
Analysis of Data Reuse in Task-Parallel Runtimes

Miquel Pericàs1, Abdelhalim Amer2, Kenjiro Taura3, and Satoshi Matsuoka1,2

1 Global Scientific Information and Computing Center
Tokyo Institute of Technology

pericas.m.aa@m.titech.ac.jp, matsu@is.titech.ac.jp
2 Department of Mathematical and Computing Sciences

Tokyo Institute of Technology
amer@matsulab.is.titech.ac.jp

3 Graduate School of Information Science and Technology
The University of Tokyo

tau@eidos.ic.i.u-tokyo.ac.jp

Abstract. This paper proposes a methodology to study the data reuse
quality of task-parallel runtimes. We introduce an coarse-grain version
of the reuse distance method called Kernel Reuse Distance (KRD). The
metric is a low-overhead alternative designed to analyze data reuse at the
socket level while minimizing perturbation to the parallel schedule. Using
the KRD metric we show that reuse depends considerably on the system
configuration (sockets, cores) and on the runtime scheduler. Furthermore,
we correlate KRD with hardware metrics such as cache misses and work
time inflation. Overall we found that KRD can be used effectively to
assess data reuse in parallel applications. The study also revealed that
several current runtimes suffer from severe bottlenecks at scale which
often dominate performance.

1 Introduction and Background

Tasking has become an established technique to program multicore systems.
This programming scheme supports many variations of parallel control, includ-
ing nested, recursive and irregular parallelism. Task-parallel models, such as
OpenMP [1], Threading Building Blocks [2] or Cilk [3], allow the developer to
annotate functions or code blocks for asynchronous task execution and add syn-
chronization points to process the children tasks’ outputs. An underlying runtime
tracks dependencies among tasks and schedules ready tasks to physical cores.

1.1 Scalability of Runtimes

Although the functionality of a runtime for homogeneous multicore systems may
seem simple, developing efficient and scalable implementations is challenging.
Design decisions can adversely affect execution time:

Runtime Overheads Operations such as task creation, synchronization or schedul-
ing introduce non-work cycles that can considerably increase execution time.
Runtime pressure grows with the number of workers and with finer task granu-
larities. Contention can easily occur at scale. Runtimes should be as lightweight
as possible to avoid such bottlenecks.

Scheduling Constraints Runtimes may place restrictions on task scheduling to
simplify implementation or to set bounds on resource consumption. For example,
some runtimes never migrate tasks once they have started. Some runtimes also
limit the depth of nesting to avoid unlimited stack growth. Such constraints
limit dynamic parallelism which manifests as non-work overheads in the form of
processor idle time.

Resource Sharing Scheduling policies, such as work-first [4] or its dual help-
first, and work stealing [5] techniques, determine the execution order of tasks.
The resulting schedule defines the order of work kernels and their sharing of
resources. A task order that ignores data locality issues can increase cache misses
and generate work time inflation (WTI) [6].

In this work we use the term non-work overheads for any kind of processor
activity that is not directly related to the program’s main functionality, which is
carried out by work kernels and the control necessary to setup their execution.
The non-work overheads include runtime execution and parallel idleness [7].
Tasks may include several kernels, but the kernels themselves do not generate any
new tasks. OVRN and WTIN (Non-work Overheads and Work Time Inflation
at N cores) are two measurable scaling factors that describe the increase of
execution time on N cores (TN) relative to the ideal parallel execution time (T1

N).
OVRN quantifies the increase in the total running time of all threads (TN ×N)
relative to the total time during which threads are performing work (WorkN).
WTIN quantifies the increase of the total work time at N cores (WorkN) relative
to the work time of the serial execution (Work1):

TN =
T1

N
×OVRN ×WTIN (1)

OVRN =
TN ×N

WorkN
(2)

WTIN =
WorkN
Work1

(3)

Using this formulation, the speed-up on N cores becomes:

Speed-UpN =
T1

TN
=

N

OVRN ×WTIN
(4)

1.2 Performance Tools

Application developers are often unaware of such issues and are then surprised
by the bad performance of their applications as they scale to many cores. Quality
tools are needed to detect these problems. Profilers and tracers provide insight
into non-work overheads [7–10] by quantifying load imbalance and runtime ac-
tivity overhead. Scheduling constraints are more difficult to analyze, since they
relate to algorithmic decisions inside the runtimes. Similarly, caching problems
caused by scheduling decisions may be hard to identify. Low data locality ex-
ploitation in users’ code, on the other hand, is a well known topic addressed by
several tools [11–13].

