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Abstract. Implementation details and performance tuning obfuscate the algo-
rithms in programs. In the SAIMI (Separating Algorithm and Implementation via
Programming Model Injection) project, we are investigating ways to use simpler,
more restricted programming models to orthogonally express important subcompu-
tations and express implementation details as transformations on the subcomputa-
tions. In this initial phase of the project, we are evaluating separation in existing
programming models especially with respect to look-up table, grid-based, sparse
computation and task graph programming models. In this paper, we illustrate the
general approach of the SAIMI project with a source-to-source compilation tool
called Mesa that automates most aspects of applying look-up transformations in
scientific codes; we use the CGPOP miniapp as an example geoscience code to
discuss the coupling between the discretization grid implementation details and
the communication routines that support the simulation algorithms; and we eval-
uate the ability of existing programming languages such as Cilk, TBB, CnC, and
OpenMP to represent general, dynamic task graphs that arise in sparse computa-
tions. We conclude with future directions for developing orthogonal implementation
abstractions and building on the orthogonal capabilities in existing programming
languages.

1 Introduction

Solving important scientific problems through computational modeling requires high-performance
computing. High-performance computing requires performance on individual processors and
parallel programming to take advantage of the multitude of parallel computing architectures.
Using general-purpose parallel programming models is error prone and results in code where im-
plementation details obfuscate the original algorithm. Additionally, implementation decisions
necessary for one target platform are not necessarily applicable to future platforms, therefore
requiring significant development costs when porting applications to new systems.

Implementation details are exposed in programming models in a range of ways. Declarative
programming languages seek to avoid the exposure of implementation details. This approach
avoids obfuscation due to parallelization implementation details, but it does not provide a
mechanism for the application programmer or performance programmer to take control of the
implementation. Explicit parallel programming in general-purpose programming models like
C or Fortran with MPI provide almost complete control over implementation details such as
the distribution and scheduling of data and computation, but the implementation is strongly
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coupled with the algorithm. This control and the use of the MPI interface result in good
performance portability, but the entangling of the algorithmic and implementation specifications
can lead to significant code obfuscation.

Recent programming model research and development includes programming languages and
libraries with constructs that enable the orthogonal specification of algorithms and implemen-
tation details. Examples include OpenMP [14], which provides pragmas for labeling a loop/al-
gorithm as having forall parallelism in and indicating implementation preferences; Parallel
Global Address Space (PGAS) languages such as Chapel [12, 13], which provide user-defined
distributions; and Standard Templates Adaptive Parallel Library (STAPL) [37, 5], which pro-
vide orthogonal scheduling of data structure iterators. There are also more restrictive pro-
gramming models such as the polyhedral programming model [49, 17, 40, 26, 19, 25, 9], which
enables orthogonal specification of scheduling and storage mapping within the compiler, and
MapReduce [15], which enables implementation details, such as the runtime environment, to
be specified and to evolve at runtime. Wholesale conversion of existing codes to new models is
problematic because of the magnitude of the work involved and to an initial lack of tool sup-
port. Conversion to programming models that are minimally intrusive like OpenMP is more
feasible, but the interface between algorithm and implementation specification in such models
lacks power in terms of both the algorithmic abstractions and the implementation abstractions.

In the SAIMI project, we use injectable programming models to orthogonalize program-
ming implementation decisions such as performance transformations and raise the abstraction
level for implementation specifications. An injectable programming model is a more restricted,
declarative programming model made available within the context of a more general program-
ming model such as C/C++ or Fortran. We are initially making the more restricted program-
ming models available through pragmas and/or library interfaces followed by source-to-source
transformation. We are developing injectable programming models for specifying performance
critical algorithms and optimizations such as lookup tables, stencil computations, dense and
sparse matrix computations, and task graph computations. We envision high-level, orthogo-
nal implementation abstractions that will enable application and performance programmers to
specify the implementation for each algorithm differently for each target architecture.

