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Abstract—Real-time dynamics simulation of large-scale power
systems is a computational challenge because of the need to solve
a large set of stiff, nonlinear differential-algebraic equations.
The main bottleneck in these simulations is the solution of
the linear system during each nonlinear iteration of Newton’s
method. We present a parallel linear solution scheme using the
Krylov subspace-based iterative solver GMRES with a Block-
Jacobi preconditioner. The scheme shows promise for real-time
dynamics simulation, with a good speed up for a 2383-bus, 327-
generator test case. Results obtained for both stable and unstable
operating conditions show that real-time simulation speed can be
realized by using the proposed parallel linear solution scheme.

Index Terms—Transient Stability, Parallel Computing, Block-
Jacobi Preconditioner, Newton-GMRES, PETSc.

I. INTRODUCTION

HE need for faster, and accurate, power grid dynamics

simulation (or transient stability analysis) has been a
primary focus of the power system community in recent years.
This view was reiterated in the recent DOE and EPRI work-
shops [14], [20]. Indeed, more than two decades ago, real-time
dynamics simulation was identified as a “grand computing
challenge” [23]. As processor speeds were increasing, real-
time dynamics simulation appeared possible in the not-too-
distant future. Unfortunately, processor clock speeds saturated
about a decade ago, and real-time dynamics simulation re-
mains a grand computing challenge.

Dynamics simulation of a large-scale power system is
computationally challenging because of the presence of a
large set of stiff, nonlinear differential-algebraic equations
(DAEs), where the differential equations model dynamics of
the rotating machines (e.g., generators and motors) and the
algebraic equations represent the transmission system and
quasi-static loads. The electrical power system is expressed
as a set of nonlinear DAEs, where f and g are vector-valued
nonlinear functions.

dz
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The solution of the dynamic model given in (1) needs the
following:
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o A numerical integration scheme to convert the differential
equations in algebraic form
« A nonlinear solution scheme to solve the resultant non-
linear algebraic equations
¢ A linear solver to solve the update step at each iteration
of the nonlinear solution
Figure 1 shows the wall-clock execution time of a series of
dynamics simulations on a single processor for a temporary
three-phase fault applied for 0.1 seconds.
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Fig. 1. Single processor dynamic simulation execution times for a 3 second
simulation period on different systems for 0.1 second three-phase balanced
temporary fault.

The test cases with bus sizes greater than 1000 were
obtained by duplicating the 118 bus test system 10, 20, and 40
times respectively, and connecting each 118 bus area by five
randomly chosen tie lines. As system size increases, execution
time grows dramatically. Thus “real- time” dynamics analysis
of a utility or a regional operator network is an enormous
computing challenge.

For example, PIM, a regional transmission organization
(RTO) covering 168,500 square miles of 12 different states,
monitors approximately 13,500 buses [21]. Similarly, the
Electric Reliability Council of Texas (ERCOT) monitors ap-
proximately 18,000 buses [13]. High-level Eastern Intercon-
nection models contain more than 50,000 buses. To perform
dynamics simulation in real time, the simulator must compute
the solution to a set of equations containing more than
150,000 variables in a few milliseconds. Because of this high
computational cost, dynamics analysis is usually performed
on relatively small interconnected power system models, and
computation is mainly performed offline. Researchers at Pa-
cific Northwest National Laboratory have reported that a



simulation of 30 seconds of dynamic behavior of the Western
Interconnection requires about 10 minutes of computation time
today on an optimized single processor [17].

II. SPEEDING POWER GRID DYNAMICS SIMULATION BY
PARALLEL COMPUTING

A natural way to speed this computation is to use parallel
computing techniques, namely, share the computational load
amongst multiple processors. The need for parallelizing exist-
ing power system applications is even greater as the computer
hardware industry moves toward multicore and many core
architectures. All major computer vendors are aggressively
introducing a new generation of hardware that incorporates
multiple cores on a chip, sometimes with additional simul-
taneous multithreading capabilities. Products incorporating 6
and 8 cores are already on the market. The number of cores
per chip is expected to grow rapidly, so that even in the
relatively short term, a single chip is expected to support
the execution of a few hundred threads. These multicore
architectures can be utilized efficiently only with parallel
algorithms that distribute the computational load over multiple
cores. Several workshops [14], [20] have highlighted the need
for investigating these multicore/many-core architectures for
accelerating performance of power system applications.

