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ABSTRACT
This paper discusses the development of a parallel three-
phase transient stability simulator that is built using the
high performance computing library PETSc. Unlike the ex-
isting transient stability simulators that use a balanced per
phase transmission network, the authors use a three phase
transmission network. This three phase representation al-
lows a more realistic analysis of unbalanced conditions due
to untransposed transmission lines, widespread single phase
loads and unbalanced disturbances. The goal of this pa-
per is not to delve into the unbalanced analysis but rather
present the scalability results of the newly developed parallel
three-phase transient stability simulator. The performance
of the proposed parallel three-phase transient stability sim-
ulator using Krylov subspace based iterative solver GMRES
with two variants of Block-Jacobi preconditioner and a very
dishonest preconditioning strategy is presented.
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1. INTRODUCTION
Dynamic security assessment (DSA) of large-scale elec-

trical power systems is done by existing transient stabil-
ity simulators that use a balanced per phase model of the
transmission network. Due to the balanced per phase as-
sumption, unbalanced phenomena due to large single phase
loads, unbalanced disturbances, untransposed transmission
lines, single phase feeders, and single phase switching oper-
ations cannot be studied realistically.

A balanced transmission network model was used in the
first developed transient stability analysis tools to make the
computational problem tenable. Over the last decade there
has been tremendous development in computing architec-
tures enabling faster processor speed, bigger memory, and
the ability to solve the problems using multiple processors.
Moreover, there has been a lot of research on speeding up
the solution of linear systems.

In recent years, power systems have grown in size and
complexity due to network expansion and addition of more
components to meet the ever-increasing demand. The dereg-
ulation of the power industry is motivating economic oper-
ation and thus operating the electrical network to its fullest
potential and hence closer to stability limits. Under such
circumstances the analysis of single phase disturbances be-
comes even more important.

We propose a three phase transient stability simulator
which uses a full three phase network model of the trans-
mission network. The ability to model all three phases can
provide a more realistic picture of the dynamics of the indi-
vidual three phases. When power systems operate at their
limits, the margin between stability and instability is small
and even single phase disturbances could trigger dynamic in-
stability. Hence, such single phase disturbances need to be
analyzed and a three phase transient stability simulator can
provide details of the individual phase dynamics. Moreover,
due to modeling of all the three phases, relay operations on
individual phases can be analyzed and the relay settings for
single phase tripping can be better ascertained.



The proposed three-phase transient stability simulator uses
a spatial decomposition, or parallel-in-space, approach for
distributing the differential-algebraic equations to different
processors. The goal of this paper is to discuss the scalabil-
ity results of this parallel implementation. Results obtained
by using iterative solver GMRES, with two preconditioning
schemes, are presented for three large-scale systems.

2. LITERATURE REVIEW
Transient stability simulation for large-scale power sys-

tems is a computationally onerous task due to the need to
solve a large number of equations at each time step. A natu-
ral way to speed up this computation is to use parallel com-
puting techniques, i.e., share the work load amongst multi-
ple processors. Three algorithms for the parallel transient
stability simulation have been proposed so far: parallel-in-
space, parallel-in-time, and parallel-in space and time.

The parallel-in-space algorithms partition the given net-
work into loosely coupled or independent subnetworks. Each
processor is then assigned equations for a subnetwork. The
partitioning strategy for the network division is critical for
parallel-in-space algorithms to minimize the coupling be-
tween the subnetworks, i.e., to reduce the inter-processor
communication, and balance the work load. Once a suit-
able partitioning strategy is selected the next key thing is
the solution of the linear system in each Newton iteration.
Several linear solution schemes have proposed in the litera-
ture, of which the prominent are the Very Dishonest New-
ton Method and Conjugate gradient. Reference [1] uses the
very dishonest Newton method in which the factorization of
the Jacobian matrix is done only when a certain fixed num-
ber of iterations are exceeded. Reference [2] decomposes
the network equations in a Block Bordered Diagonal Form
(BBDF) and then uses a hybrid solution scheme using LU
and Conjugate gradient. Reference [3] solves the network
by a block-parallel version of the preconditioned conjugate
gradient method. The network matrix in [3] is in the Near
Block Diagonal Form (NBDF).