The SAIMI project research goals include (1) evaluating existing mechanisms for orthog-
onally specifying implementation details, (2) raising the level of abstraction for implementa-
tion specification in existing mechanisms for a set of injectable programming models, and (3)
developing libraries and preprocessors capable of composing orthogonal algorithm and imple-
mentation specifications. We evaluate the programmability and performance of our approach
on performance-critical computations in various small, medium, and large scientific computing
benchmarks written in C++ and Fortran.

Some defining characteristics of the SAIMI project are the incremental approach embodied
by injectable programming models and the concept of providing abstractions for the high-level,
orthogonal specification of implementation details. This paper presents three injectable pro-
gramming models at various stages of evaluation and development. As a demonstration of the
SAIMI concept of injectable programming models, Section 2 presents an injectable program-
ming model for the lookup table optimization that is being used to simulate the forward problem
in an interdisciplinary project for analyzing Small Angle X-ray Scattering (SAXS) data. Sec-
tion 3 overviews a geosciences miniapp called CGPOP, which we have developed as a testbed
for evaluating the separation of algorithms from the details of discretization. In Section 4, we
evaluate existing programming model constructs for specifying and executing arbitrary task
graphs that occur in sparse matrix computations.
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Table 1: Saxs performance and error statistics.
Relative error is shown for SAXS, absolute error for slope aspect.

SAXS SAXS Slope
Continuous Discrete Aspect

Original Time .434s 170s 234ns
Optimized Time .208s 24s 53ns
Performance Speedup 2.1X 7.1X 4.6X

Maximum Error 1.1X10−3% 4.0X10−3% 3.2X10−5

Average Error 7.8X10−5% 8.2X10−4% 1.0X10−6

Memory Usage 3MB 4MB 800KB

2 The SAIMI Approach (The Lookup Table Example)

The first injectable programming model developed as part of the SAIMI project addresses
mathematical expressions. The implementation details are those associated with applying a
lookup table (LUT) optimization. LUT optimization is applicable when one or more compu-
tationally expensive expressions are evaluated a significant number of times with a restricted
input domain and the application can experience some approximation error and still be con-
sidered correct. LUT optimization can reduce the computational load of scientific applications,
but it has generally been incorporated into source code by hand because of a lack of support
methodology and tools. Such manual tuning lowers programmer productivity, results in no or
only ad hoc approximation error analysis, and can obfuscate code, impacting maintainability
and adaptability. Our source-to-source compilation tool called Mesa automates the tedious and
error-prone aspects of the LUT optimization process [48] and helps the programmer guide the
critical tradeoff between application performance and application approximation error.

Figure 1 shows a comprehensive methodology for LUT optimization. Mesa automates the
steps in the methodology marked with an asterisk. In Step 1, programmers use typical perfor-
mance profiling to identify expressions in loops that may be candidates for LUT optimization,
and then the programmer marks such expressions with a pragma as can be seen in Figure 2a.
Mesa automates domain profiling (Step 2) by instrumenting a version of the application to
capture domain boundaries. LUT size selection (Step 3) is specified on the command line as
illustrated in Figure 2b, but Mesa provides detailed error analysis (Step 4) so that the pro-
grammer can try various table sizes and perform error analyses until the LUT optimization
meets the application requirements. For the small angle x-ray discrete scattering application
(SAXS discrete), Figures 3a and 3b show the tradeoff between application approximation error
and application performance that can currently be derived by running Mesa with various table
sizes and options (an example option is whether to interpolate between table entries or not).
Mesa reduces development time by automating code generation and integration (Steps 5 and
6). The comparison between the original and optimized code (Step 7) is currently manual.

We evaluated Mesa on three scientific applications developed at Colorado State University.
Our results include a 7.1× speedup for a SAXS discrete scattering application, 2.1× speedup for
SAXS continuous scattering, and 4.6× speedup for a slope aspect calculation. We find that Mesa
enables LUT optimization with less effort than do manual approaches, while tightly controlling
error. Table 1 shows the performance speedup for each application, with the maximum and
average errors introduced by the optimization. Performance was measured on an Intel Core 2
Duo E8300 running at 2.83 GHz, with a 6 MB L2 cache.
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1) Identify functions and expressions for LUT optimization.

