
Fork-Join and Data-Driven Execution Models on
Multi-Core Architectures:
Case Study of the FMM

Abdelhalim Amer1, Naoya Maruyama2, Miquel Pericàs1, Kenjiro Taura3,
Rio Yokota4, and Satoshi Matsuoka1

1 Tokyo Institute of Technology, Tokyo, Japan
2 RIKEN, Kobe, Japan

3 The University of Tokyo, Tokyo, Japan
4 KAUST, Saudi Arabia

Abstract. Extracting maximum performance of multi-core architectures
is a difficult task primarily due to bandwidth limitations of the memory
subsystem and its complex hierarchy. In this work, we study the im-
plications of fork-join and data-driven execution models on this type of
architecture at the level of task parallelism. For this purpose, we use a
highly optimized fork-join based implementation of the FMM and extend
it to a data-driven implementation using a distributed task scheduling
approach. This study exposes some limitations of the conventional fork-
join implementation in terms of synchronization overheads. We find that
these are not negligible and their elimination by the data-driven method,
with a careful data locality strategy, was beneficial. Experimental evalua-
tion of both methods on state-of-the-art multi-socket multi-core architec-
tures showed up to 22% speed-ups of the data-driven approach compared
to the original method. We demonstrate that a data-driven execution of
FMM not only improves performance by avoiding global synchronization
overheads but also reduces the memory-bandwidth pressure caused by
memory-intensive computations.

1 Introduction

Hardware manufacturers now focus on multi-core and many-core technologies as
a way to increase performance and make use of the continually increasing num-
ber of transistors. The multi-core road-map provides a slowly increasing num-
ber of processing units with each new generation, while maintaining high single
thread performance thanks to their sophisticated control logic, out-of-order exe-
cution, and their complex memory hierarchy. However, this architectural design
leads to unprecedented programming difficulties to extract their potential due
mainly to its memory subsystem. Non Uniform Memory Access (NUMA), mem-
ory bandwidth limitations, and complex memory hierarchies are key properties
that hinder programmer productivity.

In order to exploit parallel architectures, different execution models can be
adopted. In a fork-join model, independent tasks run concurrently while task

dependencies are ensured by global synchronization barriers. Data-driven (also
called data-flow) models have been proposed in order to avoid global synchroniza-
tions and improve resources exploitation. However, proponents of the fork-join
model argue that data-flow models have worse memory behavior. As a result,
fork-join and data-driven methods have their trade-offs, and the achievable per-
formance will depend both on the algorithm and the target architecture.

In the present work, we study these execution models on state-of-the-art
multi-core architectures by using the Fast Multipole Method (FMM). We choose
the FMM, given its wide usage in many scientific domains such as astrophysics[1],
electrodynamics[2], and fluid dynamics[3]. Furthermore, FMMs are composed
of heterogeneous computations following a complex execution flow. Moreover,
we rely on one of the fastest FMM codes and its highly tuned OpenMP fork-
join parallel implementation [4][5]. To implement a data-driven execution, there
are many runtime schedulers or programming models which have the ability to
express task dependencies and perform an asynchronous execution. StarPU[6],
OmpSs[7], and Quark[8] are examples of such tools. However, we choose to imple-
ment our data-driven FMM using the lightweight thread library MassiveThreads
[9]. The low overhead, flexibility, and load-balancing mechanism of this library let
us implement an efficient fine-grain data-driven FMM which uses a distributed
scheduling approach.

We summarize our contributions and findings as follows:

– We implement a novel thread-based data-driven FMM by using a source
centric approach and efficiently managing the task dependencies using a
distributed scheduling approach. We further reduce data movements by ex-
ploiting the tree nature of the FMM data-structures and using sub-tree based
working sets per thread.

– We perform an in-depth analysis of the original implementation which reveals
that at large scale the often neglected stages at smaller scale consume more
time than the usually compute intensive ones.

– Our evaluation on state-of-the art x86 multi-core architectures, showed that
the data locality issues of the data-driven execution are not significant, and
when eliminating the synchronization overheads, this method achieved up
to 22% speed-ups over the original implementation.

