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Focus on LARGE Power Blackouts

Blackout of August 14, 2003
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2003 Northeast Blackout affected 55 million people




LARGE Power Blackouts
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Southwest Blackout 2011 affected 7 million people



LARGE Power Blackouts

INDIA BLACKOUT HITS 600M States affected JAMMU &

— KASHMIR
A second blackout has hit CHINA
India just 24 hours after its HIMACHAL
northern power grid — PRADESH
CORAPERO On MOMdAY. Now PUNJAB —— UTTARAKHAND
included in the power outage
are the eastern states of HARYANA
Bihar, Jharkhand and West New Delhi B
Bengal, bringing the total NEPAL
number of people affected to RAJASTHAN UTTAR
600 million. There are also PRADESH
reports of problems in the BIHAR
southern state of Kerala

JHARKHAND
MADHYA WEST
PRADESH BENGAL
@
I N D I A Calcutta
Mumbai @
0 300
miles

India Blackout 2012 affected 600 million people



Blackouts are bad
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Blackouts are bad




especially when it interrupts a SuperBowl game

Aerial view of the San Diego stadium during the third quarter of the Superbowl
Game 2012
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Causes of Power Blackouts

Reported power outages by cause

®Animal

208 “ Faulty
Equipment/Human Error

® Planned

B Theft/\Vandalism

“Unknown

245 456 wVehicle Accident

»\Weather/Falling Trees

Note: Each power outage was grouped into one of seven possible causes. The number
adjacent to the pie piece is the number of outages attributable to that cause.
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Causes of Power Blackouts

power outages by cause
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Favorable conditions for blackout

Generation-Load Imbalance Abnormal voltages
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Power System Simulation Research Thrust Areas

= Parallel Extensible Toolkit for Power System
Simulation (PETPSS)

= Simulation of Power blackouts
— Modeling and solver difficulties

— Achieving Real-Time or Faster-than-Real-Time Simulation
Speed.

— Preventative control



Parallel Extensible Toolkit for Power System
Simulation (PETPSS)

Contingency
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Simulation of large power blackouts

= Simulate short time-frame (seconds to minutes)
trajectories (dynamics)

B ic Structure of the Electric System —I—‘_
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Solution of this Differential-Algebraic (DAE) system needs
1. Time-stepping Integrator

2. Nonlinear solver

3. Linear solver



Modeling and Solver Difficulties

2003 Blackout Precursor events

Failure

v

Major transmission
Line tripped due to

Several major Major Undervoltage and
Transmission lines Transmission line || Overcurrent
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Generating plant
Shuts down

Major Line outage
due to contact
with tree

Protection trips
a major line causing
15 other lines to fail




Modeling and Solver Difficulties

Capturing dominos as they fall
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Modeling and Solver Difficulties
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Modeling and Solver Difficulties
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Voltage magnitude(pu)

Alleviating solver difficulties
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Real-time Blackout simulations

= \What’s the need?

— Assist operators to
assess dynamics in
real-time when events
are evolving.

" |ssue: Such
simulations are too
slow (I’\Ot real-time Transmission system control center
speed)




Achieving Real-Time Dynamic Simulation Speed:
1. Parallelization

Multiple processors (cores) used for solving the problem
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Achieving Real-Time Dynamic Simulation Speed:
2. Efficient parallel linear solvers

Execution time R
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Parallel linear solver achieved 10X linear solver speedup on
16 cores for a 50,000 bus test system




Achieving Real-Time Dynamic Simulation Speed:
3. Adaptive Time-stepping

Take smaller steps when things are evolving rapidly, larger steps

otherwise

1.0

‘ —= Generator Terminal ‘

— Load Bus

o.o9
—=o.os J

e Ngnue
0
*

=o0.96
o.95 /

o.94a %
A

0.93

Time-step adaptivity

Atyi1 = AtyJensa]| 7




Achieving Real-Time Dynamic Simulation Speed:
Putting it all together: Test case 1

Slower-than-real-time

Faster-than-real-time

Execution time (sec)

1 2 4 8 16 24
# Cores

Scalability plot of a 5 second simulation of a 20,000 node system

- Achieved faster-than-real-time speed of under 1 second
execution time on 16 cores.

- Execution time using state-of-the-art algorithm on
single core = 35 seconds



Achieving Real-Time Dynamic Simulation Speed:
Putting it all together: Test case 2
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Scalability plot of a 5 second simulation of a 20,000 node system ~ 150,000 variables

- Achieved real-time speed of under 5 seconds execution time
on 8 cores.

- Execution time using state-of-the-art algorithm on single core
= 300 seconds



Preventative control of Power Blackouts:
The Gotham Analogy

JOKER’S NO FLY ZONE
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Preventative control of Power Blackouts:
The Gotham Analogy

You need to
retire Alfred /




Preventative control of Power Blackouts:
The Gotham Analogy

Thank you
Mr. Fox!




Preventative Control of Power Blackouts

= Modify initial operating point by including scenarios that
could violate security and potentially lead to blackouts.

= Need to solve an “Optimal Control” problem

Transient Stability
(Differential-
Algebraic Equations)

Path constraints
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Preventative Control of Blackouts

Without incorporating dynamic scenarios
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Summary

" Presented relevant research on modeling, real-time
simulation, and preventive control of large power

blackouts.
= We are off to a promising start, but there’s still a
long way to go.



QUESTIONS??
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