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Dynamic Irregular Methods 

§  CharacterisBcs	
–  Irregular	data	access	paMerns	
–  Complex	flow	control	
–  Imbalanced	workloads	
–  PaMerns,	flows,	and	workloads	known	at	run-Bme	

§  Challenges	
–  Inherent	parallelism,	but	difficult	to	exploit	with	regular	parallel	

methods	(e.g.	parallel	loops)	

§  Scalability	requirements	on	modern	mulBcore	systems	
–  Fine-grained	concurrency	
–  Avoid/reduce	bulk-synchronizaBon	
–  Data	locality	incenBves	
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Parallelization Methods Landscape 

§  High	parallel	slackness	(informally):	Parallel	work	>>	P	(number	of	processors)	
–  Over	decomposiBon	

§  Run>me	costs:	work	unit	management,	dependency	tracking,	…	
§  Locality	opportunity:	amenable	to	locality	opBmizaBons	

–  Loop	Bling;	NUMA-awareness	
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•  Parallel	Slackness	
•  RunBme	Costs	•  Data-Locality	

OpportuniBes	

Bulk-Synchronous 
Coarse-Grained 

Bulk-Synchronous 
Fine-Grained 

Async Tasks 
Coarse-Grained 

Async Tasks 
Fine-Grained 
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Overly	simplified	classificaBon	(naïve)	

Goal:	Characterize	parallelizaBon	methods	for	
dynamic	irregular	methods	using	FMM	as	use-case		



Fast Multipole Methods (FMM) 

§  Solve	N-Body	problems	
§  O(N)	complexity	
§  Dynamic	irregular	method	
§  ApplicaBons	in	several	domains	
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Fluid	Dynamics:	
Petascale	turbulence	
simulaBon	using	a	highly	
parallel	fast	mulBpole	
method	on	GPUs	(2012)	

Electro-Dynamics:	MulB-
Level	Fast	MulBpole	BEM	for	3-D	
Elastodynamics,	Computer	
Methods	in	Applied	Mechanics	
and	Engineering	197	(2008)	

Blood-Flow:	
Petascale	direct	
numerical	simulaBon	
of	blood	flow	on	
200k	cores	and	
heterogeneous	
architectures,	SC	
2010	

N-Body	Problem	
O(N2)	interac>ons	

IWOMP	2016,	12th	Interna>onal	Workshop	on	OpenMP,	Oct	05-07,	2016	



Kernel-Independent FMM: Domain Decomposition 
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Building interaction 
lists, U, V, X, and W  
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Kernel-Independent FMM: Data Structures 
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•  U:	6,22,24,…	
•  V:		21,23,…	
•  X:		12,18,…	
•  W:	43,44,…	

1) Meta Data 

2) Computational Data 

Interaction lists 

Source bodies 
Target bodies 
Equivalent Density 
Check surface 

….... 
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1D breadth-first representation of the tree 



Far-field	computa>on	fine-
grained	task	graph	

Rela>ve	data	structures	
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Source	Nodes	

Source	Upward	Equivalent	

Target	Downward	Check	

Target	Nodes	

KI-FMM Computational Patterns (1/2) 
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																																					DAG	
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Ellip>cal	body	distribu>on	

V-List	computa>onal	pa^ern	
adjacency	matrix	

KI-FMM Computational Patterns (2/2) 

•  Each	point	is	a	pointwise	product	
•  Loads	96KB	
•  Does	16K	DP	floaBng	point	ops	

§  Most	fine-grained	tasks	operate	on	
single	(src,	trg)	pair	of	boxes	

§  Various	types	of	computaBon	
–  Pairwise	interacBons	(U-list,	
upward,	…)	

–  DGEMMs	(upward,	downward)	
–  FFTs	(V-list)	
–  Pointwise	products	(V-list)	
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Bulk-Synchronous	[1]		 Fine-Grained	Data-Driven	[2]	

[1]	Chandramowlishwaran,	Aparna,	et	al.	"OpBmizing	and	tuning	the	fast	mulBpole	method	for	state-of-the-art	mulBcore	architectures."	
Parallel	&	Distributed	Processing	(IPDPS),	2010	IEEE	InternaBonal	Symposium	on.	IEEE,	2010.,	IPDPS	2010	
[2]	Amer,	Abdelhalim,	et	al.	"Fork-Join	and	Data-Driven	ExecuBon	Models	on	MulB-core	Architectures:	Case	Study	of	the	FMM."	
SupercompuBng.	Springer	Berlin	Heidelberg,	2013.	