– We also found that the data-driven approach can reduce localized high mem-
ory bandwidth stress by spreading the memory traffic along the execution.
Moreover, we prove that the memory bound nature of one of the kernels
is not only due to its low arithmetic intensity but also bound by remote
memory transfers and a non-unit-stride memory access pattern.

The rest of the paper is organized as follows: Section 2 introduces the Kernel
Independent FMM and its different computational stages. Then, we discuss our
data-driven implementation in Section 3. We describe the configuration of our
tests and the details of the target multi-core machines in Section 4. In Section
5, we evaluate and analyze both execution models on the target machines. In
Section 6, we discuss related work and we conclude in Section 7.

2 The Fast Multipole Method

Nbody problems can be encountered in many disciplines such as mathematical
physics, machine learning, approximation theory, etc. The problem is how to
efficiently evaluate pairwise interactions between N bodies. It can be formally
described as follows:

f(xi) =

N∑
j=1

K(xi, yj)s(yj), i = [1..N] (1)

where f(xi) is the potential at the target xi resulting from the sources yj , s the
source density, and K the interaction kernel. A direct computation results in a
O(N2) complexity which makes it very expensive for large problem sizes. First
attempts towards a faster method brings the complexity to O(NLogN) like the
Barnes-Hut method[10]. The FMM was proposed as an even faster solution that
uses a rapidly convergent method achieving a O(N) complexity [11].

Most of FMMs rely on analytic expansions to evaluate pairwise interactions.
Analytical expansions are problem dependent, not always available, and difficult
to build. In this work we use the Kernel-Independent FMM (KIFMM) developed
by Ying et al. which relies only on kernel evaluations, thus enabling FMMs to
a wider range of engineering and scientific problems [12][13]. In KIFMM, the
domain is represented by an octree of cells, where interaction lists are built for
each cell following Greengard notation [14], namely: U-list, V-list, W-list, and
X-list. The KIFMM implements the force evaluation through the following large
stages: U-list, Upward, V-list, X-list, W-list, and Downward. These stages are
synchronized by global barriers, are embarrassingly parallel, and traverse the
tree cells independently (for the list computations) or level-by-level (Upward
and Downward). We distinguish two independent flows of computation: the near
field direct evaluation represented by the U-list computation, and the far-field
approximation starting from the Upward stage, computing V-list, W-list, and
X-list stages and finishing by the Downward stage. We note that the W-list and
X-list computations are negligible for a uniform distribution of bodies.

3 Data-driven implementation

In this section we discuss the implementation of our data-driven solution. That
is, the flow of execution goes from the sources to the targets where the far-field
and direct evaluation computations are merged into a single flow by starting the
Upward and the direct evaluation at the same time.

3.1 From target centric to source centric

In KIFMM, the data structures are built from a target centric point of view, thus
these data structures need to be rebuilt from a source centric view to enable a
data-driven execution. Although in theory if a cell A interacts with cell B, B

will interact with A whether symmetrically (U and V lists) or dually (W and X
lists), in practice it depends on how a cell’s neighbors are determined. Indeed,
a cell’s interaction lists are only built around a neighborhood, and in KIFMM
this neighborhood does not ensure bidirectional interactions between two cells. In
order to maintain a correct behavior of the algorithm in a data-driven execution,
we compute these lists from a source point of view.

3.2 Thread-based data-driven implementation

The dependencies in the data-driven execution can be seen as a producer-
consumer synchronization problem as shown in the simplified FMM far-field
computation task dependency graph in Figure 1.(a). In our implementation,
each task is aware of the tasks that depend on it and may trigger their execution
upon termination. Moreover, the task dependencies are satisfied using a combi-
nation of recursive calls and atomic counters. For instance, an atomic counter
is used at the Down task dependency in Figure 1.(a) which is updated by other
Down tasks or V tasks. In the following we give an example on how a V-list task
is executed for a source cell (src) after it was called by an Up task:

void* V (src){

for(trg in Vlist(src)) //Compute the contribution of src

{ to all the target cells that

compute_V(trg,src); depend on it

trg.down_counter++; //Atomic incrementation of

the synchronization counter

/* Test if all dependencies are satisfied */

if(trg.down_counter = nb_input_depend(trg))

create_task(Down, trg); //Start Down computation.

