
Using PETSc to Develop Scalable Applications for
Next-Generation Power Grid

Shrirang Abhyankar
Department of Electrical and

Computer Engineering
Illinois Institute of Technology
3301 South Wabash Avenue

Chicago, Illinois - 60616
abhyshr@iit.edu

Barry Smith
Mathematics and Computer

Science Division
Argonne National Laboratory

9700 South Cass Avenue
Argonne, Illinois

bsmith@mcs.anl.gov

Hong Zhang
Mathematics and Computer

Science Division
Argonne National Laboratory

9700 South Cass Avenue
Argonne, Illinois

hzhang@mcs.anl.gov
Alexander Flueck

Department of Electrical and
Computer Engineering

Illinois Institute of Technology
3301 South Wabash Avenue

Chicago, Illinois - 60616
flueck@iit.edu

ABSTRACT
Developing scalable software for existing and emerging power
system problems is a challenging task and requires consid-
erable time and effort. This effort can be reduced by using
high performance software libraries, such as PETSc, which
are tested on a gamut of scientific applications, used on
single-core machines to supercomputers, have highly opti-
mized implementations, and a wide array of tested numer-
ical solvers. High performance libraries have not yet been
used by the power system community for developing power
system applications, but such libraries have been well ex-
plored by researchers doing PDE simulations. This paper
introduces the high performance library PETSc and moti-
vates using such high performance libraries for developing
existing and future power system applications.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Parallel and vector imple-
mentations

Keywords
Power System Applications, High Performance Computing
Library, PETSc, Parallel implementation

1. INTRODUCTION
The electricity industry is growing through a revolution of

new technologies and ideas to make the existing grid more se-
cure, reliable and interconnected. The penetration of wind,
solar, and other renewable resources of electricity produc-
tion is increasing. The advent of deregulation is driving the

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
HiPCNA-PG’11, November 13, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-1061-1/11/11 ...$10.00.

power industry toward economic operation and thus operat-
ing the transmission system to its fullest potential. Smart
Grid is bringing a new meaning to how communication and
control are done. The incorporation of power electronics
equipment in power systems is increasing and brings with it
non-fundamental frequency harmonics. In order to manage
the load growth, and to enhance reliability and security, the
interconnection between utility controlled transmission sys-
tems is growing. As these interconnections continue to grow,
there will be a need for managing large-scale and ultra-large-
scale transmission systems, whether regional, national, or
multi-national, in real time.

These developments are making power system computa-
tional problems more challenging in terms of modeling com-
plexity and faster simulation requirements. The ultimate
goal for power system applications is to have high-fidelity
models along with real-time processing speed to provide
look-ahead or proactive decision making. Thus, the use of
parallel machines to speed the applications is critical for fu-
ture applications.

Considerable research into parallel algorithms for power
system applications has been done. A literature review
shows that power system researchers have developed par-
allel algorithms for applications such as transient stability
simulation, power flow, state estimation, optimal power flow,
electromagnetic transients simulations, and contingency anal-
ysis. The most dominant research effort has been in tran-
sient stability applications to solve the resultant differential-
algebraic equations, or DAEs, for the power system.

However, development of parallel algorithms requires con-
siderable time and effort through various phases of appli-
cation development, including partitioning, managing com-
munication between processors, nonlinear function and Ja-
cobian evaluation and debugging, with most time spent on
implementing the linear solver. Moreover, various parallel
algorithms must be benchmarked on different system topolo-
gies to select the optimal (or set of optimal algorithms).
Benchmarking with various solvers is a task that entails con-
siderable time and effort. As a result, parallel power system

applications are developed using by a specific linear solution
scheme tested on a specific architecture for a given power
system topology.

In this paper, we present the high performance computing
library PETSc, developed at Argonne National Laboratory,
that can aid in reducing this experimentation time. The
range of linear solvers and preconditioners, abstract linear
algebra object interfaces for writing user application codes,
portability to different operating systems, and flexible run-
time options make PETSc an attractive platform for devel-
oping scalable power system applications.

