
Objectives

•• Quantify the spectral characteristics (length and time scales) of 
the most energetic internal gravity waves emitted by the turbulent 
wake of a sphere, towed in a linearly stratified fluid, using 
implicit large eddy simulation at oceanographically relevant 
Reynolds and internal Froude numbers (Re= UD/ν=5,000 and 
100,000, Fr= 2U/ND=4, 16, 64 where U, D, N, ν are the towing 
speed, sphere diameter, Brunt Vaisala frequency and the 
kinematic viscosity of the fluid, respectively). 

• Estimate the 3D propagation angles (polar and azimuth), the 
phase and group velocities of the internal gravity waves.

• Estimate the amplitude of the waves both close to the source 
(edge of the turbulent wake) and in the far field; and assess their 
potential for nonlinear steepening and breaking.

• Estimate the flux of wave energy and determine its importance 
for the volume-averaged turbulent kinetic energy budget of the 
wake.
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Fig.2 Hövmoller (Depth-time) diagram of the 

horizontal divergence                                           

field, at x/D=15 for  (a) Re=5K, Fr=4; (b) Re=100K, 

Fr=4. Note that the center of the coordinate system is 

at the geometric center of the “water tank” and that 

time is normalized by the Brunt Vaisala period (1/N).
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Summary of the results

•Polar angles in the [θ=27-55°] range while azimuthal 
angles in the [φ=13-55°] range, in general agreement 
with studies of waves emitted from turbulent mixed 
regions.

• Steeper waves at higher Reynolds and Froude 
numbers. 

• More complex and persistent wave field at high 
Reynolds numbers.

•Highly, spatially as well as temporally localized wave 
field. 

•Spanwise wave-lengths, obtained from averaging the 
Fourier spectrum, are overestimated.

• Need for wavelet transform to accurately determine 
the wave spectra and to understand scale distribution in 
space and time.
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Problem set-up  
� Bottom Wall/Top Free Surface (and Lateral/Vertical 
Absorbing Sponge Layers).

�Domain Dimensions:  26 ⅔D × 26 ⅔D × 12D
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Fig.1 Problem setup: sphere is towed 
from left to right and the “observation 
window” is in a stationary reference 
frame in a “water tank”.
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Fig.6 (a) Cutaway view in the modulus of the 2D non-
directional Arc wavelet transform of  fig.5-(b) at the 
scale containing the maximum energy (b) Plane-
averaged energy of the transform as a function of scale 
(note that the scale is converted into an equivalent 
Fourier mode and the associated wave-length, 
normalized by the sphere diameter, is plotted).

Fig.3 2D Fourier spectrum of  depth-
time diagrams extracted at thirteen 
equally spaced down-stream 
locations for the Re=5k, Fr=4 case. 
The peak of the spectrum occurs at 
ω/N=0.6995(propagation angle θ
=45.6°)and vertical wavelength 
λz=1.5 -2D.

Fig.4  Comparison of the wave steepness 
Aξ/λx (isopycnal displacement divided 
by the horizontal wave length) to the 
theoretical instability limits of 
Sutherland et al. (Re=5K, Fr=4, Aξ/λx  
=0.005, 4%;Re=5K, Fr=16, Aξ/λx  
=0.01, 7%;Re=100K, Fr=4, Aξ/λx  
=0.0145, 8% )

Fig.5 Horizontal divergence field for 
Re=100K, Fr=4 at Nt=20on a (a) 
X(streamwise)-Y(spanwise) plane at z/D=2; 
(b) X(streamwize)-Z(depth) plane at y/D=2. 
Notice the intense wave emission of  groups 
of spatially localized wave packets at high 
Re.
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