2) Profile the domain and distribution of LUT input values.*

3) Determine the LUT size based on domain and granularity.

4) Analyze the error characteristics and memory usage of LUT. *

5) Generate structures and code to initialize and access LUT data. *

6) Integrate the generated LUT code into the application. *

7) Compare performance and accuracy of original vs. optimized.

Figure 1: Methodology for LUT optimization. Mesa automates the steps marked with an
asterisk.

// I t e r a t e atoms ( outer loop )
for (U32 atom1=0; atom1<vecAtoms . s i z e ( ) ; . . .
{

// I t e r a t e atoms (middle loop )
for (U32 atom2=atom1 ; . . .
{

// Loop on s t e p s ( inner loop )
for (U32 step=0; step<uSteps ; ++step )
{

// Combine parameters to s c a t t e r
f loat rTheta = fDi s tance ∗ fTheta ;

// Optimize subexpres s ion shown below
#pragma LUTOPTIMIZE
f In t e rmed ia t e =

s i n (4∗ r the ta ) / (4∗ r the ta ) ;
}

}
}

(a)

. /Mesa S ca t t e rOr i g i n a l . cpp
ScatterOptimized . cpp
−exhaust ive −pragma − l u t s i z e 100000

Mesa LUT opt imiza t i on s t a r t ed
Var iab le : rTheta
Lower Bound : 2 .000000 e−02
Upper Bound : 2 .000000 e+01
Granular i ty : 1 .998000 e−04
Lut s i z e ( l u t ) : 100000
Error an a l y s i s : exhaust ive
Emax : 5 .476423 e−04, Eavg : 1 .884966 e−05
Mesa LUT opt imiza t i on completed

(b)

Figure 2: (a) Indicating a candidate expression for LUT optimization with a pragma. (b)
Example of executing Mesa from the command line.

The LUT optimization improves single-core performance by navigating a tradeoff between
memory usage (the size of the lookup table) and execution time of expression evaluation. As can
be seen by inspecting the Toptimized data in Figure 3, on a single core the LUT optimization
is beneficial while the lookup table fits within mid-level cache, whose size of 6 MB is indicated

4



10
-4

10
-3

10
-2

10
-1

10
0

25
6 

K
b

51
2 

K
b

1 
M

b

2 
M

b

4 
M

b

8 
M

b

16
 M

b

32
 M

b

 0

 25

 50

 75

 100

 125

 150

 175

 200

A
p
p
li

ca
ti

o
n
 E

rr
o
r 

(P
er

ce
n
ta

g
e)

S
ca

tt
er

 P
er

fo
rm

an
ce

 (
S

ec
o
n
d
s)

Table Size (Bytes)

Error and Performance

Toriginal
Toptimized

Emaximum
Eaverage

(a)

10
-4

10
-3

10
-2

10
-1

10
0

32
 K

B

64
 K

B

12
8 

K
B

25
6 

K
B

51
2 

K
B

1 
M

B

2 
M

B

4 
M

B

8 
M

B

 0

 5

 10

 15

 20

 25

 30

 35

 40

A
p
p
li

ca
ti

o
n
 E

rr
o
r 

(P
er

ce
n
ta

g
e)

S
ca

tt
er

 P
er

fo
rm

an
ce

 (
S

ec
o
n
d
s)

Size of Tables (Bytes)

SAXS Interpolation Comparison
Error and Performance

Toptimized (Direct)
Toptimized (Interpolate)

Emaximum (Direct)
Emaximum (Interpolate)

(b)

Figure 3: (a) Performance and accuracy (SAXS discrete). (b) Performance and accuracy of
linear interpolation (SAXS discrete).

by the black vertical line. We have also been investigating this space versus time tradeoff in
the context of OpenMP parallelized versions of the SAXS discrete and continuous scattering
applications. Figure 4 shows that our optimizations scale well in the multicore environment.
We also find that the optimized version scales at least as well as the unoptimized code on up
to 24 cores on a node of a Cray XT6m. Future work includes quantifying the tradeoff between
parallelism and space more precisely.

