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Abstract. The lattice Monte Carlo study of quantum chromodynamics (lattice
QCD) represents a tremendous investment in modern programming practices
and efficient algorithms. We report on our efforts to adapt lattice QCD methods
to other problems in many-fermion physics, in particular ultracold atoms at large
scattering lengths and graphene.

1. Introduction
Many systems in condensed matter and low-energy nuclear physics are known to be well de-
scribed by relatively simple Hamiltonians that often represent complicated, nonperturbative
many-body dynamics. Examples include graphene (whose low-energy theory is closely related
to strongly coupled quantum electrodynamics), high-Tc superconductors (described by the Hub-
bard model in two spatial dimensions), and ultracold atoms in the BCS-BEC crossover as well
as dilute neutron matter (both captured by a nonrelativistic Hamiltonian with a zero-range
interaction). While a qualitative understanding of such systems is often achievable with mean-
field methods, a reliable quantitative description, aimed at predicting critical temperatures,
couplings, and thermodynamic or transport properties, should preferentially resort to nonper-
turbative ab initio approaches such as quantum Monte Carlo (QMC), where the uncertainties
are either systematic or statistical, yet fully controllable.

During the past three decades, the field of lattice QCD has witnessed a tremendous de-
velopment toward algorithms where the scaling of the computation time with the size of the
problem is considerably improved over older, more conventional algorithms. Our aim is to
evidence the efficiency and utility of lattice QCD methods to practitioners in the condensed
matter and ultracold atom communities, as well as to provide an overview of our recent results.
In Sections 2 and 3, we discuss the application and performance of lattice QCD algorithms to
ultracold Fermi gases and graphene, respectively. Section 4 provides a concluding summary of
the physical results obtained so far.

2. From lattice QCD to ultracold Fermi gases
The starting point of studies of the equilibrium thermodynamics of classical or quantum systems
is the grand canonical partition function Z. In the case of spin-1/2 fermions with a local two-
body interaction, we have

Z ≡ Tr exp[−β(Ĥ − µN̂)] =

∫
Dσ (detM [σ])2 exp(−Sg[σ]), (1)

where Ĥ ≡ K̂+V̂ is the Hamiltonian, K̂ the kinetic energy operator, V̂ the interaction operator,
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and N̂ the particle number operator. This results from discretization of the imaginary-time
dimension of extent τ into Nτ slices, followed by a Hubbard-Stratonovich (HS) transformation
with auxiliary field σ(x, τ) to represent the interaction. The fermion matrix M is given by

M ≡





0 0 0 . . . BNτ

−B1 0 0 . . . 0
0 −B2 0 . . . 0
...

...
...

...
...

...
0 0 . . . −BNτ−2 0

0 0 . . . 0 −BNτ−1





, Bj ≡ exp(−τK) exp(−τV [σj ]), (2)

with Sg[σ] a local action that depends on the original interaction as well as on the choice of HS
transformation, as does the form of the auxiliary potential V [σ]. As our system is taken to be
spin-symmetric, M ≡ M↑ = M↓, and therefore the fermion sign problem is absent provided the

interaction V̂ is attractive. The probability that defines the Markov chain in the configuration
space of σ is then given by P [σ] = (detM [σ])2 exp(−Sg[σ]) ≡ exp(−Seff[σ]), such that the
problem of performing many-fermion QMC calculations is reduced to that of sampling the
auxiliary field σ according to P [σ] with efficient decorrelation.
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Figure 1: Timing of the φ-algorithm as
applied to the unitary Fermi gas, in log-
log scale, as a function of Nx at fixed Nτ .
Red squares show results on a single CPU
core, blue squares for 4 OpenMP threads.

A straightforward way of sampling is via the
Metropolis accept/reject algorithm, with localized
random updates of the field σ. This simple algo-
rithm is referred to as determinantal Monte Carlo
(DMC). Since random global changes have a neg-
ligible acceptance rate, DMC is not efficient at ex-
ploring the configuration space but does neverthe-
less possess a number of useful properties. For in-
stance, DMC is very fast for small lattices of spatial
extent between Nx = 4 and Nx = 8, as well as for
low-dimensional problems. Also, since DMC allows
for a two-valued discrete auxiliary field σ, disk and
memory requirements are typically small as well.