Kernel Independent FMM Implementations 
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MassiThreads	lightweight	
thread	(Task)	

OpenMP	barrier	
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Bulk-Synchronous	=	target-centric	 Fine-Grained	Data-Driven	=	source-centric		

1D Source- vs. Target-Centric Patterns 
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AMD Magny-Cours 
(Hotchips 2009 presentation) 

Scalability Collapse 
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+ GCC 4.9.2 
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§  Data-Driven	effecBvely	
eliminates	idleness		

§  Improves	tree-producer-
consumer	data	reuse	

§  Makes	things	worse	for	
communicaBon	
intensive	kernel	(V)	

Parallel Slackness & Data Locality Tradeoffs 

Data 
movement  

Significant idleness from 
bulk-synchronous steps 

and static scheduling  
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Static vs. Dynamic Scheduling in Bulk-Synchronous 
void * V-list-phase (){ 
   // Traverse all target nodes in parallel 
   # pragma omp parallel for schedule ( OMP_SCHED ) 
   for ( trg =0; trg < trgNodeMax ; trg ++){ 
      // Accumulate the contribution of all  
      // source nodes into the target 
      for ( src in Vlist ( trg )) 
        compute_V ( trg , src ); 
   } 
} // Implicit Barrier Synchronization 

Static 

Dynamic 

IWOMP	2016,	12th	Interna>onal	Workshop	on	OpenMP,	Oct	05-07,	2016	 13 



Optimizing for Cache First 
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V-list	and	U-list	arithme>c	intensity	(with	
respect	to	DRAM	accesses)	on	the	roofline	
model	of	Sandy	Bridge	EP		

§  Facts	on	a	2-socket	Sandy	Bridge	EP	
–  64B	strided	memory	accesses	drop	
BW	by	4x	

–  Remote	memory	accesses	drop	BW	
by	2x	

§  Rule	of	thumb:	opBmize	for	cache	
before	opBmizing	for	NUMA	

§  NUMA-awareness	in	KIFMM	is	
challenging	
–  Difficulty	to	keep	data	local	across	

stages	

§  Current	implementaBon:	some	data	
is	first-touched	by	a	single	thread,	
other	touched	by	mulBple	threads	
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Data	Par>>oning	has	to	take	into	
account	the	tree	data	structure		 2D	V-list	Par>>oning		

2D Tiling of Computational Patterns 
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§  Two	main	goals	
1.  Spawn	work	units	with	high	data	locality	potenBal	
2.  Control	granularity	(unlike	the	lightweight	thread	implementaBon)	

15 



void * V-list-phase (){ 
   // Traverse all target blocks in parallel 
   # pragma omp parallel for schedule ( dynamic ) 
   for ( i =0; i < trgNodeMax ; i += BS ){  
      // Traverse all source blocks 
      for ( j =0; j < srcNodeMax ; j += BS ){ 
         // Traverse the targets in the block 
         for ( trg = i ; trg < BS ; trg ++){ 
           // Traverse the sources in the block 
           for ( src = j ; src < BS ; src ++){ 
            // Accumulate the contribution of all 
            // source nodes into the target 
             if ( src in Vlist ( trg )) 
               compute_V ( trg , src ); 
           } 
         } 
      } 
   } // Implicit Barrier Synchronization 
} 

Block Size 

Tiled Dynamic Bulk-Synchronous Implementation 

16 

§  2-dimensional	Bling	of	each	parallel	loop		
§  Same	Ble	(block)	size	across	all	loops	
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Tuning	the	Block	Size	(BS)	