LUT optimization is motivated by the observation that a number of applications evaluate
elementary functions repeatedly with inputs in a restricted domain. Hardware designers have
long tried to accelerate elementary functions with LUT memory and associated circuitry, as
done by Gal [18]. Frequently cited papers by Tang [46, 47] apply LUT methods to approximate
elementary functions using IEEE math. Few academic references exist on software LUTs,
but some books [38] and articles encourage the use of ad hoc techniques. A series of papers
on LUT hardware for function evaluation in FPGAs [41, 16] has led to a crossover paper by
Zhang et al. [50] that discusses hardware and software LUT methods. Zhang et al. describe
a compiler that transforms functions written in a MATLAB-like language into C/C++ code
suitable for multicore execution. Mesa performs a similar transformation in the context of
C/C++ source code using the ROSE [39] compiler infrastructure, thus allowing optimization
of entire applications.

3 Testbed for Evaluating Injectable Programming Models

Because programming models are crucial in supporting the programming of parallel machines,
the programming languages community should evaluate programming models along the produc-
tivity and performance dimensions. Recently, we proposed and published qualitative criteria
for evaluating the programmability of programming model features with respect to the extent
to which they enable the orthogonal specification of implementation details [27, 28].

To encourage the separation of algorithm and implementation details, we proposed pro-
grammer control and tangling as two qualitative measures for evaluating programming model
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Figure 4: Performance of parallel execution (SAXS applications).

constructs. Because parallel programming implementation details often obfuscate the original
algorithm and make later algorithm modifications and maintenance difficult, we believe that
parallel programming models should provide features that enable separation between algorithm
and implementation detail specifications. A similar idea was suggested in the Parallel View
from Berkeley paper [6], which suggests that programming models provide a separate interface
for application programmers and parallel implementors.

In addition to the more general qualitative measures of programmer control and tangling,
we have also developed a testbed miniapp specific to geoscience. In geoscience applications
linear algebra kernels are commonly used to find solutions to partial differential equations. The
data operated on is typically structured using a grid. However, despite the prevalence and
importance of these kernels, this code is often obfuscated by details specific to the architecture
and grid used. This obfuscation makes the code difficult to maintain and port and makes
it hard to try possible performance optimizations and/or data structure modifications. Since
many high-performance applications are maintained over several years and ported across several
different architectures, the cost associated with code maintenance can be large. The underlying
grid is also modified as scientists and mathematicians find new ways to model the Earth.
Therefore, one ongoing research project within SAIMI is investigating library interfaces for
specifying algorithms orthogonally from the grid discretization and then generating specialized
computation and communication code for specific grids.

The Parallel Ocean Program (POP) [24] is an example of an application that uses more
than one grid discretization. POP [23] was developed at Los Alamos National Laboratory and
is an important multiagency code used for global ocean modeling and is a component within the
Community Earth System Model (CESM) [1]. Between versions LANL POP 2.0 and NCAR
POP 2.1, POP was modified to include support for the tripole grid as well as the dipole grid.
This modification required rewriting large sections of code because the new boundary conditions
seen in the tripole grid affects how the stencil computation is applied to the grid as well as what
data is passed during communication.

POP’s developers would like to experiment with other types of grids as well as with new
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POP solver w/PGI [Hopper]

CGpop w/Cray [Hopper]
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CGpop  w/XLF [Frost]
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(b)

Figure 5: (a) Relative cost of the different components of the POP 0.1◦ benchmark on Kraken:
a Cray XT5. (b) Execution time in seconds for 1 day of the barotropic component of the POP
0.1◦ benchmark and the MPI-2S version of the CGPOP miniapp.

algorithms, data structures, and programming models. However, experimentation is difficult
within the context of the full application. Thus it is useful to have a smaller application that can
be modified and serve as a proxy for examining the performance and productivity impact that
changes would have on the larger application. Such an application enables POP’s developers to
ensure that performance portability of the most critical portion of the application is maintained
while also testing new algorithms, data structures, and programming models.

