.  

The statement of the parareal algorithm in the previous paragraphs naturally leads to a 
sequential implementation of parareal that alternates sequential execution of coarse tasks 
and parallel execution of fine tasks. However, we note that the state update does not 
require that all of the coarse steps for a given iteration be completed before starting the 
fine step that depends on that update. A given fine step i can be started as soon as the 

 parareal update (using results from the  coarse step) is completed. This 
suggests that a data-driven, event-based implementation might be possible. Since some 
coarse tasks can be done in parallel with fine tasks, there is the expectation that the need 
for a very fast coarse solver might be at least partially reduced.  

Details of the classical, sequential parareal implementation are presented in Section 2. 
The steps are discussed in detail in order to provide background for describing the 
improved implementation that is described in Section 3. The performance of the two 
implementations is analyzed in Section 4 for the plasma turbulence application presented 
in [8]. Section 5 shows how computational work may be reduced from the standard 
parareal algorithm by extending the total simulation time as slices converge. This 
technique may be effective when the total simulation time is exceeds capability of the 
coarse e.g., when the convergence error is or order unity. A summary and future research 
are presented in Section 6. Both the sequential and event-based parareal algorithms were 
implemented by using a lightweight Python framework, the Integrated Plasma Simulator 
(IPS) that was developed for multiphysics simulations of magnetically confined fusion 
plasmas [9, 10, 11] and is described in the Appendix. 

  
2. Sequential Parareal 

The workflow for sequential parareal implementation follows from the algorithm 
description present in the previous section. However, the details are slightly different for 
the first, second, and subsequent iterations. These details are described below in order to 
provide background for the event-based workflow. 

 
First iteration:   
1. Compute (sequentially)  for . The total execution time 

for this step is given by .  
2. Calculate   by applying the fine propagator to . For , the  

are obtained from  using the coarse- to fine-grain transformation if needed. 
All the operations in this step can be done in parallel. The wall-clock time is given by 

, giving a total execution time for the first iteration of . 
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3. Since there are no prior iterations, no convergence tests are possible.*  
 

Second iteration 
1. For the first coarse step, compute . The slice, with state , is 

converged since it is given by , the “exact” solution. For slices 

, (sequentially) compute  using 

.  

2. Apply the fine propagator to  for  and to  for 
, all in parallel.  

3. Test for convergence for . A convergence test for  is not required 
because on the third iteration slice  will be converged since , the 
“exact” solution. Designate the first nonconverged slice by . The total time for the 
second iteration is again . For , the total time is again . 
 

Subsequent (kth) iterations 
1. As in the second iteration, for  compute  and then 

(sequentially)  using  for 
. We are (again) using the fine output from the last 

converged slice on the previous iteration as the input to the first nonconverged slice 
during the next iteration.  

2. Following “2” above, apply the fine propagator to  for , and, in 

parallel, to  for 
. 

3. Test for convergence for . A convergence test for  is not 
required because on the third iteration slice  will be converged since 

, the “exact” solution. The total time is again . This 
estimate is high because the actual number of coarse tasks is smaller than  but is 
sufficiently accurate to provide an understanding of trends as is done in the next 
section.  
In Reference [8], the parareal algorithm was successfully applied to a model plasma 

turbulence using a single-executable with complex internal management of the MPI calls. 

                                                            
* Convergence tests can be implemented in a number of ways. For the BETA application, the normalized 
difference of a time-averaged energy measure of the fine solver was used. Thus convergence tests could be 
applied only on the second iteration. If the comparison were made between a measure of convergence that 
could be applied between fine and coarse states, then convergence tests could have been applied on the first 
iteration.  
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For the present effort, we used the fine, coarse, converge, coarse-to-fine, fine-to-coarse, 
and parareal-advance methods (five independent executables) from that effort to recreate 
the algorithm within the IPS simulation framework.  

An IPS simulation is formulated in terms of components. While many definitions are 
possible for a component, for our purposes a component implements a particular 
functionality with defined data interfaces to other components. Thus, to implement 
parareal, we implemented coarse, fine, and converge components. In addition, a driver 
component controlled the sequence of component operations, calling the coarse, fine, and 
converge components sequentially for each iteration. These components are, at the 
simplest level, Python wrappers for the executables that carry out the operations 
described in the previous section.  