Tuning and Analysis of the Tiled Bulk-Synchronous Method 
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Tiled Implementation with OpenMP Tasks 
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# define DATA_OUT eff_val [beg_eval : trg_stride] 
# define DATA_IN eff_den [beg_eden : src_stride] 
void * V - list - phase ( trg ){ 
  // Traverse all target blocks 
  for ( i =0; i < trgNodeMax ; i += BS ) { 
    int trg_stride = eff_trg_size * BS ; 
    int beg_eval = trg_stride * i ; 
    // Traverse all source blocks 
    for ( j =0; j < srcNodeMax ; j += BS ) { 
      int src_stride = eff_src_size * BS ; 
      int beg_eden = src_stride * j ; 
      # pragma omp task depend (out:DATA_OUT) depend(in: DATA_IN ) 
        // Traverse the target V-list blocks 
        for (n=i; n < i+BS; n+=VBS) 
          // Traverse the source V-list blocks 
          for (m=j; m < j+BS; m+=VBS) 
            // Traverse targets in a V-list block 
            for (trg=n; trg < n+VBS; trg ++) 
              // Traverse sources in a V-list block 
              for (src=m; src < m+VBS; src ++) 
                // Accumulate the contribution of all 
                // source nodes into the target 
                  if (src in Vlist(trg)) 
                    compute_V(trg ,src); 
     }}} 

Async 
Task 

IN/OUT dependencies 
on array sections 

Second	>ling	factor	for	V-list	
to	reduce	cache-thrashing	

Executed within 
#pragma omp parallel 
{ 
   #pragma omp single 
} 



2D Tuning of the Data-Driven OpenMP Tasking Method 
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Sandy Bridge EP (24 threads) Magny-Cours (48 threads)  

§  222	bodies;	q	=	256	
§  Full	concurrency	
§  Compilers:	ICC	15	(Sandy	Bridge)	and	GCC	4.9.2	(Magny-Cours)	
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Profiling	Parallel	Idleness	
(metric	=	concurrently	running	tasks)	

	

Profiling	Work-Time	Infla>on	(WTI)	[1]	
															r				=	

[1] Stephen L. Olivier, Bronis R. De Supinski, Martin Schulz, and Jan F. Prins. Characterizing and mitigating work 
time inflation in task parallel programs. Scientific Programming, 21(3):123–136, 2013. 

Profiling Idleness and Work-Time Inflation on Sandy Bridge EP 
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Direct Kernel 
Pointwise Kernel 
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§  222	bodies;	q	=	256	
§  Full	concurrency	
§  Compilers:	ICC	15	(Sandy	Bridge)	

and	GCC	4.9.2	(Magny-Cours)	



bulk-stat bulk-dyn fg-data-driven bulk-dyn-tiled data-driven-tiled 

Strong Scaling Performance Comparison 
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Sandy Bridge EP Magny-Cours 
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§  222	bodies;	q	=	256	
§  Full	concurrency	

§  Compilers:	ICC	15	(Sandy	Bridge)	
and	GCC	4.9.2	(Magny-Cours)	

48 

48 

S>ll	not	100%	parallel	efficiency!	
NUMA	effects	were	ignored!	



Portability of the Tuning Parameter Values 
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bulk-stat bulk-dyn fg-data-driven bulk-dyn-tiled data-driven-tiled 

§  Sandy	Bridge	EP;	16	Threads	
§  Tiled	implementaBons	tuned	for	222	bodies	and	q	=	256	

Lack of parallelism 
Tuning parameter 
Values still hold 
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Scalability != Efficiency 
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§  Sandy	Bridge	EP;	16	Threads	
§  Large	problem:	224	bodies	 Fine-grained data-driven and 

dynamic bulk-synchronous scale 
well but overall execution is slower 
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§  Scalability	
–  A	dynamic	approach	requires	data-locality	incenBves	to	promote	data	

reuse	and	reduce	cache	thrashing	
–  Tiling	computaBonal	paMerns	proved	to	be	successful	with	proper	tuning	
–  Tuning	parameter	values	are	fairly	portable	across	input	problem	sizes	as	

long	as	parallel	slackness	is	not	hindered	significantly	

§  Programmability	
–  Manual	Bling	is	gross	and	error	prone!	
–  Sparse	data	dependencies	are	difficult	to	express	
–  Array	secBons	express	unnecessary	denpendencies	

§  Looking	ahead	
–  Ideally,	the	runBme	should	cluster	fine-grained	tasks	to	opBmize	for	

locality	
–  Fine	grained	tasks	imply	high	scheduling	overhead	which	makes	it	very	

difficult	

Lessons Learnt 
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