}

}

}

This pseudo-code shows the V-list and Downward computation tasks (V and
Down resp.) and the target’s synchronization counter (trg.down counter) be-
tween them. In the Massivethreads library, tasks are embedded in lightweight
threads scheduled to be executed by workers. Each worker is an OS-thread and
has a private queue of ready tasks which is managed by a LIFO (Last In First
Out) scheduler and a FIFO (First In First Out) work stealing policy between
workers is adopted. As a result, the Down task will be executed first and the V

task goes at the front of the worker’s ready queue. We note that the creation of
tasks is incremental and done at the worker level, while the first created tasks,
which are situated at the back of the ready queue, may be stolen by other work-
ers ensuring good load-balancing. Since each worker is scheduling the tasks to
be executed independently from the others and uses a private task queue, this
method results in a distributed scheduling scheme avoiding a centralized sched-
uler that will constitute a potential bottleneck. We note that, being oblivious
of which stage in KIFMM, contributions from many cells may be reduced at a
target cell. While this is naturally serialized in the original target approach, in

our source approach, we serialize these updates by using the locks provided by
the lightweight thread library.

Up Up Up Up

Down Down Down Down

Down Down

Up Up

V V

V V VV

Sources

Targets

(a)

Loop, Bottom-Up

Recursive, Top-Down

1 2 4 5

5

1 2 3 4

3

1 2 3 4

5

1 2 3 4

5

(b)

Fig. 1. (a) Simplified FMM far-field computation task dependencies. (b) Simple exam-
ple of the Upward tasks executed by two workers: white for the first worker and gray
for a second worker. The numbering shows a possible task execution order.

3.3 Effects of the data-driven FMM on data locality

The dependency between a V and a Down task, as described in Section 3.2,
corresponds to a read after write hazard and results in temporal data reuse.
Such data reuse can be observed along the paths going from sources to targets.
However assessing the spatial data reuse is more subtle since it depends on how
the tasks are scheduled. First, one may implement the task graph of Figure 1.(a)
by traversing the leaf boxes and spawning the Upward and V-list tasks. This
method requires synchronization counters where each Upward task atomically
increments its parent’s counter upon termination, and triggers the Upward task
of its parent if it is the last child. In addition, workers will likely access non-
contiguous cells in the tree. Indeed, the serial code to create all the leaf tasks is
also considered as a task which will be preempted and put in the worker ’s ready
queue. A second worker will steal that task and create the second leaf task and
so on. As a result, the workers will access randomly the data as shown by the
upper part of Figure 1.(b).

To overcome this issue, we use a top-down recursive algorithm to spawn
the tasks as shown in the lower part of Figure 1.(b). In this approach, the work
stealing happens in the upper levels of the tree and results in a sub-tree working-
set per worker, thus, ensuring a better spatial and temporal locality and avoiding
additional synchronization variables.

4 Test-bed configuration

We choose to follow the same input problems as in [4]. That is, we simulate the
evaluation of a single step with 4 million bodies following two distributions: a unit
cube uniform and an elliptical non-uniform distribution. As for the interaction
kernel we use the Laplace kernel. For each target machine, we manually tune
the maximum number of bodies per cell parameter. We only consider double-
precision computation because of its higher pressure on the memory subsystem
and the document space limitations. As for the target architectures, we select
representatives of NUMA multi-core architectures, with a 2 socket Intel Sandy-
Bridge-EP, a 4 socket Intel Nehalem-EX, and a 4 socket 8 NUMA-nodes AMD
Magny-Cours with their detailed specifications given in Table 1.