In the context of parallel algorithms for dynamics simu-
lations, most of the research effort was done over the past
decade. The parallel-in-space algorithms partition the given
network into loosely coupled or independent subnetworks.
Each processor is then assigned equations for a subnetwork.
The partitioning strategy for the network division is critical
for parallel-in-space algorithms to minimize the coupling
between the subnetworks, that is, to reduce the inter processor
communication, and balance the work load. Once a suitable
partitioning strategy is selected the next key step is the solution
of the linear system in each Newton iteration. Several linear
solution schemes have been proposed in the literature, of
which the most prominent are the very dishonest newton
method and conjugate gradient method. Reference [9] uses
the very dishonest Newton method in which the factorization
of the Jacobian matrix is done only when a certain fixed
number of iterations are exceeded. Reference [11] decomposes
the network equations in a block bordered diagonal form
(BBDF) and then uses a hybrid solution scheme using LU
and conjugate gradient. Reference [12] solves the network
by a block-parallel version of the preconditioned conjugate
gradient method. The network matrix in [12] is in the near
block diagonal form (NBDF).

The parallel-in-time approach was introduced in [5]. The
idea of this approach seeks to combine the differential and
algebraic equations over several time steps, create a bigger
system, and solve them simultaneously using the Newton
method. All the equations for several integration steps are
assigned to each processor.

Waveform relaxation methods [18], [10], [16] involve a
hybrid scheme of space and time parallelization in which
the network is partitioned in space into subsystems and then
distributed to the processors. Several integration steps for each

subsystem are solved independently to get a first approxima-
tion [15]. The results are then exchanged, and the process is
repeated. The advantage of this scheme is that each subsystem
can use a different integration step and/or different integration
algorithm (multirate integration).

III. PARALLEL-IN-SPACE DYNAMICS SIMULATION
APPROACH

This section describes the parallel implementation of our
dynamics simulator. Unlike other dynamics simulators that
use a per phase balanced network model, our simulator is a
three-phase dynamics simulator. The details of the three-phase
dynamics simulator can be found in [1], [2]. The simulator is
developed using the mathematical and computing platform of
the high performance library PETSc [8].

A. Domain Decomposition

We adopt a domain decomposition approach that partitions
the power system network into several subnetworks. Figure 2
shows an illustrative example of the division of the IEEE 118-
bus system into two subnetworks. Each subnetwork is then

Fig. 2. Partitioning of the IEEE 118 bus system for 2 processors

the domain of operation of a processor, in other words, each
processor is assigned the DAE equations for the subnetwork.
Equation (2) represents the equations for each processor,
where the subscript p represents the variables for the current
processor, and the subscript ¢ represents the variables needed
from other processors to compute the function on the current

processor.
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Note that the differential equations i.e. the electromechan-
ical machine equations are naturally decoupled because they
are incident at a bus only, whereas the algebraic network equa-
tions require communication with other processors to compute
their local function. Hence the partitioning of the network
is done by using only the topology of the network. The
partitioning of the network can be done by hand via judicious
topology scanning or by graph partitioning techniques.

For our simulator, we use the ParMetis package [22] for do-
ing the network partitioning. ParMetis is a parallel graph par-
titioning package that is used for partitioning of unstructured




graphs. It tries to partition a given graph with the objective
of minimizing the edge cuts while having balanced partitions,
that is, balancing computational load for each processor.

The ParMetis package requires an adjacency matrix whose
elements are 1s and Os, where an element A; ; is 1 if vertex ¢
is connected to vertex j. Along with the adjacency matrix, a
weight can be assigned to each vertex to account for different
computational requirements. With vertex weights, ParMetis
tries to minimize the edge cuts and also have the same number
of vertex weights in each subdomain.