The Parallel-in-time approach was first introduced in [4].
The idea of this approach was to combine the differential
and algebraic equations over several time steps, create a big-
ger system and solve them simultaneously using the Newton
method. All the equations for several integration steps are
assigned to each processor.

Waveform relaxation methods [5]-[7] involve a hybrid scheme
of space and time parallelization in which the network is par-
titioned in space into subsystems and then distributed to the
processors. Several integration steps for each subystem are
solved independently to get a first approximation [8]. The
results are then exchanged and the process is repeated. The
advantage of this scheme is that each subsystem can use a
different integration step (multi-rate integration).

3. PROPOSED THREE-PHASE TRANSIENT
STABILITY SIMULATOR (TS3PH)

The equations for the proposed three phase transient sta-
bility simulator with the network equations written in cur-
rent balance form and the three phase network voltages and
currents in rectangular form are as follows:

dxgen

dt
= f(xgen, Idq, VDQ,abc) (1)

0 = h(xgen, Idq, VDQ,abc) (2)

[

G3ph −B3ph

B3ph G3ph

] [

VD,abc

VQ,abc

]

=

[

IgenD,abc(xgen, Idq)
IgenQ,abc(xgen, Idq)

]

−

[

IloadD,abc(xload, VDQ,abc)
IloadQ,abc(xload, VDQ,abc)

]

(3)

dxload

dt
= f2(xload, VDQ,abc) (4)

(1) and (2) represent the generator dynamics and the sta-
tor current equations. The three-phase network equation, in
current balance form, is given by (3). Here, G3ph and B3ph

are the real and imaginary parts of the complex three phase
Ȳbus matrix. The three phase complex Ȳbus matrix can be
built in a similar way as the per phase Y matrix. Each 3X3
block of Ȳbus can be built either from the conductor geom-
etry and line parameters, if available, or from the positive,
negative and zero sequence line parameters. The later ap-
proach was used for building the three phase Ȳbus matrix.
The load equations can be either represented by differential
equations for induction motor or dynamic load models, or
by algebraic equations for static load models. If static load
models are used then there are no separate variables for the
loads but rather the load current injections are incorporated
into the network equations.

Grouping all the dynamic variables together in one set and
all the algebraic variables in another set, the TS3ph equa-
tions can be described by the differential-algebraic model:

dx

dt
= f(x, y)

0 = g(x, y)
(5)

where

x ≡ [xgen, xload]
t

y ≡ [Id, Iq, VD,abc, VQ,abc]
t

The proposed three-phase transient stability simulator uses
a fixed step implicit trapezoidal scheme for discretization as
it is easy to implement and has numerical A-stablility prop-
erties. A literature survey on transient stability simulators
also reveals that the implicit trapezoidal scheme is the pref-
ered discretization scheme [1, 2, 3, 4, 8, 15]. One of the
future developments for the three-phase transient stability
simulator involves implementing more numerical integration
schemes, both implicit and explicit with variable time step-
ping.

Using the implicit trapezoidal scheme the nonlinear alge-
braic equations to be solved are

x(t+∆t)− x(t)− (6)

∆t

2
(f(x(t+∆t), y(t+∆t)) + f(x(t), y(t))) = 0

g(x(t+∆t), y(t+∆t))) = 0 (7)

Equation (7) is then solved iteratively using Newton’s method
at each time step. The linear system to be solved in each
Newton iteration is

[

Jxx Jxy

Jyx Jyy

] [

∆x

∆y

]

= −

[

Fx

Fy

]

(8)



4. TS3PH PARALLEL IMPLEMENTATION
For the proposed three-phase transient stability simulator,

we adopt a parallel-in-space approach for the decomposition
of differential and network equations. The decomposition
of the equations is based on the partitioning of the network
equations since the network forms the only coupling. The
generator and the load equations are naturally decoupled as
they are only incident at a bus.

4.1 Partitioning
The ParMetis package [18] was used for doing the net-

work partitioning. The ParMetis package [18] is available as
a plug-in with the PETSc library. PETSc provides an in-
terface for using the ParMetis package where the user calls
PETSc interface routines to use the ParMetis package.

The Parmetis package requires an Adjacency matrix whose
elements are 1s and 0s, where an element Ai,j is 1 if vertex
i is connected to vertex j. Along with the adjacency matrix,
a weight can be also can be assigned to each vertex to ac-
count for different computational requirement. With vertex
weights, ParMetis tries to minimize the edge cuts and also
have the same amount of vertex weights in each sub-domain.