The Python components developed for this application can serve as templates for new 
applications with only relatively small changes to the scripts. As result, the additional 
programming for each new application at the parallezation level, for example, MPI 
communicator management, required to integrate the coarse, fine, and converge tasks 
within one executable is not necessary.  

The convergence history for one run with this new implantation is shown in Figure 1. 
The total time for the 
simulation was 

 where  is a 
characteristic ion diamagnetic 
drift time. This interval was 
divided into  slices of 
length  each. A total 
of 1,024 processors (128 nodes 
with eight processors each) 
were used in the run. The fast 
Fourier transforms in the fine 
and coarse solvers were 
parallelized using eight and 
four processors each, 
respectively. The VODPK [12] 
adaptive integrator was used in 
the fine solver while fourth-
order Runge-Kutta was used in 
the coarse solver. Convergence 

was attained in 14 iterations using a tolerance of 1.5e-6 on the time-integrated energy for 
each slice. Additional detail can be found in [8]. There were no differences between the 
present results and those previously obtained by executing the component elements of 
parareal within one executable:  the numerical algorithms were the same; thus the results 
are the same.  

Iterations to convergence is one measure of performance for parareal. A better 
measure is the wall-clock gain. At the simplest level, with , the gain H is given 
by the ratio of the time for a full solution with the fine solver applied sequentially, , 

 
Figure 1. Convergence history for a 160-slice beta 
simulation using parareal. No values are shown for the 
first iteration as there is no data from a “zeroth” 
iteration.  
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to the parareal wall-clock time  or . Finite  will modify the time per 

iteration from  to  and decrease the gain to 

  (0.1) 

where, again, . 
As discussed previously, this expression slightly overestimates the impact of  

because only on the first iteration will N sequential coarse solves be required, but it is 
sufficiently precise to understand the trends. The gain expression by itself is not 
particularly useful because K is a function of N and the “goodness” of the coarse solver. 
It does make clear, however, that there is a tradeoff between  and K in optimizing H. If 
we make the reasonable assumption that there is a trend for better coarse solvers to result 
in smaller K but have larger , the net gain will be reduced when . For this 
case, even if the system converges more rapidly, the extra sequential time taken by the 
coarse solver could well reduce the net gain. For example if  were reduced by a factor 
of two at the expense of  going from one to four, the net gain would be reduced by 
20%.  

The impact of a too-slow coarse solver can be seen in Figure 2. The processor  
utilization during the ~14000 
second sequential run of Figure 1 
is shown, and the periods for 
coarse tasks (with very low 
utilization) and fine tasks (near 
100% utilization) can be clearly 
distinguished. Well over half of 
the time was spent in the 
sequential coarse computations. 
The average processor utilization 
was limited to ~30% because the 
condition  was not met. 
Meeting this condition and also 
obtaining convergence in a small 
number of steps are the central 
issue for the application of 
parareal to a particular 
application. 
 
 

3. Event -Based Parareal 
During development of the IPS implementation of parareal, it became clear that while 

an implementation based on following the steps outlined in the previous section was, in a 
sequential programming sense, logical, it was also unduly restrictive and resulted in time 

 
Figure 2,  Processor utilization for the simulation 
displayed in Figure 1. The peak utilization falls off 
for wall times over 11,000 seconds because the 
number of fine updates is no longer large enough to 
occupy the number of available processors. 
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inefficiency. For example, in the first iteration, the first coarse task and first fine task 
could be carried out in parallel. Similarly, subsequent fine tasks could be performed as 
soon as the preceding coarse task was complete. For the second iteration the first fine task 

 could be carried out as soon as the fine task from the proceeding iteration 
and preceding time slice was complete. This realization led to the concept of a data-
driven, event-based implementation of parareal. The algorithm and the data employed are 
the same, but task execution is started just as soon as the required data are available.  

Component dependencies—coarse, fine, and converge, enclosed in the three groups 
of rows enclosed by dark boarders and labeled by the bold task name in the first 
column—are summarized in Table 1 for all time slices except the first in a given 
iteration. Rows under the bold label designate the source of the dependency. The second 
through fourth columns refer to each of the three principal types of iterations described in 
the previous section. Dependencies are indicated by a darkened box in the table. These 
dependencies were extracted from the detailed descriptions in the previous section.  