Benchmarks have historically served the role of acting as smaller applications that can
be modified to examine the possible effects of changes on a larger application. Benchmarks
are small to medium-sized programs that model common performance bottlenecks in existing
computational simulations. Commonly used benchmark packages include the HPCS Challenge
suite [31], NPB [8], and High-Performance Linpack [35]. Although these benchmarks are small
enough that researchers can quickly modify them or reimplement them in a new programming
model, their simplicity comes at the cost of excluding implementation details that have a signif-
icant programmability impact within the larger applications of interest. These implementation
details may impact the performance characteristics of the application or impact how easily a
new technique can be integrated into a larger application. As such, a technique may be evalu-
ated as improving performance or productivity within the benchmark but may not actually be
as productive or have the same performance impact when implemented in the larger application.

Miniapps can serve as more accurate proxies for larger applications. Miniapps are applica-
tions on the order of 1,000 lines of code, which include a simple build system, and accurately
model the performance of a larger application. Heroux et al. [20] suggest that miniapps can be
used to compare programming models and improve compilers. Our initial efforts in separating
the discretization grid from the algorithm specification in PDE solvers has involved the devel-
opment of a miniapp called CGPOP that serves as a proxy of POP. The CGPOP miniapp is
the conjugate gradient solver from LANL POP 2.0.

We focus on the conjugate gradient solver because it is the largest performance bottleneck
when POP is run on thousands of cores. In Figure 5a, we provide a breakdown of the relative
computational cost of the three different components of the POP 0.1◦ benchmark when run
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using varying numbers of cores on Kraken—a 99,072-core Cray XT5 system located at the
National Institute for Computational Science (NICS). While the relative cost of the baroclinic
component dominates at fewer than 1,000 cores, the relative contribution of the communication
intensive sections of the code, barotropic and the 3D update dominates the total cost at greater
than 1000 cores. For this reason we extracted CGPOP from the barotropic component, and
the conjugate gradient algorithm within it.

CGPOP serves as a performance proxy of POP. In Figure 5b we compare the scalability of
POP and CGPOP; note the proximity of each pair of similarly colored lines. The scalability of
POP and the CGPOP miniapp are affected in a similar manner when changes are made in the
machine and compiler used. Additionally, we examined the scalability of CGPOP and POP
across three different platforms: Hopper, a Cray XE6 located at the National Energy Research
Supercomputing Center; Frost, a Blue Gene/L located at the National Center for Atmospheric
Research (NCAR); Lynx, a Cray XT5 also located at NCAR; and Kraken, a Cray XT5 located
at NICS. The compilers we used in our examination were PGI Fortran, Cray Fortran, and XL
Fortran.

The immediate benefit of developing CGPOP is that the POP developers are able to ex-
periment with different performance optimizations and data structures. Future work includes
developing an injectable programming model that enables the expression of stencil computa-
tions and communications orthogonally from the grid discretization specification. The CGPOP
miniapp will provide a testbed for evaluating prototype injectable programming models.

4 Evaluating Task Graph Programming Constructs

Task graphs are frequently used to express coarse-grained partial parallelism and a number of
static scheduling techniques are available for implementing such task graphs [29]. The dynamic
scheduling of tile dependence graphs, which are essentially task graphs, has shown promise in
terms of the tiling of regular applications [36] and of irregular/sparse applications [43]. As part
of the SAIMI project we are developing abstractions that expose the static and/or dynamic
scheduling of task graphs. We focus on task graphs that arise because of tiling and sparse
tiling [44].