This paper focuses on the problem of understanding caching problems in-
troduced by the runtime scheduler in task-parallel applications. To analyze the
impact of schedulers on data reuse we propose a methodology based on the con-
cept of the reuse distance [14]. By analyzing the reuse distance observed at each
last level cache, the metric allows to make a system-level assessment on the reuse
performance of different runtimes.

1.3 Contributions

This paper makes the following contributions: 1) We describe the implementation
of the Kernel Reuse Distance (KRD), a metric based on to the reuse distance
targeting the analysis of temporal locality in task-parallel applications. 2) Using
KRD we evaluate the temporal locality of two benchmarks using four schedulers.
Our analysis reveals that differences in reuse increase with the number of cores
and sockets. 3) We study the correlation between the KRD metric and hardware
metrics such as cache misses and work time inflation. As part of this research
we also observed that, at scale, performance and work time inflation are often
dominated by runtime bottlenecks.

This paper is organized as follows: Section 2 sets the scenario by analyzing
the scalability of two benchmark applications. Section 3 describes the KRD met-
ric and its implementation. The metric is applied in Section 4 to observe how
temporal locality is influenced by runtime schedulers and to study its correla-
tion with performance metrics. We conclude in Sections 5 and 6 by discussing
weaknesses of the approach and by summarizing the main conclusions.

2 Case Study: Matrix Multiplication and the Fast
Multipole Method

The development of KRD is motivated with a scalability study of two codes:
Matrix Multiplication (MATMUL) and the Fast Multipole Method (FMM).

2.1 Benchmarks

The MATMUL code is a SIMD-optimized divide-and-conquer implementation
which includes a task parallel implementation based on Cilk-like spawn and sync

constructs [4]. The code recursively bisects the matrices until all three subma-
trices A, B and C fit in the L1 cache. For the experiment we use input matrices
of size 4096×4096, which translates into 64MB per matrix (single precision). On
our test environment (described below) the granularity of each task (kernel) is
about 17 microseconds.

The Fast Multipole Method is based on the exaFMM -dev code developed by
Rio Yokota [15]. The FMM algorithm contains multiple steps. We focus only
on the dominant phase: the dual tree traversal, which includes the two main
kernels: M2L (multipole-to-local) and P2P (particle-to-particle). We run one
FMM timestep on 1 million particles organized as a plummer distribution. The
multipole expansion coefficient is set to 5 and the number of particles per leaf
box is 32. The tree traversal phase is also parallelized by a divide and conquer
approach [16], and uses the same Cilk-like constructs as MATMUL. The FMM
kernels are quite small, with each call to M2L only 500 nanoseconds. To avoid
excessive overhead the recursion stops when less than 300 bodies remain under
the current subtree, yielding multiple kernels per task. On our test system, the
average size of one task is 3.25 microseconds.

2.2 Experimental Infrastructure

We benchmark the codes on a 4-socket x86-64 server featuring 4× Intel Xeon
E7-4807 (Westmere-EX) processors, each with 6 cores clocked at 1.86GHz. The
cores have a 32KB L1 data cache (8-way set associative) and a 256KB L2 cache
(8-way). The six cores share a 18MB last level cache (L3) with 16 ways. Hyper-
threading is not used. When scaling to multiple cores, we first allocate all the
cores in one socket and then fill the cores from a different socket. All codes were
compiled using gcc version 4.7. The research platform runs a Linux distribution
with kernel version 2.6.32.

The Cilk-like constructs are translated into API calls for three runtimes,
identified as follows:

MTH : MassiveThreads [17,18] is a lightweight task-parallel library that features
a work-first scheduler, per-core LIFO task queues, and a random work stealer
similar to the MIT-Cilk design.

TBB : Threading Building Blocks [2, 19] is a C++ template library for task
parallelism with a help-first approach, per-core LIFO task queues and random
work stealer. Although TBB supports thread affinities [20], we do not use this
feature in order to compare the same code. We use version tbb41_20130116oss.