2. PETSC: PORTABLE EXTENSIBLE
TOOLKIT FOR SCIENTIFIC
COMPUTATION

The Portable, Extensible Toolkit for Scientific Compu-
tation (PETSc) is a suite of data structures and routines
that provide the building blocks for the implementation of
large-scale application codes on parallel (and serial) comput-
ers. PETSc uses the MPI standard for all message-passing
communication. PETSc includes an expanding suite of par-
allel linear, nonlinear equation solvers and time integrators
that may be used in application codes written in Fortran, C,
C++, Python, and MATLAB (sequential). PETSc provides
many of the mechanisms needed within parallel application
codes, such as parallel matrix and vector assembly routines.
The library is organized hierarchically, enabling users to em-
ploy the level of abstraction that is most appropriate for a
particular problem. By using object-oriented programming,
PETSc provides enormous flexibility for users.

PETSc consists of a variety of libraries (similar to classes
in C++), see 1. Each library manipulates a particular fam-
ily of objects (for instance vectors) and the operations one
would like to perform on the objects. The objects and oper-
ations in PETSc are derived from our long experience with
scientific computation.

Figure 1: Organization of the PETSc library [1]

Each object consists of an abstract interface (simply a set
of calling sequences) and one or more implementations using

particular data structures. Thus, PETSc provides clean and
effective codes for the various phases of solving applications,
with a uniform approach for each class of problems. This de-
sign enables easy comparison and use of different algorithms
(for example, to experiment with different Krylov subspace
methods, preconditioners, or truncated Newton methods).
The libraries enable easy customization and extension of
both algorithms and implementations. This approach pro-
motes code reuse and flexibility, and separates the issues of
parallelism from the choice of algorithms. Hence, PETSc
provides a rich environment for modeling large-scale scien-
tific applications as well as for rapid algorithm design and
prototyping.

Krylov Subspace Methods

CG CGS OtherChebychevRichardsonTFQMRBi-CG-StabGMRES

Vectors
OtherStrideBlock Indices

Index Sets

Indices

Block Compressed

Sparse Row

(BAIJ)

Block

Diagonal

(BDiag)

Compressed

Sparse Row

(AIJ)

OtherDense

Matrices

Backward

Euler

Pseudo-Time

Stepping

Time Steppers

Euler Other

Block

Jacobi

Additive

Schwarz (sequential only)
LU

Parallel Numerical Components of PETSc

Jacobi ILU ICC Other

Preconditioners

Newton-based Methods

Trust RegionLine Search

Other

Nonlinear Solvers

Figure 2: Numerical libraries of PETSc [1]

3. PETSC FEATURES
PETSc is an open source package for the numerical so-

lution of large-scale applications and is free for anyone to
use (BSD-style license). It runs on operating systems such
as Linux, Microsoft Windows, Apple Macintosh, and Unix.
It can be used from within the Microsoft Developers Stu-
dio. PETSc can be configured to work with real or complex
data types (not mixed though), single or double precision,
and 32 or 64-bit integers. It has been tested on a variety
of tightly coupled parallel architectures such as Cray XT/5,
Blue Gene/P, and Earth Simulator, and also on loosely cou-
pled architectures such as networks of workstations.

PETSc uses a plug-in philosophy to interface with exter-
nal softwares. Various external software packages such as
SuperLU, SuperLU Dist, ParMetis, MUMPS, PLAPACK,
Chaco, and Hypre can be installed with PETSc. PETSc
provides an interface for these external packages so that they
can be used in PETSc application codes.

Allowing the user to modify parameters and options easily
at runtime is very desirable for many applications. For ex-
ample, the user can change the linear solution scheme from
GMRES to direct LU factorization, or can change the ma-
trix storage type, or preconditioners, via run-time options.

If an application uses a large number of parameters, these
can be also supplied by a text file that is read when the
PETSc code begins.