Sparse tiling is a transformation that tiles between and across loops in an irregular/sparse
computation through the use of inspector/executor strategies [32]. One of the injectable pro-
gramming models we have been developing is the Sparse Polyhedral Framework [42, 30]. The
SPF enables the expression of loops with indirect memory accesses as well as the orthogonal ex-
pression of runtime reorderings of such loops where the loop transformation is done at compile
time and inspector code is generated to perform data reordering and create input data specific
schedules at runtime. Sparse tiling is one of the transformations expressible within the SPF
injectable programming model.

Sparse tiling results in the creation of an arbitrary task graph at runtime, where each tile is
a task. Unfortunately, most existing schedulers today are optimized for one of two specific task
graph topologies, namely, DOALL, as in the OpenMP parallel for loop or fork-join as in the
Cilk spawn and sync. Task graphs for DOALL parallelism have a single entry node that spawns
a single broad layer of tasks, each of which converges back to a single exit node. Fork-join
parallelism takes the form of a task graph in the shape of a diamond. From the single entry
node, some number of tasks are spawned. Each of these tasks can spawn additional tasks and
so forth until all tasks are spawned. The lower portion of the task graph mirrors the upper
portion symmetrically as each task spawned in the upper half reconverges into its continuation
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1 . . .
2 for ( int i = f i r s t I n i t i a l T i l e I n d e x ; i <= l a s t I n i t i a l T i l e I n d e x ; i++) {
3 cilk spawn computeJacobiTi le ( t i l e [ i ] ) ;
4 }
5 cilk sync ;
6 // ta sk graph execu t ion complete

(a) Code using cilk sync command and “diamond” task graph

1 . . .
2 for ( int i = f i r s t I n i t i a l T i l e I n d e x ; i <= l a s t I n i t i a l T i l e I n d e x ; i++) {
3 cilk spawn computeJacobiTi le ( t i l e [ i ] ) ;
4 }
5 pthread mutex lock(&leafNodeMutex ) ;
6 i f ( numPendingLeafNodes > 0)
7 {
8 pthread cond wait (&terminationCond , &leafNodeMutex ) ;
9 }

10 pthread mutex unlock(&leafNodeMutex ) ;
11
12 // ta sk graph execu t ion complete

(b) Code using additional pThread synchronization and arbitrary task graph

Figure 6: Additional tangling and code introduced to detect task graph execution completion.

in the lower half. The upper half of the diamond task graph therefore performs the “fork”
function while the lower half does the “join.”

We evaluated the Cilk++ [10], OpenMP [3][34], Concurrent Collections [22], and TBB [4][21]
programming models in terms of specifying the arbitrary task graphs that result from applying
sparse tiling [45] to a sparse Jacobi computation. Most of the parallel programming models we
surveyed assume a specific graph topology. For example, for Cilk++ and the OpenMP task
model, the underlying assumption is that fork-join parallelism is being implemented [7]. The
synchronization philosophy embedded in these programming models and the explicit synchro-
nization constructs exposed to the programmer assume that each task will spawn other tasks,
wait for them to complete, and then proceed with some type of reduction or data combining
continuation. These models also support DOALL parallelism for parallel loops.

Concurrent Collections is designed to support dataflow pipeline parallelism, in which data
and synchronization information flow dynamically through a statically specified pipeline [11].
Since the task graphs due to sparse tiling are generated at runtime, a general task pipeline
must be statically implemented in CnC into which the specific dynamic tasks can be submitted
for execution. Threading Building Blocks supports DOALL and fork-join parallelism and now
supports task graphs directly in a community preview release [2]. We also implemented a
pThreads scheduler specifically for executing task graphs, which takes advantage of the lower-
level building blocks made available in the pThreads model.