QTH : Qthread [21–23] is a lightweight threading package that implements a
help-first scheduler. Qthread adds a new level to the task queues’ hierarchy
called shepherds. Shepherds can be assigned per socket to create a shared LIFO
task queue among the workers (i.e. cores) of the socket. The goal is to improve
the use of the shared cache. We refer to this configuration as QThread/Socket.
We also test a configuration with one shepherd per core, we which identify as

 0

 4

 8

 12

 16

 20

 24

 1 2 4 6 12 18 24

S
pe

ed
-U

p

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Linear

 0

 4

 8

 12

 16

 20

 24

 1 2 4 6 12 18 24

S
pe

ed
-U

p

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Linear

(a) MATMUL (b) FMM

Fig. 1. Speed-ups

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 4 6 12 18 24

N
on

-W
or

k
O

ve
rh

ea
ds

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 2 4 6 12 18 24

N
on

-W
or

k
O

ve
rh

ea
ds

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

(a) MATMUL (b) FMM

Fig. 2. Non-Work Overheads

QThread/Core. Qthread also has a bulk work-stealer. By default it attempts to
steal 50% of the victim’s workload. The qthread version we use is 1.9.

2.3 Scalability Analysis

The applications were manually instrumented with our own profiling library,
which we describe later. This library measures execution times, work time in-
flation and non-work overheads. Figures 1, 2 and 3 show the speed-ups and
non-work overheads (OVRN) for the two applications and four schedulers when
scaling from 1 to 24 cores. We also show the product of the speed-up and over-
head normalized by the number of cores. Using the earlier equation we derive
(Speed-UpN × OVRN/N) = 1/WTIN . The product is thus a measure of the
speed-down caused by work time inflation.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 2 4 6 12 18 24

N
or

m
al

iz
ed

 S
pe

ed
-U

p
x

O
ve

rh
ea

d
P

ro
du

ct

Number of Cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1 2 4 6 12 18 24

N
or

m
al

iz
ed

 S
pe

ed
-U

p
x

O
ve

rh
ea

d
P

ro
du

ct

Number of cores

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

(a) MATMUL (b) FMM

Fig. 3. Speed-up Overhead Product

The figures show that scalability of these applications is highly dependent
on the runtime. Using MassiveThreads, speed-ups of up to 21× and 18× are
achieved for MATMUL and FMM at 24 cores, respectively. TBB displays very
good scaling until the first socket is filled, but performance degrades at higher
core counts. Qthreads performance is already degraded in the single socket sce-
nario. However, it scales better than TBB for multiple sockets.

These results are highly correlated with the non-work overheads. MassiveThreads
is the only runtime that does not suffer from a large increase, with 30% over-
head in the worst case. The other runtimes suffer about 2-4× higher overheads
at high core counts. Both Matmul and FMM have small task sizes, which Mas-
siveThreads is designed to handle efficiently. Qthread’s single core overheads
demonstrate that it is more heavy and suffers under fine-grained parallelism.
However, scaling to higher cores reveals just a smooth degradation. TBB’s over-
heads are lower than MassiveThreads for a single socket but increase fast for
multiple sockets. The QTH/Socket overheads are consistently larger than those
of QTH/Core. QTH/Socket features a per-socket shared LIFO task queue which
is accessed by all workers in a shepherd. The frequency of accesses to the queue
is proportional to the number of workers sharing it and inversely proportional
to the average task size. For small task sizes and large number of workers this
method is likely to suffer from contention.

The third plot shows the Speed-Up × Non-work Overhead product normalized
by the number of cores. In the ideal case this metric should yield 1.0. A value
below 1.0 indicates work time inflation. The plots show that work time inflation
is an important issue, contributing a further performance reduction of up to 20%
in the worst case (FMM with TBB). Since kernels never block, WTI can only be
attributed to destructive resource sharing. This effect is mainly observed as an
increased number of cache misses and/or increased memory access latencies. Two
factors can cause this: 1) When the memory subsystem or system interconnect
is overloaded, average memory access latency increases. In addition, runtime

bottlenecks -such as excessive contention on a global lock- can steal bus cycles
from the memory subsystem which further contribute to increase latencies. 2) A
change in the work time can also be caused by data locality variations. Different
kernel schedules, for example, impact temporal locality and cache misses.

Measuring how much of work time inflation is caused by the runtime and how
much is due to locality is difficult because of the small kernel sizes and because of
the high overheads of accessing hardware performance monitors using the Linux
perf subsystem [24]. To identify work time inflation due to temporal locality
issues we look for a scenario with minimal non-work overheads. For the case
of MATMUL, MassiveThreads and TBB have overheads around or below 1.1×
until 12 cores (2 sockets). Figure 3 (a) shows a work time difference of about 2%
between MTH and TBB at 12 cores that must be related to different task orders.
At 24 cores this difference is around 8%. The KRD metric defined in the next
section can provide additional insight regarding the origin of additional cache
misses.