A first step toward improved performance in-
volves the hybrid Monte Carlo (HMC) algorithm.
This combines the molecular dynamics (MD) evo-
lution of σ in configuration space with a Metropo-
lis accept/reject step. The MD Hamiltonian H =
π2/2 + Seff[σ] defines equations of motion

σ̇ =
δH
δπ

= π, π̇i = −δH
δσi

≡ Fi[σ], (3)

which should be integrated between regular up-
dates of the random Gaussian momentum π using a reversible and area-preserving method.
While we have introduced a new variable π, its path integral factors out from the original
problem, such that it has no net effect on the probability density under study.

We refer to the approach where the fermion determinant enters the action Seff directly as
determinantal hybrid Monte Carlo (DHMC). This algorithm is efficient at intermediate lattice
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volumes, in part because the calculation of detM = det( + U), where U ≡
∏1

n=Nτ
Bn, scales

linearly withNτ , and in part because the evaluation of Fi[σ] involves the calculation of ( +U)−1,
which is a dense matrix no larger than N3

x ×N3
x . Because of the global MD updates, the scaling

of DHMC is superior to DMC, although the prefactor in the scaling law is larger.
At sufficiently large Nx, scaling and memory limitations make the DHMC approach increas-

ingly impractical, in which case “matrix-free” algorithms such as the “φ-algorithm” variant of
HMC may become better options. In the φ-algorithm, which is the main workhorse of modern
Lattice QCD calculations, the fermion determinant and force F [σ] are computed stochastically
using the “pseudofermion” representation

(detM [σ])2 ∝
∫

Dϕ†Dϕ exp
(
−Spf[ϕ

†, ϕ, σ]
)
, Spf =

∫
d4x ϕ†(M [σ]TM [σ])−1ϕ, (4)

for which the MD equations are obtained by substituting Seff → Sg+Spf. Since the φ-algorithm
allows for iterative conjugate gradient (CG) inversion involving the repeated application ofM [σ]
to a given vector, the storage requirements are much reduced and the scaling properties further
improved. However, since CG is sensitive to the condition number of MTM , which is consider-
ably more ill-conditioned thanM , the prefactor of the scaling law can become prohibitively large
at low temperatures (i.e. at large Nτ ). Nevertheless, this approach is promising in conjunction
with advanced preconditioning methods such as those based on Chebyshev polynomials.

In Fig. 1 we present the results of our first scaling tests. As our data indicates, precon-
ditioned HMC scales approximately as ∼ V 5/4 (the log V correction is due to the use of FFT
when applying the matrix M). Other algorithms, such as DMC or diagrammatic Monte Carlo,
scale approximately as ∼ V 3 and ∼ V 2, respectively. Figure 2 (left panel) shows our results
on the first fully nonperturbative and ab initio calculation of Tan’s contact [9] as a function
of temperature, obtained with the DHMC algorithm outlined above. In that work [10], we
determined the Tan contact was from the large momentum tail of the momentum distribution,
which we show in Fig. 2, multiplied by 3π2(k/kF )

4.

3. Graphene and lattice Monte Carlo
At low energies, graphene is described by Dirac quasiparticles interacting via an instantaneous
Coulomb interaction. The Euclidean action of this theory is SE = Sg

E + Sf
E, where

Sg
E =

1

2g2

∫
d3x dt (∂iA0)

2 (5)

is the gauge component. Here A0 is a Coulomb field in (3 + 1) dimensions, with g2 ≡ e2/ε0 for
graphene in vacuum (suspended graphene). The fermion component is

Sf
E =

Nf∑

a=1

∫
d2x dt ψ̄a D[A0] ψa, D[A0] = γ0(∂0 + iA0) + vγi∂i, i = 1, 2, (6)

with ψa a four-component Dirac field in (2 + 1) dimensions. The spinor structure accounts for
quasiparticle excitations on the two triangular sublattices, around the two inequivalent Dirac
points. In graphene monolayers, Nf = 2 owing to electronic spin, while Nf = 4 is related to a
graphene bilayer. The partition function of the low-energy theory of graphene is
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Figure 2: Physics highlights from our HMC calculations. Left: extraction of the Tan contact
from the momentum distribution of a two-component Fermi gas [10]. Right: chiral condensate
and susceptibility in the low-energy theory of graphene [8].