 

As a simple example, consider the coarse task for the third slice,  of the second 
iteration, . The column labeled  and  in Table 1 shows the coarse 
dependences of slice , iterations  and  and the fine dependence of slice 

, iteration .  
If we assume that a simulation length  converges in  iterations, an 

approximate gain can be estimated that is sufficiently accurate to understand the scaling 
characteristics of the implementation. To derive this estimate, we assume a convergence 
history where there are no converged slices until the last iteration. For this case, the data 
dependencies lead to the sequence of tasks 

. This leads to a total 
time for the  iterations of . The resulting gain is 

  (0.2) 

Table 1. Component dependencies 
Dependencies 

for (k,i) th 
bold task 

 
and 

 

  
and  

 

  
and  

 
Dependency    i-1 1, i-1 1, i 2, i-1 2, i k-1, i k, i-1 k, i 

coarse  
coarse         

converge         
fine  

coarse         
converge         

converge  
fine         
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The event-based execution flow was implemented by using IPS event services and 
dependencies equivalent to those in Table 1. This implantation was applied to the same 
case as described in Section 2. The convergence history for the new implementation was 
the same as shown in Figure 1 for the original parareal work flow, as were the detailed 
numerical results. However, the total wall-clock simulation time decreased by  

over 50% and the processor 
utilization increased by over 
50% as presented in Figure 3  
The initial ramp to near 100% 
utilization is a result of the time 
required for all fine tasks to start, 

, while the falloff was 
caused by the lack of fine tasks 
to execute in parallel as the 
simulation converged. This 
demonstration validated the 
premise that an event-based 
parareal could have better 
performance. 
 
 
 

4. Analysis of Event-Based Parareal  
In order to understand the performance characteristics of the event-based parareal 

implementation, two studies were conducted. The first used a test simulation case for 
BETA using the fourth-order Runge-Kutta coarse solver. The second used the empirical 
convergence model that was developed in [8]. 

The test case, with  and , converged in seven iterations. Gain 
properties were varied by artificially increasing the coarse solver time,  by a “sleep” 
command in the coarse solver. These results are summarized in Figure 4 as a function of 

 with  and designating the average of, respectively, fine and coarse tasks 
in the simulation. Beta varied from less than five ( ) to almost a hundred ( ), 
encompassing the range of interest for the gain models described in Section 2. The 
measured simulation speedup times were based on the ratio of  to the simulation 
wall-clock time. The predictions of both the event-based (Eq. (0.2), 

, and sequential (Eq. (0.1) ) models are  
 
 
 
 
 

 

 
Figure 3. Processor utilization for the event-based 
parareal implenention. The processor utilization is 
now over 70%.  
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also shown in Figure 4. The measured simulation times for the event-based 
implementation show gains of over two even when the sequential model values were less 

than one. For large , as 
suggested by the modeling, the 
event-based and sequential 
models are converging to the 
same gain, , and 
are within ~30% of the measured 
values. The s at which a 50% 
reduction in gain is observed is 
consistent with  
for the event-based 
implementation and  for 
the sequential version.  

The difference between 
measured and modeled gains for 
all s is likely due to two 
factors. First, peak values of  
for each iteration are typically a 
factor of 2 or more larger than 
the average because the VODPK 
integrator adapts time steps to 
achieve a given precision. For 

both sequential and event-based implementations, peak values of  have a larger impact 
on the gain than does the average. This can most readily be seen for the sequential 
version where the time to complete fine steps for a given iteration is determined by the 
longest . The effect of peak  on the event-based algorithm is not as obvious but can 
clearly slow progress when it is that particular iteration and the slice is a critical 
dependency. The drops in processor utilization during the first two-thirds of the 
simulation in Figure 3 are almost certainly due to this phenomenon. Second, with respect 
to the sequential implementation, the number of coarse tasks is overestimated by a factor 
of about 2, because  the simple gain model assumes that  coarse tasks are needed for 
each iteration, while the actual number depends on how far convergence has progressed.  