Debugging is one of the most pain staking task in appli-
cation code development. PETSc provides various features
to ease the debugging process. Debuggers such as gdb, dbx,
xxgdb, etc., can be used, debugger can be either activated
at the start of the program or when an error is encountered.
Morever, a subset of processes can be selected for debug-
ging parallel application codes. In addition, the widely used
package Valgrind can be used for detecting memory errors.
Jacobian computation for the solution of nonlinear system
via Newton’s method is cumbersome and a great deal of
time and effort can be spent in debugging the Jacobian.
PETSc provides run-time options to check the user’s Ja-
cobian entries by comparing them with a finite-difference
approximated Jacobian.

As PETSc developers, we are actively involved in respond-
ing user queries, and PETSc development has benefited tremen-
dously through these querries. A comprehensive manual is
available on the PETSc website, and each library in PETSc
has many examples demonstrating how to use that library.

PETSc automatically logs object creation, times, and floating-
point counts for the library routines. Users can easily sup-
plement this information by monitoring their application
codes. The users can either log their routines, called event
logging, or log multiple sections of the code, called stage
logging.

4. PETSC LIBRARIES
This section describes the various libraries, or classes,

available with the PETSc library.

4.1 Vectors
The vector (denoted by Vec) is one of the simplest PETSc

objects. Vectors are used to store solutions, right-hand sides
for linear systems, and so forth. PETSc currently provides
several basic vector types; the two most commonly used are
sequential and parallel (MPI-based). Basic vector opera-
tions, such as dot product and sum, are available in the
PETSc vector library. The comprehensive list of vector op-
erations can be found in [3]. Assigning values to individual
components of the parallel vector can be done either using
global numbering or using a local process numbering. With
global numbering, any process can set any components of the
vector; PETSc ensures that they are automatically stored
in the correct location. PETSc vectors have full support for
general scatters and gathers. One can select any subset of
the components of a vector to insert or add to any subset
of the components of another vector. We refer to these op-
erations as generalized scatters, though they are actually a
combination of scatters and gathers.

4.2 Matrices
PETSc provides a variety of matrix implementations be-

cause no single matrix format is appropriate for all problems.
Currently we support dense storage and compressed sparse
row storage, as well as several specialized formats such as
blocked compressed sparse row, and symmetric compressed
and block compressed formats. All the matrices are avail-
able as sequential and parallel versions. An interface for
adding user-defined matrix formats is also provided. Most
power system applications use a skyline storage format for

the matrices that can be easily added and used with the
linear solver.

4.3 Linear solvers and preconditioners
The object KSP is the heart of PETSc: it provides uni-

form and efficient access to all of the package’s linear system
solvers, including parallel and sequential, direct and itera-
tive. KSP is intended for solving nonsingular systems of the
form

Ax = b (1)

where A denotes the matrix representation of a linear oper-
ations, b is the right hand side vector, and x is the solution
vector. KSP uses the same calling sequence for both direct
and iterative solution of a linear system. In addition, par-
ticular solution techniques and their associated options can
be selected at runtime.

The combination of a Krylov subspace method and a pre-
conditioner is at the center of most modern numerical codes
for the iterative solution of linear systems. Since the rate of
convergence of Krylov projection methods for a particular
linear system is strongly dependent on its spectrum, precon-
ditioning is typically used to alter the spectrum and hence
accelerate the convergence rate of iterative techniques. Pre-
conditioning can be applied to the system in (1) by

(M−1
L AM−1

R)(MRx) = M−1
L b (2)

where ML and MR indicate left and right preconditioning
matrices. By default, all KSP implementations use left pre-
conditioning. Right preconditioning can be activated for
some methods by a run-time option or by calling a routine.
Currently, PETSc supports over 20 KSP methods and pre-
conditioners. A partial list of the available preconditioners is
given in Table 1. The preconditioner type PCComposite al-

Table 1: Partial list of PETSc preconditioners

Preconditioners

Jacobi

Block Jacobi

SOR (and SSOR)

Incomplete Cholesky

Incomplete LU

Additive Schwartz

Combination of preconditioners

LU

Cholesky

Shell for user-defined preconditioner

lows one to form new preconditioners by combining already
defined preconditioners solvers. Solvers and preconditioners
can be also nested. For example, with a parallel Block-
Jacobi preconditioner, (i.e., the preconditioner formed using
the diagonal block of the matrix on each processor), any of
the other preconditioners, such as LU, ILU, or SOR, can be
used on the block.