Figure 6(a) shows a code snippet in Cilk++ that launches the initially available tasks from
a task graph by submitting them to the underlying work-stealing scheduler. This code launches
the initially ready entry tasks in the task graph. Similar code runs after each task completes
and is used to launch successor tasks for which all dependencies are met. As can be seen, using
this interface is quite simple and involves very few lines of code. The OMP Task model is
similar, with pragmas used in place of the cilk keywords. Unfortunately, this approach suffers
from performance problems. If the code is left as-is, then a barrier is invoked by the cilk sync
keyword after every task that waits for all the successors to complete. Each spawned successor
task must likewise wait for all its transitive children, resulting in several levels of cascaded
barriers and reduced performance. This is a direct consequence of the model expecting fork-
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Figure 7: Runtime using different parallel programming models for sparse Jacobi on the matrix
Sphere150. Shorter bars are better.

join parallelism, which follows from this execution pattern.
To eliminate the nested barriers, a master thread could execute all available tasks, then

wait at a single barrier. When these tasks completed, the next wave of tasks could then be
launched. This approach reduces the barrier depth to a single barrier but also introduces
unnecessary synchronization between independent tasks. It also serializes the launching of new
tasks onto a single thread. We refer to this approach as frontier scheduling.

A third approach is to remove the synchronization statement, e.g. cilk sync, altogether.
Each task launches any of its successors that are ready and then terminates. The difficulty
with this approach is that the master thread, now without a continuation stack, is unaware
of when the overall graph execution is complete. This problem can be resolved but requires
synchronization and communication facilities that are not available within the respective pro-
gramming models. Partial code for this purpose is shown in Figure 6(b). In our experimental
results we use the third approach for OpenMP and Cilk++ and call it dynamic scheduling.
Graph execution completion is communicated to the main thread using pThreads mutexes and
condition variables. This approach reduces the call stack and barrier overhead and still al-
lows tasks to execute without artificial synchronization, but it greatly increases the program
complexity and leads to tangling between the parallel implementation and the algorithm code.

Figure 7 shows the runtime of the sparse Jacobi solver using different parallel programming
models as the task count increases. Execution time is in seconds on a Core i7 960 four-core
processor. The results shown in this graph suggest two findings. First, an inadequate degree
of parallelism leads to underutilization of even a modest number of cores. This is unsurprising
and accounts for the long runtimes seen with a low number of tiles. Second, as the tile count
and the average degree of parallelism increase, the runtime also increases. This is due to an
increase in overhead. When a frontier schedule is used for OpenMP, we observe only a minor
increase in runtime at high tile counts. This increase suggests that much of the overhead is in
synchronization and completion detection, rather than in assigning work to the threads. Others
have found similar overhead costs [33]. The higher execution times for Cilk using a frontier
schedule compared with a dynamic schedule can be attributed to the mismatch between frontier
scheduling and a work-first scheduling policy. When a single master thread spawns all child
tasks under a work-first policy, the other cores must steal their tasks from that thread, leading
to some inefficiency.
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We believe that task graphs are a powerful and practical abstraction for the representation
of parallel scientific code. They encourage the separation of algorithm code from parallel im-
plementation code. Unfortunately, none of the programming models we investigated provided
a natural and succinct way to express arbitrary task graphs while also providing performance.
We are examining the proposed TBB graph model, which appears promising. We are also inves-
tigating techniques for improving data locality and task scheduling for task graph computation.

5 Conclusion

In the SAIMI project, the main approach we use for orthogonally specifying implementation
details is to inject smaller programming models into full applications and specify implementa-
tion details as transformations on the injected programs. This paper presents specific examples
of the SAIMI approach and describes how we are evaluating existing programming constructs
in terms of the separation of algorithms and implementation details. The Mesa tool devel-
oped to sem-automate the application of look-up table optimizations (Section 2) prototypes
the pragma mechanism and realizes the expensive expression programming model as an in-
jectable programming model. The other specific programming models that we plan to turn into
injectable programming models include the polyhedral model applied to PDE discretizations
(Section 3), the sparse polyhedral model for the specification and transformation of sparse com-
putations, and the specification of dynamic task graphs that result from such transformations
(Section 4). The development of evaluation criteria and evaluation of existing programming
model mechanisms for the separation of algorithms and implementation details provides us
ideas for developing injectable programming models and ways to evaluate future contributions
within the context of the SAIMI project.
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