Table 1. Target machine specifications. We report the memory bandwidth as the
maximum value achieved by the Stream benchmark [15]

Sandy-Bridge-EP Nehalem-EX Magny-Cours

Processor Xeon E5-2620 Xeon X7550 Opteron 6172
CPU Frequency (Ghz) 2.0 2.0 2.1
Sockets 2 4 4
NUMA-Nodes 2 4 8
#Cores/NUMA-Nodes 6 8 6
L3 Cache size (MB) 15 18 6-1
Memory BW (MB/s) 52590.4 68827.3 74720.4
Compiler GCC 4.4.6 ICC 11.1 GCC 4.4.5

5 Performance evaluation

In this section we will conduct a performance analysis of the original KIFMM
design approach as described in [4] and [5]. However we do not consider the inter-
mediate and advanced tuning techniques introduced in [5], as these techniques
can also be adapted for a data-driven execution. Our methodology is guided by
the high-level knowledge of the application and also relying on hardware per-
formance monitoring tools. For the latter purpose, we use the Vampir tool-set
[16][17] combined with native hardware counters accessible through the PAPI
library [18]. In addition, we use the VTune tool to report memory-bandwidth
measurements on the Sandy-Bridge-EP machine [19].

5.1 FMM stages at large scale

It is well known in the FMM literature that the U-list and V-list computations
dominate the serial execution time. However, after parallelization, not all of the
stages scale in the same way, and the dominant stages at larger scale may differ.

To verify our assumptions, we run strong scaling simulations using the original
implementation on the Magny-Cours machine and we report the percentage of
execution time taken by each stage as shown in Figure 2. These results were
reported using high resolution timers without tracing the execution in order to
avoid unnecessary overheads. We observe that although the U-list stage takes
the longest time when running sequentially, at full concurrency it takes the
smallest amount of time while the opposite is observed for the other stages.
In the following section, we shed light on the reasons behind this disparity in
parallel efficiency of the stages while performing a deep comparative analysis of
both FMM implementations on the target machines.

1 2 4 8 16 24 32 48

#Cores

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

(a) Uniform distribution

1 2 4 8 16 24 32 48

#Cores

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e
Downward
X-list
W-list
V-list
U-list
Upward

(b) Elliptical distribution

Fig. 2. Percentage of execution time for each stage on a the Magny-Cours machine for
uniform and elliptical distributions.

5.2 Comparative analysis

To decrease the negative effects of NUMA in the data-driven execution, we use
the numactl command to interleave the memory allocation on the NUMA-nodes
where there exists a MassiveThreads worker. For both implementations, the OS-
threads are scattered across the sockets and bound to the cores to optimize the
memory bandwidth. Figure 3 shows the strong scaling of each implementation
on each machine using both distributions and indicates an overall better scaling
of the data-driven execution. However we observe that both implementations
exhibit very limited speed-ups after using more than half the cores. In particular,
the Magny-Cours machine has the worst scaling likely due to a smaller last level
cache. Also, for the elliptical distribution, there is a 22%, 18%, and 10% speed-
up of the data-driven execution over fork-join when using half of the cores on
the Sandy-Bridge-EP, Nehalem-EX, and Magny-Cours machine, respectively. To
better understand this scaling disparity, a deeper analysis of the latter case is
performed as it showed the greatest gap between the two methods.

We record statistics for each stage and also for the total force evaluation as
shown in Table 2. The computation times do not include scheduling and syn-

0 2 4 6 8 10 12

Cores

0

4

8

12

16

20

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(a) Sandy-Bridge-EP

0 8 16 24 32

Cores

0

4

8

12

16

20

24

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(b) Nehalem-EX

0 8 16 24 32 40 48

Cores

0

8

16

24

32

40

48

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(c) Magny-Cours

0 2 4 6 8 10 12

Cores

0

4

8

12

16

20

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(d) Sandy-Bridge-EP

0 8 16 24 32

Cores

0

4

8

12

16

20

24

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(e) Nehalem-EX

0 8 16 24 32 40 48

Cores

0

8

16

24

32

E
xe

cu
ti

o
n
 T

im
e
 [

s]

OMP DD Linear

(f) Magny-Cours

Fig. 3. Strong scaling of the OpenMP fork-join (OMP) and the data-driven (DD)
implementations for uniform (a,b,c) and elliptical (d,e,f) distributions. To better ap-
preciate the scaling results we added a linear scaling plot.

chronization overheads thus, the differences between the methods are only due
to data movements. We used native counters rather than PAPI preset counters
which were not enough to gather the information of interest. Native counters are
machine dependent, thus we follow the guidelines of the hardware manufacturers
to derive our metrics for the Magny-Cours [20] and the Sandy-Bridge-EP [21]
machines. However, to the best of our knowledge, similar guidelines are not avail-
able for the Nehalem-EX machine, thus we do not report its memory-bandwidth
measurements.