Various reordering schemes to reduce the fill-in for the
factored matrices are also available and can be accessed ei-
ther by calling routines or by run-time options. The current

reordering schemes in PETSc are given in Table 2. User-
defined reordering schemes can be easily included too.

Table 2: Partial list of reordering schemes

Reordering schemes

Natural

Nested dissection

Reverse Cuthill-Mckee

1-way dissection

Quotient minimum degree

Row length

4.4 Nonlinear solvers
The nonlinear solver class SNES includes methods for

solving systems of nonlinear equations of the form

F (x) = 0 (3)

Newton-like methods provide the core of the package, includ-
ing both line search and trust region techniques. Built on
top of the linear solvers and data structures discussed in pre-
ceding sections, SNES enables the user to easily customize
the nonlinear solvers according to the application at hand.
Also, the SNES interface is identical for the uniprocess and
parallel cases; the difference in the parallel version is that
each process typically forms only its local contribution to
various matrices and vectors. To access the SNES solver,
the user provides a C, C++, Fortran, Python, or MATLAB
routines to evaluate the nonlinear function in Equation (3)
and Jacobian. PETSc also provides routines to approximate
the Jacobian by finite differences if an analytical expression
for the Jacobian is not available or if is too hard to compute.

4.5 Time-stepping integrators
The TS library in PETSc provides a framework for the

scalable solution of ODEs and DAEs and of steady-state
problems using pseudo-time stepping. Various numerical
integration algorithms such as explicit and implict Euler
schemes, implicit trapezoidal integration and multi-stage ex-
plicit Runge-Kutta variable time stepping schemes are avail-
able in PETSc. TS uses the SNES and the KSP objects to
solve the underlying nonlinear/linear system and the user
can tune this solution process at run time too.

5. NEW ADDITIONS TO THE PETSC LI-
BRARY

This section presents the recent additions to the PETSc
library some of which were already in the previously released
version and some of which will be incorporated in the next
release version.

5.1 Memory efficient data structure for LU
factorization

A memory efficient data structure for LU and incomplete
LU factorization [13], for sparse compressed row as well as
blocked matrix formats, was added in the previous release
version of PETSc. This newly developed data structure
stores the L and U matrices separately and stores the entries
in U in a reverse direction (i.e., starting from the last row to

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc

Figure 3: Flow control of PETSc application [1]

the first). This reorganization of the data structure results
in a continuous access of LU elements and thus provides
better memory access.

5.2 Support for GPGPU
The most recently released version of PETSc provides sup-

port for solving applications on NViDia GPUs. PETSc uses
the CUSP and Thrust libraries, developed by NViDia, to do
computations on the GPU. Essentially, the user writes code
using the PETSc libraries, and PETSc solves the application
on the GPU and handles the communication of the data to
and from the GPU to the CPU.

5.3 PETSc-MATLAB interface
MATLAB is a popular prototyping language for rapid

code development. We have developed an interface for using
the PETSc libraries from MATLAB for sequential computa-
tion. Almost all the current PETSc libraries and operations
are available through the PETSc-MATLAB interface.

5.4 Support for hybrid MPI-shared memory
The most recent release of PETSc contains a vector and

matrix class that use POSIX pthreads for computation within
a multicore/multichip shared-memory node.