To extend our understanding of the performance potential for event-based parareal 
from one particular run to a broad range of conditions for BETA, we used the empirical 
model developed in [8] for the convergence characteristics coarse solvers based on the 
VODPK and second- and fourth-order Runge-Kutta time-integrators. The result of this 
analysis was an expression for the number of iterations required for convergence, 

, for each of the three integrators. This empirical model was based on the 
observation that the qualitative behavior of a given coarse solver could be characterized 
by a series of slow convergence iterations (~a few slices per iteration) up until a time  
followed by a faster rate of convergence, slices per iterations, at time  with a linear 

 
Figure 4. Comparison of speedups for the sequential 
(squares) to the event-based (circles) 
implementations. Corresponding model calculations 
are shown in the dashed and dash-dot lines. The 
solid line indicates the ideal gain ( . for 
this test problem for the BETA mode lusing the  
RK4 coarse solver. The simulations had  and 

 and converged in seven iterations.  
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ramp for times between  and . Estimates for these constant coefficients were found 
from the properties of large number of runs for each of the coarse integrators. Despite the 
large uncertainties and variability in these parameters, they could still be used as a semi-
quantitative model that was sufficient to analyze convergence trends. The analysis in this 
paper uses the parameters obtained in [8]. 

The model values for  for the three coarse solvers were used in the 
approximate gain expressions presented in Sections 2, Eq. (0.1) and 3, Eq. (0.2). Two 
types of scaling for a particular coarse solver were analyzed:  weak scaling, where  is 
held fixed, and strong scaling, where the total time, , was held fixed. In both cases 

, the number of time steps, was varied. The number of processors (or groups of 
processors if the problem utilizes spatial domain decomposition) is also equal to N. 

Figure 5 presents the results of the strong-scaling model for both the sequential and 
event-based implementations. Figure 6 present the results for weak-scaling analysis. For 
all cases, the event-based implementation has substantially improved performance. For a 
600-slice simulation, strong scaling performance is three (fourth-order RK) to seven 
(VODPK) times better. More important, the improvement in performance is greatest for 
the poorest-performing solver for the sequential implementation. Thus the coarse solver 

  

Figure 5. Strong-scaling (increasing slices, 
fixed simulation time ) model 
results are presented for three coarse solvers:  
diamonds=>VODPK integrator; 
squares=>second-order Runge-Kutta; and 
circles=>fourth-order Runge-Kutta. For each 
solver, two estimates of wall-clock gain or 
speed up are shown—the lower curve for the 
standard implementation of parareal and the 
upper for the event-based algorithm.   

Figure 6. Weak-scaling (fixed  
per processor) model results are presented 
for three coarse solvers:  
diamonds=>VODPK integrator; 
squares=>second-order Runge-Kutta; and 
circles=>fourth-order Runge-Kutta.. For 
each solver, two estimates of wall-clock 
gain or speed up are shown—the lower 
curves (open symbols) for the standard 
implementation of pararal and the upper 
curves (filled symbols) for the event-based 
algorithm.   
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that would be judged as not useful (VODPK) now results in gains that that are greater 
than were found with the best coarse sequential coarse solver (fourth-order RK). The 
same behaviors are observed for the weak-scaling analysis. In addition, the optimum in 
gain previously observed when the number of slices is ~  is no longer observed. 

  
5. Dynamic Slice Addition 

The previous sections have focused on reducing the wall-clock time completing a 
simulation, albeit at the expense of compute cycles. In many cases, improvements in 
compute efficiency over the traditional parareal algorithm can be obtained. This 
possibility can be seen in Figure 1 where, in this 160-slice simulation, we see that after 
about 30 slices the convergence error changes from the 10-8 to 10-3 range to over 10-1. 
This suggests that the coarse solver is, in some sense, not effective past the  range 
and that calculations with the coarse solver and related fine solve runs are “wasted.”  In 
order to test this observation, the IPS components were modified to add additional slices 
as early  

time slices converge. These 
slices were started using the 
same initialization as 
employed to start the 
simulation as described in 
Section 2. The results of this 
modification are shown in 
Figure 7. While the simulation 
took four additional iterations 
to converge (eighteen versus 
fourteen), the computational 
work has been reduced by a 
factor of ~4. In addition, only  
30 (or a few more, depending 
on details) processor groups 
are required for minimum 
wall-clock time, as opposed to 
the 160 required for the result 
in Figure 1, thus realizing a 

factor of ~20 improvement in processor utilization. 
 