We can observe that the data-driven computation time is close to that of the
original implementation, indicating that the synchronization overheads elimi-
nated by our method did not detrimentally affect the data locality. In this ex-
periment we observed improvements of 14%, 17.3%, and 14% resp. for the data-
driven which deviate slightly from the above mentioned speed-ups due likely to
tracing overheads and operating system noise.

We notice that our method ensures a better locality for the Upward computa-
tions, which hides the slower V-list execution time. In order to verify the locality
benefit of using sub-tree based working-sets, a similar approach was implemented
for the Upward stage using the fork-join model by manually partitioning the tree
among the threads. The results, as reported in the last row of Table 2, show that
the computation runs faster at the cost of a very large synchronization overhead.
We also observe that most of the synchronization overheads stem from the X-list
and W-list computations. This is not surprising since these computations exhibit

Table 2. Computation time (without scheduling and synchronization overheads),
OpenMP synchronization overhead, average bandwidth consumption, and relative com-
putation time of the data-driven execution per machine for the elliptical distribution
running on half the cores. Note that important information is highlighted. Abbrevi-
ations: DD (Data-Driven), SB (Sandy-Bridge-EP), NH (Nehalem-EX), MC (Magny-
Cours), and N/A (Not Available).

Comput. Time(s) Sync. Overhead(%) Bandwidth(GB/s) DD Relative Time(%)

SB NH MC SB NH MC SB NH MC SB NH MC

U-list 27 30.5 38.5 7 14.8 14 0.1 N/A 0.4 -2.96 -2.30 -11.69
Upward 9.56 15.7 43.2 1.2 0.2 7.36 1.2 N/A 0.68 -4.60 17.20 44.44
V-list 13.42 24.7 36.7 1.8 8 1.34 6 N/A 6.8 -8.05 -10.12 -32.15
W-list 7.3 8.05 10.67 56.7 62 61 0.1 N/A 0.2 0.00 -4.60 -7.78
X-list 7 7.96 15 29.4 25.5 24 0.1 N/A 0.38 -2.86 -3.27 23.00
Downward 5.9 14.9 51.9 2.1 0.2 1.9 1.8 N/A 0.4 0.00 -0.54 1.54

Total OpenMP 70.18 101.8 195.9 15.6 18.8 15 1.3 N/A 1.8 -3.59 -1.19 3.22
Data-Driven 72.7 103 190 0 0 0 2.7 N/A 4.4
Upward static 9.32 13.4 18.58 55 24.5 45.3

the highest variation in the work per cell and results in high load-imbalance. An
attempt to fix this by means of a dynamic or a guided OpenMP scheduler re-
sulted in worsening the data locality and increasing the OpenMP scheduling
overhead leading to a longer execution time. This validates our strategy which
achieves a better trade-off between locality and synchronization overhead.

For a uniform distribution, we observed less synchronization overheads, a
worse data locality, and more bandwidth consumption, due to a larger V-list
computation, which reduces the effectiveness of the data-driven execution.

5.3 Analysis of the memory bandwidth consumption

According to the memory bandwidth measurements of Table 2, most of the mem-
ory traffic comes from the V-list stage which is known to be memory bound. The
memory behavior of this computation can be explained as follows: V-list target-
source interactions can be seen as a sparse matrix pattern with high spatial
locality and temporal reuse regions at the diagonal [5]. These regions are limited
(roughly half of the total sources for a uniform distribution) while the rest of
the sources are streamed in a non-unit-stride fashion. In addition to the source
cells, V-list uses translation vectors, which are also accessed in a non-unit-stride
pattern, and further increases the working-set size. We conclude that the V-
list bandwidth is consumed by streaming a large working-set following mostly
a non unit-stride memory access pattern. Furthermore, reading the sources and
translation vectors in a NUMA-aware fashion is not guaranteed.