3 Kernel Reuse Distance

To characterize the effects of task ordering on temporal locality we start with
the reuse distance metric [14]. The reuse distance has traditionally been used
as a measure of cache performance [25]. It processes traces of memory accesses
and counts the number of unique addresses between two accesses to the same
element. This count is also called the stack distance.

When analyzing task-parallel applications it is important to minimize pertur-
bation to the runtime task schedule. Heavyweight instrumentation to generate
address traces may impact the execution and result in a parallel schedule that
is not representative. To reduce overheads we extend the method to collect data
accesses only in bulk at kernel execution times. For each data structure that is
an input or output to a kernel, an identifier (usually its base address), a times-
tamp, and its size in bytes are recorded. We rely on manual instrumentation to
perform these actions.

A trace of data accesses is recorded separately for each core. To analyze the
reuse on a per-node4 basis we process a merged trace containing all the kernel
inputs and outputs accessed by the cores sharing the same last level cache. The
trace is synchronized using the timestamps. Using this merged trace, the stack
distances are computed and the histogram is generated. When a system contains
multiple nodes, we summarize the contribution of each by generating per-node
histograms and then reporting their summation.

Altogether, this set of modifications on top of the reuse distance is called the
Kernel Reuse Distance metric (KRD). KRD is is a low-overhead and architecture
independent method that provides an intuitive measure of data reuse. Its cor-
relation to hardware metrics such as cache misses and performance is analyzed
later. Figure 4 shows a diagram explaining the methodology in a single socket

4 in this work we use node as shorthand for NUMA node

Data Access Trace
CORE #1

L1

L2

LLC

L1

L2

KERNEL
@in1

@in2

@in3

@out1

@out2

4
5

7
9

1
2

3
6

8
10

11
12

4
5

7
9

1
2

3
6

8
10

11
12

4 5 7 91 2 3 6 8 10 11 12

Synchronized/Merged Trace

first
time accesses

Data Access Trace
CORE #2

CORE
#1

CORE
#2

close reuses near reuses far reuses

histogram
generation

MAIN MEMORY

Fig. 4. Generation of the KRD metric for a single socket with two cores

environment with two cores. Two workers are running, one on each core, and
generating a series of kernel data accesses. To analyze the last level cache and
memory access, the traces are merged and the reuse histogram is generated. The
histogram shows the ratio of data reuses that occur within a certain data win-
dow, shown on the x-axis. All elements have a first access. This event is included
in the last data point labeled as INF (infinity). In the multiple nodes scenario,
work steal activity across nodes introduces additional cold accesses. By looking
at the number of accesses that contribute to the INF category, one can observe
the effects of inter-node work steals.

For visualization purposes, we subdivide the histogram into close, near, and
far reuses. This choice is arbitrary but will help later in describing the plots.
As a rule of thumb, we use close reuses for those that fall within L2 cache size,
near reuses for those within last level cache (LLC) size, and far reuses for those
beyond the size of the LLC.

3.1 Implementation Details

We implemented KRD as a set of tools that can compute the histograms from
traces generated by our own low overhead profiling and tracing facility called
LoI (low-overhead instrumentation). LoI is designed to analyze task-parallel ap-
plications with fine grained kernels. LoI attempts to be as lightweight as possible
in order to not influence the task parallel schedule. The library associates time-
stamps to events, and either aggregates execution times for individual kernels or
generates timestamped traces. Timestamps are obtained by using the x86 TSC

facility [26]. For both applications the tracing facility increases execution time
less than 5% in the worst case.

4 Experimental Evaluation

This section describes two experiments. We begin by generating KRD profiles
for MATMUL and FMM to display how reuse changes with the runtime sched-
uler. Next we analyze the correlation between the KRD metric and hardware
performance counters.

4.1 KRD correlation with runtime schedulers

Figures 5–7 show the KRD plots for the two benchmarks using the four tested
runtime schedulers on three hardware configurations: single core, one fully-
populated socket and four sockets.