For our simulator, the connection information from the
single-phase Y3, s matrix of the network was used as the adja-
cency graph for ParMetis. Larger weights were assigned to the
vertices having generators to account for the extra computation
involved for the generator differential and algebraic equations.

B. Generalized Minimum Residual Method (GMRES)

Newton’s method requires the solution of the linear system
J(zH) Azt = —F(2?), 3)

where ¢ is the iteration count. Solution of (3) can be done by
either direct or iterative methods. Krylov subspace iterative
methods are the most popular among the iterative methods
for solving large linear systems. These methods are based on
projection onto subspaces called Krylov subspaces of the form
b, Ab, A%b, A3b, . ... A general projection method for solving
the linear system

Az =1 G))

is a method that seeks an approximate solution x,, from an
affine subspace ¢ + K, of dimension m by impositng

b— Az, L L,,

where L,, is another subspace of dimension m and x( is
an arbitrary initial guess to the soution. A Krylov subspace
method is a method for which the subspace K,, is the Krylov
subspace

Km(A7 TO) = Span{7007A7‘0,A2r0’ A37"07 o ,Am_17"0}7

where 1o = b— Axq. The different versions of Krylov subspace
methods arise from different choices of the subspace L,, and
from the ways in which the system is preconditioned.

The generalized minimum residual method (GMRES)[25]
is a projection method based on taking L,, = AK,,(A,ro)
in which K,, is the mth Krylov subspace. This technique
minimizes the residual norm over all vectors z € xg+ K,,. In
particular, GMRES creates a sequence x,, that minimizes the
norm of the residual at step m over the mth Krylov subspace

[|b — Ay, ||2 = min||b — Ax||2 5)

At step m, an Arnoldi process is applied for the mth Krylov
subspace in order to generate the next basis vector. When the
norm of the new basis vector is sufficiently small, GMRES
solves the minimization problem

Ym = CL?"gminHﬂel - HmyHQa

where H,, is the (m + 1)zm upper Hessenberg matrix.

C. Block-Jacobi Preconditioner

The convergence of the Krylov subspace linear solvers
depends on the eigenvalues of the operating matrix A and can
be slow if the matrix has widely dispersed eigenvalues, such
as ill-conditioned power system matrices. Hence, to speed up
the convergence, a preconditioner matrix M ~!, where M !
approximates A~1, is generally used. A preconditioner is a
matrix that transforms the linear system

Az =10

into another system with a better spectral properties for the
iterative solver. If M is the preconditioner matrix, then the
transformed linear system is

MY Az = M~ 1. (6)

Equation (6) is refered to as being preconditioned from the
left, but one can also precondition from the right

AM™ly=b, =My, (7)
or split preconditioning
M AMG 'y = MY, =My, ®)

where the preconditioner is M = My M 2.

When Krylov subspace methods are used, it is not necessary
to form the preconditioned matrices M ~*A or AM ! explic-
itly since this is an expensive process. Instead, matrix-vector
products with A and solutions of linear systems of the form
Mz = r are performed (or matrix-vector products with M ~*
if explicitly known).

Designing a good preconditioner depends on the choice
of iterative method, problem characteristics, and so forth. In
general a good preconditioner should be (a) cheap to construct
and apply, and (b) the preconditioned system should be easy
to solve.

With the Jacobian matrix in a nearly bordered block diag-
onal form, the diagonal block on each processor can be used
as a preconditioner. As an example, if the Jacobian matrix is
distributed to two processors (0 and 1) as follows

o] [Ji J2
[1] Js  Jy ’

then the parallel Block-Jacobi preconditioner is

it

The factorization of J; and J4 can be done independently on
each processor, and no communication is required for building
the preconditioner.

D. Matrix Reordering

By reordering the rows and columns of a matrix, it may
be possible to reduce the amount of fill-in created by LU
factorization, thereby decreasing the number of floating point
operations and storage. We experimented with various reorder-
ing strategies, available with the Portable Extensible Toolkit
for Scientific Computation [7] on the test systems to determine
the optimal reordering strategy, namely, the ordering scheme



resulting in the least number of nonzeros in the factored
matrix. The quotient minimum degree ordering was found to
be the best approach for the systems that we tested.