5.5 Multiphysics preconditioners
The simulation of multiphysics and multiscale models is

a challenging topic in the field of numerical computation.
PETSc provides an efficient multiphysics preconditioner class,
called fieldsplit, for preconditioning coupled multiphysics prob-
lems. This preconditioner allows the use of a custom linear
solver for each physics domain, along with its own precon-
ditioner, reordering strategy, and all the other intricacies.
Four fieldsplit preconditioners are available. For example,
if the linear system to be solved comprises two physics and
described by [

A B
C D

] [
x
y

]
=

[
f
g

]
(4)

the available fieldsplit preconditioners are

• Block-Jacobi or additive[
A−1

D−1

]
(5)

• Block-Gauss-Siedel or multiplicative[
A
C D

]−1

(6)

• Symmetric Block Gauss-Siedel[
A

1

]−1
(

1 −
[
A B

1

] [
A
C D

]−1
)

(7)

• Schur-complement based[
1

CA−1 1

] [
A B

S

]
, (8)

where

S = D − CA−1B

6. USING PETSC AND SUPPORTING
LIBRARIES FOR DEVELOPING POWER
SYSTEM APPLICATIONS

This section describes a few applications that can be de-
veloped by using the PETSc and two other libraries, TAO
and SLEPc, developed using PETSc.

6.1 Combined electromechanical electromag-
netic transients simulation

The number of power electronics devices is expected to
increase for a more flexible control of power systems. There-
fore, the effect of non-fundamental frequency harmonics will
increase, and the dynamic simulation will entail modeling
of power electronics devices via an electromagnetic simula-
tion. An attractive way of incorporating the simulation of
non-fundamental frequency harmonics in an electromechan-
ical transient simulator is via a hybrid simulation[21]. In a
hybrid simulator, most of the bulk power system is modeled
by using an electromechanical transients simulator, while a
small part of it is modeled by using electromagnetic tran-
sients simulator. The PETSc library provides efficient data
structures to ease the development of multiscale or multi-
physics applications and is an attractive platform for the de-
velopment of a combined electromechanical-electromagnetic
transients simulation. The development of a parallel im-
plicitly coupled electromechanical and electromagnetic tran-
sients simulator, using the PETSc library, is detailed in [7].
The authors in [7] have reported a speed up of about 4.6
times on six cores for the developed parallel implicitly cou-
pled simulator using PETSc for a large-scale power system.

6.2 Combined transmission-distribution anal-
ysis

Various ISOs have indicated the need to model and gather
real-time information from the sub-transmission and distri-
bution systems in order to enhance reliability and aware-
ness [9], in other words, to provide finer granularity mod-
eling. While ISOs have traditionally been able to forecast
load within a 2% error, deployment of distributed energy
resources and utility-scale storage may increase the error

substantially [9]. Moreover, new demands are being placed
on the power infrastructure as a result of the introduction
of plug-in vehicles. The sheer volume of the components
for a combined transmission-distribution analysis presents
an onerous computational task and emphasizes the need for
developing parallel algorithms for such an analysis and the
use of high performance computing libraries.

6.3 Electromechanical transients simulation
Considerable research on parallel implementation of tran-

sient stability application has been done by power system
researchers [14]-[20], as it offers a possibility of real-time
dynamic simulation. The transient stability formulation is
defined by the following differential algebraic model of the
system:

ẋ = f(x, y)

0 = g(x, y)
(9)

The TS library in PETSc can be used for solving non-
linear differential algebraic transient stability equations in
(9). The TS library in PETSc provides various DAE solvers
including the implicit-trapezoidal integration scheme. The
recent release version of PETSc has added Implicit-Explicit
(IMEX) time integration schemes for multirate problems
which could be also experimented with.

A Schur-complement-based linear scheme is generally pre-
ferred for the solution of the nonlinear algebraic system ob-
tained by discretization of (9). This scheme can be selected
at run-time via PETSc’s multiphysics schur-complement based
solver by simply specifying sets of indices for the generator
and the network blocks. Various conjugate-gradient-based
algorithms (conjugate gradient, conjugate gradient square,
bi-conjugate gradient) are also available and can be selected
at run time.