For TS3ph, the connection information from the single-
phase Ybus matrix of the network was used as the adjacency
graph. Larger weights were assigned to the vertices having
generators to account for the extra computation involved for
the generator differential and algebraic equations.

4.2 Equations for each processor
Using the parallel-in-space approach, or spatial decompo-

sition, each processor gets a subset of the generator, network
and load equations of the complete network. The generator
and the load equations are naturally decoupled since they
are incident only on the local network bus and do not re-
quire communication with other processors. The network
equations requires communication with other processors to
compute the current mismatch equations.

The equations assigned to each processor at each time step
are

F ≡

[

fp(xp, I
p

dq, V
p)

gp(xp, I
p

dq, V
p, V offproc)

]

(9)

where the superscript p denotes the processor number and
V offproc means the network voltages required from other
processors for computing gp. The variables for each proces-
sor are

X
p
≡





xp

I
p
dq

V p





4.3 Speeding up the linear solution process

4.3.1 Linear solver
Newton’s method requires the solution of the linear sys-

tem

J(xi)∆x
i+1 = −F (xi) (10)

where i is the iteration count. Solution of (10) can be ei-
ther done by direct or iterative methods. From our exper-
iments with direct and iterative solvers, we found that it-
erative solvers tend to be more scalable. Hence, we used
Krylov subspace based iterative method GMRES (General-
ized Minimum Residual) as the linear solver.

4.3.2 Preconditioning
The convergence of the Krylov subspace linear solvers de-

pends on the eigenvalues of the operating matrix A and
can be slow if the matrix has widely dispersed eigenvalues.
Hence, to speed up the convergence, a preconditioner ma-
trix P−1, where P−1 approximates A−1, is generally used.
PETSc provides a variety of preconditioners and we experi-
mented with two variations of the parallel Block-Jacobi pre-
conditioner to optimize the iterative linear solution process.

The first preconditioning scheme tested was to use a single
diagonal Jacobian block on each processor as the precondi-
tioner. As an example, if the Jacobian matrix is distributed
to two processors (0 and 1) as follows

[0]
[1]

[

J1 J2

J3 J4

]

then the parallel Block-Jacobi preconditioner is

[0]
[1]

[

J−1

1

J−1

4

]

The factorization of J1 and J4 can be done independently
on each processor and no communication is required for
building the preconditioner.

The second preconditioner that we experimented with is
essentially a multiple-level Block-Jacobi preconditioner. The
diagonal Jacobian block on each processor is further divided
into smaller weakly coupled diagonal blocks. For example,
if the Jacobian matrix on two processors is

[0]
[1]









J1a J1b

J1c J1d
J2

J3

J4a J4b

J4c J4d









where the off-diagonal blocks J1b, J1c , J4b, and J4c represent
the Jacobin part for weak coupling within each subnetwork,
then the preconditioner with 2 blocks/processor would be

[0]
[1]









J−1

1a

J−1

1d

J−1

4a

J−1

4d









For problems based on structured grids, as found in PDE
simulations. a row-wise partitioning strategy would suffice.
However, for the transient stability problem, we found a
row-wise division to be inefficient since each processor has
the generator equations set up first followed by the network
equations. We used ParMetis to partition the diagonal Jaco-
bian block into a larger number of weakly connected smaller
diagonal blocks on each processor. We didn’t extract the
partitioning information but our conjecture is that the par-
titioning of the diagonal block further creates weakly con-
nected subsystems, a topic which needs further exploration.

Building the preconditioner requires a factorization pro-
cess, to compute the L and U matrices, and subsequent tri-
angular solves. The numerical factorization phase, for large
scale systems, is the most dominant operation and can con-
stitute a large proportion of the total execution time. Hence,
we use a strategy, called Very Dishonest Preconditioner, pro-
posed in [10], of only updating the numerical factorization
during the fault on/off time steps and reusing the precondi-
tioner for all other time steps.



4.3.3 Reordering scheme
By reordering the rows and columns of a matrix, it may

be possible to reduce the amount of fill-in created by LU
factorization, thereby reducing time and storage cost. We
experimented with various reordering strategies, available
with PETSc, on the test systems to determine the optimal
reordering strategy, i.e., the ordering scheme resulting in
the least number of nonzeros in the factored matrix. The
Quotient Minimum Degree ordering was found to be the
most optimal approach for the systems that we tested.