 0

 20

 40

 60

 80

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

(a) MATMUL (b) FMM

Fig. 5. Kernel Reuse Distance plots for a single core

The single core histograms show that in the absence of work steals, different
schedulers have little impact on the temporal reuse of recursive divide and con-
quer task-parallel codes. In fact, for MATMUL, the KRDs of both work-first and
help-first policies are identical. This is not surprising as the recursive bisecting of
the matrices and corresponding task generation are symmetric. Work-first and
help-first execute the leaf kernels in reverse order, but this has no effect on the
reuse distance. For FMM the decomposition is not completely symmetric be-
cause of a property of the algorithm which allows to discard one of the branches
based on a condition (mutual interactions). However, differences between sched-
ulers are still barely noticeable.

Differences start to emerge when one socket is fully populated (6 threads),
particularly onMATMUL. QThread/Socket stands out, having the highest reuse

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

(a) MATMUL (b) FMM

Fig. 6. Kernel Reuse Distance plots for one socket (6 cores)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32KB
64KB

128KB

256KB

512KB

1MB
2MB

4MB
8MB

16MB
32MB

64MB
128MB

256MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

256

1KB
4KB

16KB
64KB

256KB

1MB
4MB

16MB
64MB

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

(a) MATMUL (b) FMM

Fig. 7. Kernel Reuse Distance plots for four sockets (24 cores)

ratio at almost all distances. This good performance results from QThread/Socket’s
usage of a global LIFO queue shared by all the workers. In this design, workers
tend to execute tasks that have been recently generated by other workers. Since
programs are commonly optimized for data reuse on the serial path, this policy
improves cache sharing [23]. TBB also shows improved reuse compared to MTH and
QTH/Core when executing MATMUL. This is probably a side-effect of the TBB
scheduling restrictions [19]. MTH and QTH/Core, on the other hand, implement
just a fully distributed random work stealer. It has the worst reuse performance,
but offers the advantage of simplicity. The differences between schedulers are
considerably smaller in the case of FMM. QTH/Socket is still better for close
reuses, but the difference is only 3% at most. Other schedulers show almost
no differences. The similarity between histograms is likely a result of FMM ’s
tree traversal algorithm, which conditionally executes two kernels that operate

on independent data. Furthermore, the non-homogeneous input (plummer dis-
tribution) generates an irregular kernel pattern that is harder for schedulers to
optimize.

The histograms for the 4-socket scenario are similar to the 1-socket case.
QTH/Socket again shows the best reuse performance, but this time it is closely
followed by MTH for far reuses. Surprisingly, in this multi-socket scenario, TBB
has the worst reuse performance for far reuses, trailing the other schedulers
at a noticeable distance. Compared to the single-socket plots, one important
fact revealed by the four-socket KRD histograms is the larger amount of cold
accesses. This is expected, as separate sockets have disjoint caches which need
to be warmed up separately. KRD can be used to understand how many first
time accesses occurred, which indirectly correlates to the size of the working
set observed at each socket. QThread/Socket shows the lowest ratio of cold
accesses while TBB shows the highest amount. A larger number of cold accesses
means that the scheduler is distributing tasks that share the same working set
across different nodes. TBB implements several restrictions in its scheduling
algorithm that limit which tasks can be stolen and disallows the migration of
tasks that have already started [19]. These limitations might be forcing TBB
into a suboptimal work partitioning.

The fact that the KRD histograms can be correlated with different schedulers
is an encouraging result. Next we address the question whether these plots can
be correlated with actual performance.

4.2 KRD correlation with Hardware Metrics

In the second experiment, we attempt to correlate the results of the KRD met-
ric with last level cache misses and work time inflation. To do so we select
a scenario with low runtime overheads to minimize possible perturbation. For
MATMUL using 2 sockets (12 cores), MTH and TBB present non-work inflation
of about 1.1×, while the QTH/Core overhead is about 1.2×. The KRD plot of
far reuses (i.e. beyond 18MB) for this configuration is reported in Figure 8.
Table 1 reports hardware performance counters and time measurements col-
lected as averages of five runs. The kernel times are average over all kernel
executions (∼1×106) and have been collected by reading the x86 timestamp
counter at each kernel call (RDTSC). The LLC misses column reports the per-
core LAST_LEVEL_CACHE_MISSES metric from Intel’s Architectural PerfMon [26],
as reported by PAPI [27].

