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Abstract

Using our recently developed high-order accurate
Maxwell solver, NEKCEM, we carried out longitudinal
wakefield calculations for a 9-cell TESLA cavity structure
in 3D. Indirect method is used for wake potential calcula-
tions. Computational results with NEKCEM are compared
with those of GdfidL.

INTRODUCTION

NEKCEM uses a spectral element discontinuous
Galerkin (SEDG) method based on a domain decompo-
sition approach using spectral-element discretizations on
Gauss-Lobatto-Legendre grids with body-conforming hex-
ahedral meshes [1]. The numerical scheme is designed
to ensure high-order spectral accuracy [2, 4], using the
discontinuous Galerkin form with boundary conditions
weakly enforced through a flux term between elements.
Concerns related to implementation on wake potential cal-
culations are discussed, and wake potential calculations
with indirect method by NEKCEM [3] compared with the
results of the finite difference time-domain code GdfidL.

FORMULATIONS

The governing equations to study beam dynamics and
numerical discretizations in space and time are described
as follows.

Maxwell’s Equations

We begin with the Maxwell equations:

µ
∂H

∂t
= −∇× E, ε

∂E

∂t
= ∇× H − J (1)

∇ · E =
ρ

ε
, ∇ · H = 0, (2)

where the current sourceJ = (0, 0, Jz) is defined for an
ultrarelativistic on-axis Gaussian beam moving in thez-
direction:

Jz = cρ(x, y)ρ(z − ct), (3)
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√
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(
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Conservation Form

We rewrite equation (1) into a conservation form

Q
∂q

∂t
+ ∇ · F (q) = −J, (6)

where

q = (Hx, Hy, Hz , Ex, Ey, Ez)
T , (7)

Q = diag(µ, µ, µ, ε, ε, ε), (8)

and the fluxF (q) is defined in the following form:





0 Ez −Ey 0 −Hz Hy

−Ez 0 Ex Hz 0 −Hx

Ey −Ex 0 −Hy Hx 0





T

. (9)

Numerical Discretizations

We seek a numerical solutionqN, satisfying

(

Q
∂qN

∂t
+ ∇ · F (qN) + J, φ

)

Ωe

= (n̂ · [F − F ∗], φ)∂Ωe ,

(10)
whereφ = Li(x) is a local discontinuous test function and
the numerical fluxF ∗ is defined as in [2]. In the computa-
tional domainΩ as a set of body-conforming, nonoverlap-
ping hexahedral meshesΩe, we define the local solution
qN on eachΩe as

qN(x, t) =
N

∑

j=0

qj(t)Lj(x), (11)

whereqj(t) is the solution atN grid pointsxj on Ωe, and
Lj(x) is the three-dimensional Legendre Lagrange interpo-
lation polynomial associated with theN nodes [1]. Plug-
ging (11) into the weak formulation (10) and taking Gauss
quadrature for the integration, we obtain a semi-discrete
formulation of the scheme. Then we apply the fourth-order
Runge-Kutta method for time integration.

Initial and Boundary Conditions

Initial fields are computed numerically for the ingoing
pipe. For boundary conditions, we apply the uniaxial per-
fectly matched layer (UPML) [5] in the longitudinal direc-
tion and the perfectly electric conducting (PEC) boundary
[2] in the transverse direction.



COMPUTATIONAL RESULTS

We demonstrate a 9-cell TESLA mesh and its wake po-
tentials for various bunch sizes at different radii. Results
are compared to GdfidL for the bunch sizeσz = 5 mm.
Parallel efficiency of NEKCEM is also discussed.

TESLA Cavity with a Spectral-Element Mesh

We built a 9-cell TESLA mesh shown in Figure 1, fol-
lowing [6]. In the transverse direction, we scale meshes for
a radius greater thanr = R mm (Figure 1 shows the case
r = 15 mm). Then we compute wake potentials along the
mesh surface atr = R in three dimensions.

Figure 1: 9-cell TESLA mesh (top); spectral-element dis-
cretization (bottom).

Wake Potential

We compute the longitudinal wake potential defined as

Wz(x, y, s) = − 1

Q

∫

∞

−∞

Ez(x, y, z, t)dz, (12)

whereQ is the total charge of a beam ands = ct−z. Then
we obtain wake potential atr = R from defining

W 1

z (s) =
1

2πR

∫

∂ΩR

Wz(x, y, s)dxdy, (13)

where∂ΩR represents the surface atr = R.
Figure 2 shows wake potentials for different bunch sizes

with a fixed polynomial degreeN = 5 and the number of
elementsE = 1, 368. The behaviors of the wake potential
profiles show reasonable profiles for bunch sizes3 mm, 4
mm, and5 mm.

Since we use an indirect method for our wake potential
calculations, we examine how the wake potential profiles
change at different radii. Figure 3 shows wake potential
profiles at radius26.0 mm and radius19.25 mm for bunch
size5 mm with polynomial degree,N = 5 and number of
elementE = 1, 368. A discrepancy for these cases at radii
26.0 mm and19.25 mm is observed on the unstructured
grids, unlike the case for the finite difference grids. Further
study is needed with relatively even and finer meshes for
the unstructured mesh case.

Figure 4 compared Gdfidl and SEDG for the wake po-
tentials with bunch size5 mm. For SEDG, the dashed line
shows the case forN = 7 and solid line forN = 5. A dis-
crepancy is observed in the results of GdfidL and SEDG.
Further study must be carried out with different meshes and
resolutions for the unstructured mesh case.
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Figure 2: Wake potentials on the surface atr = 26.0 mm
for σz = 3 mm,4 mm, and5 mm andσr = 1 mm.

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
−2.5

−2

−1.5

−1

−0.5

0
x 10

11

 S (m)

 V
/C

r= 19.25 mm
r= 26.00 mm

Figure 3: Wake potentials on the surface atr = 26.0 mm
andr = 19.25 mm forσz = 5 mm andσr = 1 mm.

Parallel Efficiency

Figure 5 shows the scaling of 3D computations of
NEKCEM. The vertical axis is CPU time per time step,
per grid point, per processor. The number of elements is
fixed atE = 512 (83). The polynomial degrees vary from
N = 5 to 10. Simulations were run on Argonne’s Linux
cluster, Jazz, with processorsP = 2k, k = 0, . . . , 7. The
coarsest computations involven = 64, 000 points, which
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Figure 4: Wake potentials on the surface atr = 26.0mm
for σz = 5 mm andσr = 1 mm on the meshes.

yield roughly 100 points per processor forP = 128. Each
curve shows some loss of parallel efficiency as the number
of processors is increased: the CPU time increases from
right (P = 1) to left (P = 128) on the graph. Below ap-
proximately 3,000 to 10,000 points per processor, the CPU
time actuallydecreaseswith superlinear speedup.
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Figure 5: CPU time per grid point per time step per proces-
sor for 512 spectral elements withN ranging from 5 to 10,
as a function of number of points per processor on Jazz.

CONCLUSIONS

We have applied the spectral-element discontinuous
Galerkin method to simulate beam dynamics within a
three-dimensional 9-cell TESLA cavity. The wake poten-
tial calculations show resonable profiles depending on the
bunch size. We compared the wake potential calculations
with Gdfidl results. We observe some discrepancy in the
wake potential profiles of SEDG compared to the cases
in GdfidL. Further study will be carried out regarding the
mesh refinement and resolution as a first step toward one-
picosecond bunch simulations.
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