Reference [7] details the development of a parallel three-
phase transient stability simulator built by using the PETSc
library and presents the scalability results using several lin-
ear solution strategies. The speedup for three large scale
systems using the iterative solver GMRES with a very dis-
honest Block-Jacobi preconditioner is shown in Figure 4.

6.4 Power Flow related applications
Power flow is a fundamental application in power system

analysis. Various analyses such as steady state security,
area power transfer studies, contingency screening, require
a power flow solution. Essentially, the power flow problem
solves the nonlinear power balance equation for the network
given a generation set point and a load injection,

F (x) = 0 (10)

where x are the bus voltages. In addition, a power flow so-
lution serves as a starting point for dynamic simulations or
short circuit studies. Faster solution of power flow equa-
tions would speed power system analysis programs entailing
repeated power flow solutions such as contingency analysis,
continuation power flow.

The nonlinear solver class SNES can be used for devel-
oping parallel power flow applications where the user needs
to only provide a routine for the nonlinear function evalua-
tion (and an optional Jacobian evaluation). The underlying
linear solver can be selected at run time; for example, the
linear solver can be switched from GMRES without a pre-
conditioner to direct factorization at run time.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

 # of cores

S
p

e
e
d

u

p

Ideal

1180 bus

2360 bus

4720 bus

Figure 4: Speedup of parallel three-phase transient
stability simulator

6.5 Power system optimization
PETSc has been developed primarily for solving linear

and nonlinear algebraic equations and as such has limited
support for optimization applications. The scalable opti-
mization library TAO (Toolkit for Applied Optimization)
[5], which is built using PETSc can be used for applica-
tions such as optimal power flow, security constrained opti-
mal power flow. Support for solving security constrained
unit commitment applications needing mixed integer lin-
ear/nonlinear solvers has not yet been developed in PETSc
or TAO.

6.6 Small Signal Stability
SLEPc (Scalable library for Eigenvalue Problem Compu-

tations) [6], a library based on PETSc, can be used for de-
veloping small signal stability analysis applications. SLEPc
consists of several algorithms for scalable computation of
eigenvalues and uses various PETSc data structures such as
matrix storage schemes, and vectors.

6.7 Electromagnetic Transients Simulation
The ultimate goal for the power system simulation re-

searchers is an electromagnetic transient simulation in real-
time. However, the modeling complexity along with time-
step limitations are overwhelming. The transmission lines
for electromagnetic transients simulation are modeled by
traveling wave equations consisting of two disjoint equiva-
lent circuits. This model is nicely structured for parallel
processing with equations for a geographical subsystem be-
ing assigned to each processor.

7. CONCLUSIONS
Developing scalable applications is necessary as power sys-

tems expand, interconnection gets denser, and newer equip-
ment gets added. This paper discussed the high-performance
computing library PETSc as a potential platform for rapid

development of existing and future power system applica-
tions. The development of PETSc has been funded by the
Department of Energy for over 15 years. Because of its wide
use among DOE application scientists, its continued long
term development and support is highly likely.

8. ACKNOWLEDGEMENTS
This work was supported in part by the Office of Advanced

Scientific Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357.

9. REFERENCES
[1] Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W.

Gropp, D. Kaushik, M. Knepley, L. McInnes, and B.
F. Smith, and H. Zhang, PETSc users manual.
ANL-95/11-3.1 (2010).

[2] Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W.
Gropp, D. Kaushik, M. Knepley, L. McInnes, and B.
F. Smith, and H. Zhang, PETSc users manual.
ANL-95/11-3.2 (May 2011).

[3] Balay, S., J. Brown, K. Buschelman, V. Eijkhout, W.
Gropp, D. Kaushik, M. Knepley, L. McInnes, and B.
F. Smith, and H. Zhang, PETSc Web page. (2011)
http://www.mcs.anl.gov/petsc.

[4] Knepley, M., “PETSc Tutorial”. Short Course on
Scientific Computing Chinese Academy of Sciences,
Beijing, China. (2010).
http://www.mcs.anl.gov/petsc/petsc-
as/documentation/tutorials/GUCASTutorial10.pdf

[5] Benson S., L. C. McInnes, J. Moré, T. Munson, and
J. Sarich”, “TAO User Manual (Revision 1.10.1)”,
ANL/MCS-TM-242 (2010).

