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Blackout Analysis and Vulnerability Identification 
More realistic modeling of cascading blackouts: existing models have several 
gaps: lack of properly automated and coordinated controls, use of static system 
models, lack of protection system models, SPS/RAS or human intervention; thus 
more realistic models that address these gaps should be developed. 
 

Interaction network and interaction model: interactions between component 
failures can reveal the outage propagation pattern 
 
 
 
 
 
 
 
 
 
 
                 Topology of 118-bus system                                               Interaction network 
 

• Propose methods to quantify effectively the interactions between component 
failures and obtain the interaction network capturing the propagation pattern; 
• Identify key links and components that play critical role in outage propagation; 
• Propose an interaction model based on the propagation patterns in the 
interaction network to greatly improve the simulation efficiency; 
• Develop effective key-link based mitigation strategies to prevent outage 
propagation and reduce the cascading risk. 
 

Branching process: statistically describe the outage propagation by both one-
type and multi-type branching processes 
 
 
 
 
 
 
 
 
  
                                   
                                 Branching processes                              Marginal distribution of line outages     
 

• Distribution of initial outage + average propagation      distribution of total 
outage; 
• Average propagation: offspring mean of one type branching process or largest 
eigenvalue of offspring mean matrix of multi-type branching process indicate the 
system’s closeness to criticality; 
• Multi-type branching process can be used to study interdependent outages or 
interdependent critical infrastructure including electric power grid 
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Motivation 
 
 
 

Key Questions/Issues 
•  Understanding blackout 

propagation patterns 
•  Blackout risk for a given 

loading, weather condition 
•  Identification of vulnerabilities. 
•  Mitigation measures 
•  Blackout dynamics 

simulations too slow! 

Research Thrust Areas 
•  Methods to analyze, and 

mitigate cascading blackouts, 
complementing established 
ANL tools, such as EPFAST  

•  Real-time dynamics simulation 
of cascading failures 

•  Cascading outage preventative 
measures 

Good News ;) 
 

Current projects 
Protection and Dynamic Modeling, Simulation, 
and Analysis of Cascading Outages.  
Sponsor: Grid Modernization Lab Consortium (2016-2019) 
Multifaceted Mathematics for Complex Energy 
Systems. Sponsor:  
Sponsor: DOE ASCR (2012-2017) 
Modeling of Extreme Events.  
Sponsor: Grid Modernization Lab Consortium (2016-2019) 
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Accelerating dynamics simulations and preventive 
control 
 
 

2003 Northeast Blackout: 55  
million people affected  

2011 Southwest Blackout: 7 million 
people affected 

Blackout events on the rise!! 
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On-going work and future steps

I Optimization with multiple dynamics scenarios (faults at
di↵erent locations).

Total cost = $6216.08
Generator Bus Number MW

Gen1 1 162.71
Gen2 2 103.16
Gen3 3 51.53
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Figure: Generator frequencies for
faults at Bus 7 and Bus 9

I Low-level implementation (PETSc + IPOPT)
I Mixed-BFGS approach for computing Hessian
I Parallelizing dynamics scenarios
I Transiently unstable scenarios

Without dynamic constraints

Total cost = $5297.41

Table: Generation schedule without dynamic constraints

Generator Bus Number MW

Gen1 1 89.81
Gen2 2 134.33
Gen3 3 94.20
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Figure: Generator frequencies for
fault at Bus 7
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Figure: Generator frequencies for
fault at Bus 9
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Generator(2(would(trip(

Generator frequencies with modified dispatch  
(initial conditions).  

Without preventive control With preventive control 

      Fault at Bus 9                        Fault at Bus 7 

Dynamics simulation accelerated by HPC and advanced numerical solvers 
(adaptive time-stepping and Schwarz-preconditioned iterative linear solver) 