The data-driven execution of FMM resulted in a homogeneous memory band-
width consumption rather than concentrated only in the V-list computation.
Thus, on a machine with a low memory bandwidth, this execution model will
help reduce localized high memory traffic and the performance may improve as
long as the overall data locality is not severely hindered. However, for our target

machines this was not observed when comparing the V-list bandwidth in Table
2 with the Stream bandwidth in Table 1 for each machine. The limited scaling
of V-list can be explained by the Roofline model [22]. We draw the Roofline plot
for the the Sandy-Bridge-EP machine along with the performance achieved by U
and V-list computations at full concurrency in Figure 4. V-list has a low arith-
metic intensity, as opposed to the compute bound U-list, a mixture of unit-stride
and non-unit-stride memory accesses, and also local and remote DRAM accesses.
Hence, V-list is partially affected by each memory ceiling in the Roofline plot
which explains the limited achievable bandwidth and the performance.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 0.25 1 4 16 64 256

Pe
rf

o
rm

a
n
ce

 (
G

Fl
o
p

s/
s)

Arithmetic Intensity (Flops/Byte)

Pe
ak

 st
re

am
 b

an
dwid

th

NUMA

Stri
de=

64 B
yt

es

Peak performance

Only SSE (not AVX)

V
-l

is
t

U
-l

is
t

Fig. 4. Roofline of the Sandy-Bridge-EP machine. The NUMA memory ceiling was
obtained using the Stream benchmark with only remote accesses, which was then aug-
mented with 64 bytes strided accesses to plot the stride ceiling. We use SSE vector in-
structions and do not exploit AVX instructions which halves the computational power.
The arithmetic intensity of the computations were derived from machine counters

6 Related work

Data-driven execution of FMM is not novel. Yokota et al. [23] proposed a data-
driven execution of FMM in order to overcome load-balancing issues. Agullo
et al. proposed to pipeline the FMM computations on heterogeneous architec-
tures over a runtime [24]. Pericàs et al. implemented a data-driven execution
of ExaFMM, a fast open-source FMM [25]. Although these works used a data-
driven approach to implement the FMM, their objectives were to load-balance
the work among the computational units. Our work also achieves this goal, pro-
poses a novel distributed scheduling scheme, and further presents an in-depth
comparison with a fork-join execution model. Using also the MassiveThreads li-
brary, Taura et al. described parallel recursions as an alternative to parallel loops
for implementing ExaFMM [26]. Our methodology can be applied to this work
in order to evaluate the implications of using recursions to implement task par-
allelism. Towards understanding the performance of multi-core machines, some

authors used stencil-computation and sparse matrix-vector multiplication ker-
nels and optimized them for state-of-the-art multi-core architectures[27] [28].
These works use small kernels as benchmarks while going deeper in architec-
tural details in order to get insight into performance trade-offs. In our work, we
use FMM, a sizable algorithm which uses multiple kernels, as a benchmark to
get insight into the performance of different execution models.

7 Conclusion and future work

In this work, we study multi-core architectures’ performance given a fork-join
and a data-driven execution models. We implemented a data-driven execution of
the FMM using a distributed scheduling approach and observed improvements
of up to 22% in execution time as compared to the fork-join approach. We
concluded that for an algorithm such as a FMM, a data-driven execution is
more suitable on our target machines as trading-off the inferior data locality by
removing the synchronization overheads was beneficial. The benefit of the data-
driven execution grows at scale reaching the best speed-ups with half of the cores,
after which both methods are limited by the scalability of the memory intensive
kernel. This kernel is not limited by the memory bandwidth in our experiments,
but it is rather a combination of low arithmetic intensity and a sparse NUMA
pattern that reduces the achievable bandwidth. This work can be extended to
analyze the effects of task-coarsening and adapting the advanced optimizations
applied to the original OpenMP implementation [5]. Our preliminary attempts
in task-coarsening, by aggregating the work of leaf siblings in the tree, resulted
in an average 5% speed-up, which encourages pursuing this direction.