6. Summary and Future Research 

Sequential and event-based parareal algorithms have been implemented using the IPS 
framework. For this project, the target application was BETA, a model plasma turbulence 
application. However, the Python-based IPS allows development of parareal for new 
applications with a minimum of code modifications. Target applications include fusion 
transport simulations, gyrokinetic turbulence simulations, and extended MHD. 
Implementation of the event-based algorithm required only superficial modification of 
the application code used in the sequential implementation. Event-based parareal 
provides the potential for successful development of parareal to applications for which 

 
Figure 7. Convergence history for a 160-slice beta 
simulation using parareal with dynamic slice addtion.    
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previous efforts have not been successful, as well as improved performance for 
applications with successful parareal solvers. The key to this improvement is recognizing 
the data dependencies of parareal and beginning work on any task for which the data are 
available. As a result, requirements on the coarse solver are reduced from  to 

.  
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Appendix  Implementation of Parareal Using the IPS 

Implementation of parareal as described in Section 3 can be a daunting task. It, for 
example, requires a good understanding of how to manage multiple MPI communicators 
in order to control and launch the multiple executables for the fine and coarse solvers on 
different groups of processors and/or nodes. In order to reduce the programming burden 
for new parareal applications and to reduce the time for developing a successful parareal 
application, parareal was implemented using the Integrated Plasma Simulator (IPS). 

The IPS is a lightweight Python framework for large parallel computers that provides 
services for multiphysics (or, more generally, multicomponent of any simulations for 
domain) simulations with file-based communication between components [9, 10, 11]. 
The IPS manages computing resources, launches tasks, moves input and output files, 
locally archives data, and provides event services using a publish and subscribe model. 
These functions are implemented in a set of managers as displayed in Figure 8. The IPS 
is shown running on a head node as is the case for Compute-Node Linux high-
performance computers such as the Cray XT-5. (We note that the IPS, which has run on a 
wide range of systems including Cray XT-5s and “standard” Linux clusters, does not 
work on systems like the Blue Gene because of limitations on how multiple, independent, 
executables can managed.) Component executables are launched from the IPS as standard 
mpirun or aprun processes with a return to the IPS when finished. 
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Simulations are composed 
of a set of components, each of 
which implements a needed 

functionality. The needed functionality for parareal is provided by coarse, fine, and 
converge components. These components are built from Python wrappers to (typically) 
parallel MPI application codes. An additional component, the driver, is a required 
component that defines and controls the execution flow of a simulation or an algorithm. 
Each component is required to implement Init, Step, and Finalize procedures, which can 
be empty. Checkpoint and restart methods are also required if that functionality is 
desired. A configuration file is used to specify component scripts, initial data files, input 
and output files, and global and component-specific configuration parameters. Global 
parameters (that can also be set and read by any component during a run by any 
component) include the number of time slices, maximum iteration count, and 
convergence status. Local configuration parameters include processor count for MPI, 
paths to binaries and to static input files (e.g., fortran namelists), and runtime code 
parameters. 

For the conventional, sequential, parareal implementation, the driver provides an 
iteration loop in which the coarse, fine, and converge components are sequentially called. 
Within each component, loops over time slices used to execute the coarse and fine 
propagators and to test for convergence. The Resource Manager implements a task pool 
“queue” for managing compute resources in the event that processor groups are not 
currently available. Use of the task pool reduces the wall-clock gain from parareal but 
increases overall processor utilization and allows longer simulations within constrained 
resources. For the sequential parareal, first the coarse, then the fine, and finally the 
converge calculations for a given iteration were completed before proceeding to the next 
iteration. 

For the data-driven, event-based implementation, tasks (coarse, fine, or converge) 
were launched as the needed data was produced. Neither iteration nor time loops were 
used. At completion, a given task published an event whose body contains data that, for 
example, included iteration and slice indices, absolute paths to input files and, for the 
converge component, the results of the convergence test. Components subscribe to events 
on which they depend. When the first dependency is satisfied, a task is created, then, 
when all dependences are satisfied, the task is launched. In order to begin the simulation, 
required dependencies were satisfied manually as initial conditions. 

In moving from the sequential to event-based implementations, none of the 
underlying executables had to be changed. The same was true for the implementing the 
dynamic slice addition capability. 
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