5. BENCHMARKING AND PERFORMANCE
RESULTS

The developed three-phase transient stability simulator
was benchmarked on the WECC 9-bus system with the com-
mercial positive sequence TS simulator PSS/E version 30
on a Windows Vista PC. The benchmarking scenario was
a balanced three-phase fault applied on bus 5. The gener-
ators at buses 1, 2, and 3 are modeled as GENROU with
an IEEET1 exciter model and all the loads are modeled as
constant impedance loads. The benchmarking simulations
were run for 3 seconds and the step size used for numerical
integration was 1 cycle, i.e., 0.01667 seconds. Figures 1 and
2 show the TS3ph results match up nicely with the PSS/E
results.
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Figure 1: Generator speeds for a three phase fault
on bus 5 from 0.1 sec to 0.2 sec

Three large power systems were created for testing TS3ph
by duplicating the 118 bus system. To ensure that the in-

Table 1: TS3ph large-case test system inventory

Scale Buses Generators Branches

10x 1180 540 2085

20x 2360 1080 4670

40x 4720 2160 11340

dividual 118 bus areas are connected, we used 5 randomly
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Figure 2: Generator speeds for a three phase fault
on bus 5 from 0.1 sec to 0.3 sec

chosen tie lines between each area. Thus each 118 bus sys-
tem area is connected to every other by 5 tie lines.

All the generators were modeled using the GENROUmodel
with an IEEE Type 1 exciter model [19] with the loads mod-
eled as constant impedance loads.

The parallel performance runs were done on a 16 node
cluster with 2 processors on each node. Each processor is an
Intel Xeon 2.53 GhZ with 4 cores per processor. Each core
has 3 GB RAM giving a total of 24 GB RAM per node. The
interconnecting network for this cluster is InfiniBand.

To compare the parallel performance results, the optimal
solution strategy for simulation on a single processor was
first determined. We found very dishonest preconditioned
GMRES to be more efficient than a direct linear solver. We
further experimented with LU and incomplete level-based
LU factorization, ILU(p), as the preconditioners. For large-
scale systems a full LU factorization requires more memory
due to a larger number of extra fill-in elements. As such,
most of the execution time is spent in fetching data from the
main memory, rather than doing the computation, resulting
in degrading the performance.

Hence, we used incomplete level-based LU factorization,
ILU(p)) as the linear solver, which requires fewer fill-ins and
subsequently less memory than complete LU. Fewer levels,
with ILU(0) the cheapest, require less memory but could
result in more triangular solves if the convergence is poor.
We tested various levels and found ILU(6) as the optimal
for our test cases. The reader is referred to [12], Chapter 6,
for a detailed discussion and results for the simulations on
a single core.

For all the parallel runs, we used GMRES as the iterative
solver with very dishonest Block-Jacobi preconditioner (with
1 or more diagonal blocks/core), and a quotient minimum
degree reordering for each block. ILU(6) on each block was
used as the factorization scheme.

As seen from the results in tables 2 - 4, for the 1180 bus
system, the maximum speed up obtained with Block-Jacobi
preconditioner, with 1 block/core, was 1.33 on 4 cores, while
the Block-Jacobi scheme with two 2 blocks/core on 3 cores