References

1. Dehnen., W.: A hierarchical o(n) force calculation algorithm. Journal of Compu-
tational Physics 179(1) (2002) 2742

2. S. Chaillat, M.B., Semblat, J.F.: A multi-level fast multipole bem for 3-d elasto-
dynamics in the frequency domain. Computer Methods in Applied Mechanics and
Engineering 197 (2008) 42334249

3. Yokota, R., Narumi, T., Barba, L.A., Yasuoka, K.: Petascale turbulence simulation
using a highly parallel fast multipole method. (2011)

4. Chandramowlishwaran, A., Williams, S., Oliker, L., Lashuk, I., Biros, G., Vuduc,
R.: Optimizing and tuning the fast multipole method for state-of-the-art multicore
architectures. In: Parallel Distributed Processing (IPDPS), 2010 IEEE Interna-
tional Symposium on. (april 2010) 1 –12

5. Chandramowlishwaran, A., Madduri, K., Vuduc, R.: Diagnosis, tuning, and re-
design for multicore performance: A case study of the fast multipole method. In:
Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. SC ’10, Washington, DC,
USA, IEEE Computer Society (2010) 1–12

6. Augonnet, C., Thibault, S., Namyst, R.: StarPU: a Runtime System for Scheduling
Tasks over Accelerator-Based Multicore Machines. Rapport de recherche RR-7240,
INRIA (March 2010)

7. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Processing Letters (2011) 173–193

8. YarKhan, A., K.J.D.J.: Quark users’ guide: Queueing and runtime for kernels.
Technical report, University of Tennessee Innovative Computing Laboratory (April
2011)

9. http://code.google.com/p/massivethreads/

10. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096) (December 1986) 446–449

11. Greengard, L.F.: The rapid evaluation of potential fields in particle systems. PhD
thesis, New Haven, CT, USA (1987) AAI8727216.

12. Ying, L., Biros, G., Zorin, D., Langston, H.: A new parallel kernel-independent
fast multipole method. In: Supercomputing, 2003 ACM/IEEE Conference. (nov.
2003) 14

13. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algo-
rithm in two and three dimensions (2003)

14. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems.
Volume 52. MIT Press (1988)

15. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture TCCA Newsletter (1995) 19–25

16. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir Performance Analysis Tool-Set. In Resch, M.,
Keller, R., Himmler, V., Krammer, B., Schulz, A., eds.: Tools for High Performance
Computing. Springer Berlin Heidelberg (2008) 139–155

17. Brunst, H., Knüpfer, A.: Vampir. In: Encyclopedia of Parallel Computing. Springer
(October 2011)

18. http://icl.cs.utk.edu/PAPI/

19. http://software.intel.com/en-us/intel-vtune-amplifier-xe

20. Drongowski, P.J.: Basic performance measurements for amd athlontm 64, amd
opterontm and amd phenomtm processors. (25 September 2008)

21. : Intel xeon processor e5-2600 product family uncore performance monitoring
guide. (March 2012)

22. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52 (April 2009) 65–76

23. Ltaief, H., Yokota, R.: Data-driven execution of fast multipole methods. (2012)
24. Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., Takahashi, T.:

Pipelining the fast multipole method over a runtime system. (2012)
25. Pericas, M., Amer, A., Fukuda, K., Maruyama, N., Yokota, R., Matsuoka, S.: To-

wards a dataflow fmm using the ompss programming model. 136th IPSJ Conference
on High Performance Computing

26. Taura, K., Yokota, R., Maruyama, N.: A task parallelism meets fast multipole
methods. In: Proceedings of SCALA’12. (November 2012)

27. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization and
performance modeling of stencil computations on modern microprocessors (2009)

28. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In:
Proceedings of the 2007 ACM/IEEE conference on Supercomputing. SC ’07, New
York, NY, USA, ACM (2007) 38:1–38:12

http://code.google.com/p/massivethreads/
http://icl.cs.utk.edu/PAPI/
http://software.intel.com/en-us/intel-vtune-amplifier-xe

	Fork-Join and Data-Driven Execution Models on Multi-Core Architectures:Case Study of the FMM