Z =

∫
DA0DψDψ̄ exp(−SE [ψ̄a, ψa, A0]), (7)

where SE is quadratic in the ψa. It is thus possible to integrate out the fermionic degrees of
freedom, giving an “effective” gauge action

Z =

∫
DA0 exp(−Seff[A0]), Seff[A0] = −Nf ln det(D[A0]) + Sg

E[A0], (8)

where P [A0] ≡ exp(−Seff[A0]) > 0 defines a positive definite probability measure. However,
the positivity of P breaks down in the presence of a chemical potential, as in lattice QCD. As
in the ultracold atom problem of the previous section, we may implement choose to implement
algorithms that involve the determinant directly or through a pseudofermion representation.
The latter approach is known to be the most efficient for this class of problem.

As in lattice QCD, the inclusion of dynamical fermions in graphene is a notoriously difficult
problem because of issues with chiral symmetry and fermion species doubling (for an overview,
see citeRothe, Chapter 4). The “staggered” fermion representation [2] is well suited to the
study of spontaneous chiral symmetry breaking, as it yields the correct number of degrees of
freedom while also partially preserving chiral symmetry at finite lattice spacing. The action of
a single staggered flavor is

Sf
E[χ̄, χ, θ] =

∑

n,m

χ̄nDn,m[θ]χm, (9)

where the staggered Dirac operator [8] is given by

Dn,m[θ] =
1

2
(δn+e0,m Un − δn−e0,m

U †
m) +

v

2

∑

i

ηin(δn+ei,m
− δn−ei,m

) +m0δn,m. (10)

We have determined the critical Coulomb coupling for spontaneous chiral symmetry break-
ing (i.e., gap formation) by evaluating the condensate 〈ψ̄ψ〉 as a function of β ≡ v/g2. The
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staggered lattice action does not retain the full U(4) chiral symmetry of the original graphene
action at finite lattice spacing. As shown in [4], only a subgroup U(1)×U(1) remains upon
discretization. Spontaneous condensation of χ̄χ, or equivalently the introduction of a parity
invariant mass term, reduces this symmetry to U(1). In the staggered fermion formulation, the
transition to a gapped phase is associated with this chiral symmetry-breaking pattern.

4. Summary
Recent developments in the field of lattice QCD have produced a variety of efficient algorithms
and numerical methods to tackle large-scale many-fermion problems. While these methods have
proven their worth in that field, until recently their applicability to problems in other areas,
such as condensed matter and atomic physics, or even to other problems within nuclear physics,
remained poorly understood.

Our work shows that it is possible and beneficial to apply algorithms involving HMC up-
dates to current and relevant problems in ultracold atoms and graphene, since the improved
scaling properties allow for the efficient study of large systems. Simultaneously, we have shown
that gaining access to larger system sizes provides new and valuable physical insight. Further
developments we are currently exploring include preconditioning strategies tailored to nonrela-
tivistic Hamiltonians, as well as GPU implementations of HMC.

Acknowledgments
We thank A. Bulgac, J. A. Carlson, and R. J. Furnstahl for encouragement during the early
stages of these investigations. Our work was partially supported by U.S. DOE Grants No. DE-
FG02-00ER41132 and DE-AC02-05CH11231, UNEDF SciDAC Collaboration Grant No. DE-
FC02-09ER41586 and NSF Grant No. PHY–0653312. This study was also supported in part by
the Academy of Finland through its Centers of Excellence Program (2006 - 2011), the Vilho,
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