We first compare MTH and TBB, which have similar overheads. The KRD
plot in Figure 8 shows that for all distances beyond 16 MB, MTH has a higher
percentage of reuses than TBB. The LLC size of the Westmere-EX chip is 18 MB,
which makes it worth to analyze of the data point at 32 MB. For MTH, 3.57%
of the kernel references access data with a reuse distance beyond 32 MB, while
for TBB the number of far reuses is 4.5%. This 25% difference correlates to a
53% increase in LLC misses and to a work time inflation of 2.7% compared to
MassiveThreads.

 93

 94

 95

 96

 97

 98

16MB
32MB

64MB
128MB

256MB

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

Fig. 8. Far reuses for MATMUL in the 2-socket, 12 core scenario

Table 1. Hardware Metrics and WTI for 2-socket scenario

Runtime Exec. Time LLC Misses Kernel Time & Inflation
MTH 1.642 sec 1.829×106 17441ns (1.0250×)
TBB 1.742 sec 2.807×106 17898ns (1.0519×)

QTH/Core 1.859 sec 2.339×106 17767ns (1.0441×)
QTH/Socket 2.111 sec 1.987×106 18401ns (1.0814×)

For QTH/Core, the KRD plots show that it has higher number of far reuses
than MTH but less than TBB for distances of more than 32MB. The number of
LLC misses and the work time inflation are between those of TBB and MTH. This
relation is also clearly observed at high distances (e.g. 128MB) and also for cold
misses. It suggests that these data points might be good indicators for cache
misses and WTI.

The KRD plot also shows that QTH/Socket has overall the smallest amount
of far reuses (3.15% at 32MB). However, its number of cache misses is higher
than MassiveThreads, and its work time inflation is the highest of all four sched-
ulers. QTH/Socket has comparatively high overheads (1.33×). A closer analysis
using perf record revealed that theMATMUL benchmark spends about 25% in
two Qthread functions (qt_scheduler_get_thread and qt_hash_lock), both of
which include memory bus locking activity. Bus locking increases memory access
latencies, and is a probable explanation for the observed work time inflation.

The 2.7% difference between MTH and TBB may seem very small, but is also
expected since the studied algorithm (MATMUL) is not particularly memory
intensive. At 4 sockets TBB has about 10% higher work time inflation compared
to MTH. In the case of FMM, the relative inflation reaches 45% for the memory
bound M2L kernel on 4 sockets. Depending on the algorithm work time inflation
can become an important issue.

5 Discussion

Although KRD shows correlation with work inflation and cache misses, it should
be used mainly as an intuitive model. The KRD metric contains many simpli-
fications that are the result of the constraints set by our original goal: to qual-
itatively measure temporal reuse in task-parallel programs. The requirement of
minimal overhead is an important consideration which enables only a coarse-
grained, manually-instrumented tracking of data accesses. The model does not
consider other accesses such as stack accesses, based on the assumption that
kernel (heap) data accesses dominate cache performance.

KRD does also not attempt to measure spatial locality among individual ac-
cesses. Our original goal was to analyze the effects of different schedulers on data
reuse. Different schedules might, however, benefit more or less from prefetchers.
If such an effect is large, then extending KRD with a metric to quantify spatial
locality [28] might be a worthy addition.

One limitation of the current model is that it does not provide enough infor-
mation to model the effects of cache coherence protocols [29,30]. When one core
writes a data structure allocated in the last level cache of a different socket, this
will conceptually result in a cache-to-cache transfer. The KRD metric currently
uses only the notion of intra-socket data accesses. It can report increases in cold
misses due to work stealing operations, but it cannot model misses due to cache
line invalidations. As part of our future work we plan to extend KRD by clas-
sifying accesses into reads and writes. This will allow a simple modeling of the
effects of cache coherence.

Finally we would like to note that, while the KRD model has been developed
with task-parallel runtimes in mind, it is actually quite generic as it does not
instrument tasks, but the kernels inside tasks. This allow it to be applied to
study any kind of shared memory parallel framework.

6 Conclusions

In this work we have attempted to provide some insight on the impact of task-
parallel schedulers on temporal locality and its effect on performance. We de-
veloped a coarse-grained version of the reuse distance metric to study reuse in
task parallel executions. Based on our analysis of two benchmarks and four run-
time schedulers we observed that schedulers can have considerable impact on the
reuse distance, and that the reuse quality depends considerably on the system
configuration. Furthermore we observed correlation between the KRD metric

and hardware metrics such as last level cache misses and average kernel execu-
tion time. However, we also observed that runtime contention can be dominant
in high core count scenarios, thus minimizing overheads should take precedence
over locality optimizations.