IV. SCALABILITY RESULTS

The 2383-bus system provided with the MatPower [27]
package distribution was used to test the scalability of the
simulator. This test case has 327 generators and 2896 branches
supplying a total load of 25281 MW. This case represents
the Polish 400, 220, and 110 kV networks during winter
1999-2000 peak conditions. For the dynamic simulations, all
the generators were modeled by using the GENROU model
[19] with an IEEE Type 1 exciter model [19], and the loads
modeled as constant impedances. The numerical integration
scheme used is an implicit trapezoidal scheme with a time
step of 0.01667 seconds.

The parallel performance runs were done on a shared-
memory machine with four 2.2 GHz AMD Opteron 6274
processors. Each processor has 16 cores, giving a total of 64
cores. The code for the developed simulator is written in C
using the PETSc library framework and compiled with GNU’s
gcc compiler with -O3 optimization.

Since our goal is realizing a real-time dynamics simulation,
we define the metric “real-time speedup factor” s, given in (9)
in order to assess the proximity of the simulation to real-time.
A value of s, > 1 indicates that the simulation is running in
realtime or faster than realtime.

Sp = — €))

T, is the simulation time length, and T, is the simulation
execution time.

In the following subsections we present the scalability of
our dynamics simulator using a Block-Jacobi (1 block/core)
preconditioned GMRES scheme and compare it with parallel
sparse LU factorization using the MUMPS [6] package. PETSc
provides parallel GMRES as the default linear solver and the
choice of variety of preconditioners including Block-Jacobi
with ILU(0) and nested dissection reordering which is the
default parallel preconditioner. We use LU with a quotient
minimum degree reordering for the Block-Jacobi precondi-
tioner. MUMPS is a parallel sparse direct linear solver that
uses a multifrontal approach[6] for the parallel solution of
Ax =b.

Two cases are considered for assessing the scalability: (1)
A three-phase fault on bus 185 for 0.1 seconds that results in
stable dynamics and (2) a three-phase fault on bus 18 for 0.1
seconds that results in unstable dynamics. The dynamics of
the 2383 bus system were simulated for 3 seconds.

A. Stable Case: Three-phase Fault on Bus 185

Figure 3 shows the dynamics of generator speeds for a three-
phase fault on bus 185 for from ¢=0.0 sec to ¢=0.1 sec. Bus
185 has a large load of 362 MW. Following the fault, the
generators depart from their synchronous mode of operation
but quickly regain synchronism, as seen in Figure 3.
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Fig. 3. Generator speeds for a three-phase fault applied for 0.1 seconds on
bus 185

Figures 4 and 5 show the execution times and the real-time
speedup factor s,. for the stable operating conditions. As seen,
the Block-Jacobi Newton-GMRES scheme shows significant
speedup as compared with a parallel LU factorization using
MUMPS.
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Fig. 4. Execution times for stable 2383 bus system dynamics
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B. Unstable Case: Three-phase Fault on Bus 18

For testing the unstable dynamics, a three-phase fault was
placed on Bus 18 from t = 0.0 sec to t = 0.1 sec. The generator
with the largest real power output is connected to Bus 18. As
seen from Figure 6, following the fault the generator on bus 18
loses synchronism, and its speed drops. The unstable dynamics
cause an increased number of nonlinear and linear iterations
due to to increased swinging, or separation, of the generator
rotor angles. For the stable case, the maximum number of
Newton iterations observed was 3, while for the unstable case
it was 5. The execution time on 1 processor using the Block-
Jacobi preconditioned GMRES scheme takes 21.21 seconds
for the stable case while it takes 23.38 seconds for the unstable
case. However, on 24 cores the simulation execution requires
only slightly more than 3 seconds of simulated time. Thus,
real-time simulation is nearly achieved on 24 cores with the
proposed scheme. In comparison, MUMPS does not show
good scalability, with an execution time of about 16 seconds,
resulting in a real-time speed up factor factor of only 0.2,
which is five times slower than real-time.