Table 2: TS3ph scalability results for 1180 bus sys-
tem

Preconditioning strategy # of cores Total time (sec) Speed up

ILU(6) 1 8.61 1.00

Block-Jacobi 2 9.75 0.88

Block-Jacobi 3 6.74 1.28

Block-Jacobi 4 6.46 1.33

Block-Jacobi 6 7.14 1.21

Block-Jacobi+2 blocks/core 2 9.93 0.87

Block-Jacobi+2 blocks/core 3 6.39 1.35

Table 3: TS3ph scalability results for 2360 bus sys-
tem

Preconditioning strategy #of cores Total time (sec) Speed up

ILU(6) 1 44.9 1.00

Block-Jacobi 2 37.1 1.21

Block-Jacobi 3 25.1 1.79

Block-Jacobi 4 18.2 2.47

Block-Jacobi 6 18.5 2.43

Block-Jacobi 8 22.5 2.00

Block-Jacobi+2 blocks/core 2 37.9 1.19

Block-Jacobi+2 blocks/core 3 25.3 1.78

Block-Jacobi+2 blocks/core 4 19.0 2.36

Table 4: TS3ph scalability results for 4720 bus sys-
tem

Preconditioning strategy # of cores Total time (sec) Speed up

Block-Jacobi 1 404 1.00

Block-Jacobi 2 216 1.87

Block-Jacobi 3 126 3.21

Block-Jacobi 4 62.5 6.46

Block-Jacobi 6 44.5 9.08

Block-Jacobi 8 60.3 6.69

Block-Jacobi+2 blocks/core 2 115 3.52

Block-Jacobi+2 blocks/core 3 411 0.98

Block-Jacobi+2 blocks/core 4 42.0 9.61

gave a speed up on 1.35. For the 2360 bus system, the Block-
Jacobi preconditioner with 1 diagonal block/core yielded
the best result with a speed up of 2.47 on 6 cores while
a comparable speed up, 2.36, was attained with 2 diagonal
blocks/core on only 4 cores.

The 4720 bus test case, which is the biggest one, shows
considerable speed up with a superlinear speed up of 9 times
with Block-Jacobi on 6 cores and 9.6 on 4 cores but with 2
blocks/core. This superlinear speed up can be attributed
to the slow down in the sequential performance due to the
need to access data from the main memory. For the 1180
and 2360 bus system all or most of the data can fit into the
cache, for single core runs, and hence can be accessed much
faster. The accessing of data, for the 4720 bus test case,
requires fetching from the main memory since all the data
cannot fit into the cache. This fetching of data from the
main memory degrades the performance for the sequential
run for the 4720 bus test case. Figure 3 shows the speed up
performance versus the number of cores for each of the test
systems.
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Figure 3: Speed up with Block-Jacobi precondi-
tioner having 1 diagonal block per core

6. PETSC: PORTABLE EXTENSIBLE
TOOLKIT FOR SCIENTIFIC
COMPUTATION

The Portable Extensible Toolkit for Scientific Computa-
tion (PETSc)[13] is a high performance computing library
developed in the Mathematics and Computer Science Divi-
sion at Argonne National Laboratory. It includes a suite
of data structures and routines for the scalable (parallel)
solution of large-scale scientific applications.

Figure 4: Organization of the PETSc library [13]

PETSc utilizes the Message Passing Interface (MPI) stan-
dard for all message passing communication. It is portable
to various operating systems such as Unix, Linux, Windows,



Macintosh etc., and the application code can be written ei-
ther in C, C++, Fortran, or Python. Various linear solution
schemes, direct and iterative methods with a variety of pre-
condtioners, are available for optimizing the linear solution
process. Additionally, various third-party packages, such as
ParMetis, SuperLU, UMPACK etc., are can be downloaded
with PETSc installation. PETSc consists of a set of libraries
that contain routines for creating vectors, matrices, and dis-
tributed arrays, both sequential and parallel, as well as li-
braries of linear and nonlinear numerical solvers. PETSc
also incorporates time-stepping methods and graphics.

The wide range of sequential and parallel linear solvers,
preconditioners, reordering strategies, flexible run-time op-
tions, ease of code implementation, debugging options, and
a comprehensive source code profiler make PETSc an at-
tractive experimentation platform for developing the three-
phase transient stability simulator. The proposed parallel
three-phase transient stability simulator has been developed
using the recently release version, version 3.2, of PETSc.
The organization of the PETSc library is illustrated in Fig-
ure 4.

7. CONCLUSIONS
This paper discussed the development of the parallel three-

phase transient stability simulator and presented the details
and the results of its parallel implementation. The scalabil-
ity results of the proposed simulator were presented using
GMRES with two variants of the Block-Jacobi precondi-
tioner and the very dishonest preconditioning strategy. The
parallel performance shows good scalability with both the
preconditioners for the largest test case. The slow down of
the sequential performance, for large systems, due to slow
fetching of data from the main memory was identified.

To make the proposed parallel three-phase transient sta-
bility simulator a practical application a lot of development
still needs to be done. In the future we propose to further
develop the proposed simulator by testing its accuracy, for
both unbalanced and balanced cases, with commercially ac-
cepted packages, incorporating different equipment models,
and exploring strategies to speed up the numerical solution
for both serial and parallel implementation.
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