Acknowledgment

This work has been supported by a JSPS postdoctoral fellowship (P-12044). We
would like to thank the anonymous reviewers for their valuable feedback.

References

1. OpenMP ARB: Openmp specification. http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf (July 2013)

2. Intel Corporation: Threading building blocks.
https://www.threadingbuildingblocks.org/

3. MIT CSAIL Supertech Research Group: The cilk project.
http://supertech.csail.mit.edu/cilk/

4. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Mul-
tithreaded Language. In: Proceedings of SIGPLAN 1998. (June 1998)

5. Mohr, E., Kranz, D.A., Halstead, R.H.: Lazy Task Creation: A technique for
Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel
and Distributed Systems 2(3) (July 1991)

6. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and Miti-
gating Work Time Inflation in Task Parallel Programs. In: Proceedings of SC12.
(November 2012)

7. Tallent, N.R., Mellor-Crummey, J.M.: Effective Performance Measurement and
Analysis of Multithreaded Applications. In: Proceedings of PPoPP’09. (February
2009)

8. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E. In: The Vampir Performance Analysis Tool-Set. Springer Berlin
Heidelberg (2008) 139–155

9. Barcelona Supercomputing Center: Extrae User Guide Manual. (May 2013)
10. Virtual Institute - High Productivity Supercomputing: SCORE-P User Manual.

(2013)
11. McCurdy, C., Vetter, J.: Memphis : Finding and Fixing NUMA-related Perfor-

mance Problems on Multi-core Platforms. In: Proceedings of ISPASS 2010. (March
2010)

12. Liu, X., Mellor-Crummey, J.: Pinpointing Data Locality Problems Using Data-
centric Analysis. In: Proceedings of CGO’11. (April 2011)

13. Intel Corporation: Intel VTune Amplifier XE 2013. http://software.intel.com/en-
us/intel-vtune-amplifier-xe

14. Mattson, R., Gecsei, J., Slutz, D., Traiger, I.: Evaluation techniques for storage
hierarchies. IBM Systems Journal 9(2) (1970) 78–117

15. Rio Yokota: exafmm-dev. https://bitbucket.org/rioyokota/exafmm-dev
16. Taura, K., Yokota, R., Maruyama, N.: A Task Parallelism Meets Fast Multipole

Methods. In: Proceedings of the SCALA’12 workshop. (November 2012)

17. The MassiveThreads Team: Massivethreads: A lightweight thread library for high
productivity languages. http://code.google.com/p/massivethreads/

18. Nakashima, J., Nakatani, S., Taura, K.: Design and implementation of a customiz-
able work stealing scheduler. In: Proceedings of the 3rd International Workshop
on Runtime and Operating Systems for Supercomputers. ROSS ’13 (2013) 9:1–9:8

19. Intel Corporation: TBB: Scheduling algorithm.
http://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/scheduling_algorithm.htm

20. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The Data Locality of Work Stealing.
In: Proceedings of SPAA’00. (2000)

21. The Qthread Team: The qthread library. http://www.cs.sandia.gov/qthreads/
22. Wheeler, K., Murphy, R., Thain, D.: Qthreads: An API for programming with

millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing. (2008) 1–8

23. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling Task Par-
allelism on Multi-Socket Multicore Systems. In: Proceedings of ROSS’11. (2011)
49–56

24. M.Weaver, V.: Linux perf_event Features and Overhead. In: Proceedings of the
2013 FastPath Workshop. (2013)

25. Beyls, K., D’Hollander, E.H.: Reuse distance as a metric for cache behavior. In:
in Proceedings of the IASTED conference on parallel and distributed computing
and systems. (2001) 617–662

26. Intel Corporation: Intel 64 and ia-32 architectures software developer’s manual
volume 3b:. http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html

27. PAPI Team: Performance application programming interface.
http://icl.cs.utk.edu/papi/

28. Weinberg, J., McCracken, M.O., Strohmaier, E., Snavely, A.: Quantifying Locality
In The Memory Access Patterns of HPC Applications. In: Proceedings of the 2005
ACM/IEEE conference on Supercomputing. (November 2005)

29. Corporation, I.: An Introduction to the Intel QuickPath Interconnect. (2009)
30. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing Cache Architectures and

Coherency Protocols on x86-64 Multicore SMP Systems. In: Proceedings of MI-
CRO09. (December 2009)