[6] Roman, J. E., E. Romero, and A. Tomas, SLEPc
users manual DSIC-II/24/02 - Revision 3.1, D.
Sistemas Informáticos y Computación, Universidad
Politécnica de Valencia, (2010).

[7] Abhyankar, S. G. An implicitly coupled
electromechanical and electromagnetic transients
simulator for power systems. Ph.D. Dissertation,
2011.

[8] Falcao., D., “High performance computing in power
system applications”, Invited Lecture at the 2
International Meeting on Vector and Parallel
Processing, Porto, Portugal, (1996).

[9] Grijalva S., “Research needs in multi-dimensional,
multi-scale modeling and algorithms for next
generation electricity grids”. DOE conference on
computing challenges for the next-generation power
grid (2011).

[10] IEEE Task Force of the Computer and Analytical
Subcommittee of the Power Systems Engineering
Committee. “Parallel processing in Power Systems
Computation”, IEEE Transactions on Power Systems
7.2 (May 1992).

[11] Zhenyu H., Y. Chen, and J. Nieplocha. “Massive
contingency analysis with high performance
computing”, IEEE Power and Energy Society
General Meeting (July 2009).

[12] Zhenyu H., and J. Nieplocha, “Transforming Power
Grid Operations via High-Performance Computing”,
IEEE Power and Energy Society General Meeting
2008 Pittsburgh, PA, USA, (July 20-24, 2008).

[13] Smith, B., and H. Zhang, “Sparse Triangular Solves
for ILU Revisited: Data Layout Crucial to Better
Performance”, International Journal of High
Performance Computing Applications, 2010. DOI
10.1177/10 94342010384857.

[14] Chai., J. S., N. Zhu, A. Bose, and D.J. Tylavsky.
“Parallel Newton type methods for power system
stability analysis using local and shared memory
multiprocessors”, IEEE Transactions on Power
Systems, 6.4 (November 1991): 9-15.

[15] Decker, I. C., D. M. Falcao, and E. Kaszkurewicz.
“Conjugate gradient methods for power system
dynamic simulation on parallel computers”, IEEE
Transactions on Power Systems. 9.2 (May 1994):
629-636.

[16] Alvarado, F. L., “Parallel solution of transient
problems by trapezoidal integration”, IEEE
Transactions on Power Apparatus and Systems.
PAS-98 (May/June 1979): 1080-1090.

[17] Ilic., M., M. L. Crow, and M. A. Pai., “Transient
stability simulation by waveform relaxation
methods”, IEEE Transactions on Power Systems. 2.4
(November 1987): 943 - 952.

[18] Crow., M. L., and M. Ilic., “The parallel
implementation of waveform relaxation methods for
transient stability simulations”, IEEE Transactions
on Power Systems. 5.3 (August 1990): 922 - 932.

[19] Hou, L., and A. Bose., “Implementation of the
waveform relaxation algorithm on a shared memory
computer for the transient stability problem”, IEEE
Transactions on Power Systems. 5.3 (August 1991).

[20] Jalili-Marandi V., and V. Dinavahi., “SIMD-based
large scale transient stability simulation on the
graphics processing unit”, IEEE Transactions on
Power Systems. 20.3 (August 2010): 1589 - 1599.

[21] IEEE/CIGRE Joint Task Force on Stability Terms
and Definitions., “Interfacing Techniques for transient
stability and electromagnetic transients program”,
IEEE Transactions on Power Apparatus Systems. 8.4
(October 2009): 2385-2395.

[22] Sauer, P.W., and M.A.Pai., Power System Dynamics
and Stability, New Jersey: Prentice Hall Inc., 1998.

[23] Watson, N., and J. Arrillaga., Power System
Electromagnetic Transients Simulation, London,UK:
The Institution of Electrical Engineers, 2003.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