1.02

0.88 ‘ :
0 0.5 1

15 2 2.5 3
Time (sec)

Fig. 6. Generator speeds for a three-phase fault applied for 0.1 seconds on

bus 18

=

=p=preconditioned GMRES

@
=

==Direct LU using MUMPS

Execution Time (sec)
MW B Ln
E &8 & B

o

—

1 2 4 2 1& 24 32
# of Cores

o

Fig. 7. Execution times for unstable 2383 bus system dynamics

Pt
=)

=%=preconditioned GMRES

=
=)

==Direct LU using MUMPS

A~
" " *

1 2 4 k] 16 24 2

=1
=
=)

ﬁ
=
=

Real-time speed up factor

=
=
=

# of Cores

Fig. 8. Real-time speed factor for unstable 2383 bus system dynamics

C. Comments on the scalability results

« For the single core case, the Block-Jacobi preconditioned
GMRES scheme is faster than the direct solution using
MUMPS. This can be attributed to (a) the difference in
reordering scheme used (b) the direct solver algorithm.
In MUMPS we experimented with different reordering
schemes and selected one which had the least solution
time. We could not get the information about the nonzeros
in the factored matrix done by MUMPS. Moreover,
PETSc’s LU factorization data structure has recently been
improved to make it more memory access efficient [26].

e Going from one core to two cores, an increase in
the execution time is observed for the Newton-GMRES
scheme. Note here that for two cores direct LU is only
applied on the block diagonal, which results in a weaker
preconditioner, as compared to LU on the entire matrix
for the single core case. We observed an increase in the
number of nonlinear iterations for the two core case as
compared to single core case which explains the increase
in the run-time.

V. PETScC: PORTABLE EXTENSIBLE TOOLKIT FOR
SCIENTIFIC COMPUTATION

Developing scalable software for existing and emerging
power system problems is a challenging task and requires con-
siderable time and effort. This effort can be reduced by using
high-performance software libraries that are tested on a wide
variety of scientific applications, used on a gamut of platforms
from single-core machines to supercomputers, have highly
optimized implementations, and include a wide array of tested
numerical solvers. Our simulator is based on the mathematical
and computing framework of the high-performance library
PETSc [8]. The wide range of sequential and parallel linear
solvers, preconditioners, reordering strategies, flexible run-
time options, ease of code implementation, debugging options,
and a comprehensive source code profiler make PETSc an
attractive experimentation platform for developing our parallel
dynamics simulator. A review of PETSc and its use for
developing scalable power system simulations can be found
in [3].

PETSc is an open source package (BSD-style license) for
the numerical solution of large-scale applications and provides



the building blocks for the implementation of large-scale
application codes on parallel (and serial) computers. It is
a part of Department of Energy’s Advanced Computational
Software[4] collection and was the winner of 2009 R&D Top
100 awards [24].

The PETSc package consists of a set of libraries for creating
parallel vectors, matrices, and distributed arrays, scalable
linear, nonlinear, and time-stepping solvers. The organization
of PETSc is shown in Figure 9 and few of the components of
each library are shown in Figure 10.
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To the authors knowledge, PETSc has not yet been used
by the power system community for developing power system
applications, but PETSc has been popular with researchers in
the field of partial differential equation simulations.

VI. CONCLUSIONS

This paper presented real-time simulation of power sys-
tem dynamics using a parallel Block-Jacobi preconditioned
Newton-GMRES scheme. Results presented on a large 2383-
bus system with 327 generators, for both stable and unsta-
ble operating conditions, show that real-time speed can be
achieved with the proposed scheme. Nevertheless, the pro-
posed scheme and other scalable algorithms need to be tested
on various power system topologies and operating conditions,
in order to evaluate their viability in an online environment.
The PETSc library can accelerate the research on developing
and testing various scalable algorithms for real-time dynamics
simulation.
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