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PROBLEM  

PROBLEM DESCRIPTION 

In this exercise, the objective is to obtain first-hand experience with coding, using and 
comparing a few techniques for simple unconstrained optimization algorithms.  The focus 
of the homework is on solution algorithms, rather than on modeling. 
 
The assignment is to test and validate our algorithms, using different starting points both 
close and far away from the known minimum.  Our write-up should include: 
 

 The results obtained 
 A comparison between the three algorithms in terms of accuracy, efficiency, 

ease of use, robustness, etc. 
 Which algorithm we would recommend to others and why 
 What we have learned from this exercise 
 The source code of our implementation 
 

Methods to be Investigated 
The following methods are to be investigated: 
 

1. Hooke and Jeeves Pattern Search 
2. Cauchy’s Method of Steepest Decent 

a. Brent’s Quadratic Fit Lines Search using Golden Section 
3. Pure Newton’s Method 

 
All of these codes and the various sub functions they call are compiled in the source code 
section at the end of this assignment.  These codes are well documented and commented, 
I recommend referring to them while reading this report. 
 
Function Investigation 
To this end, the problem to solve is to find the minimum value for Fenton and Easton’s 
Function, which is stated below: 
 

     (1) 

 
The results in the following contour plot shown in Figure 1, which is identical to that 
given in the assignment sheet. 
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Figure 1 – Contour Plot of Fenton and Easton’s Function 

 
To better view the gradient of the function, the following surface plot is presented.  
Because of the singularity at x, y = 0 where the function approaches infinity, a 
logarithmic z scale is used for easier viewing, as shown in Figure 2.  This logarithmic z 
scale is used throughout this assignment. 

 
 

Figure 2 – Surface Plot of Fenton and Easton’s Function 
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Local Minima 
The Fenton and Easton’s function is mirrored in both the x and y axes, creating four local 
minima of equal value.  Although I will only be investigating the positive quadrant in this 
assignment, I must be aware of this during the convergence and testing of my algorithms.  
I have also investigated the extent of the Fenton and Easton’s function, to determine if a 
gradient that slopes away from the minima exists at a distant region, which it does not.  
The slope in each quadrant always points towards the minimum point. 
 

 
Figure 3 – Contour Plot of Fenton and Easton’s Function 

 
Setting The Benchmark 
In order to determine the accuracy of the different algorithms we need a benchmark value 
for comparison.  I used the fminserach unconstrained minimization solver in MATLAB, 
which used a pseudo Newton method, to solve for the minimum to a tolerance of 6 
decimal places.  For all accuracy comparisons, I have only used the first four decimal 
places, therefore the benchmark minimum is: 

 
Variable Value 

x1 1.7435 
x2 2.0297 

f(x1,x2) 1.7442 
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THE METHODS 

CODING & IMPLEMENTATION 

All of my algorithms were coded and executed in MATLAB.  No complex internal 
functions were called such as min or max to enable the codes to run on any version or 
computer.  All of the codes were compiled as functions, to be called in the command 
window.  This allowed for the easy re-use of functions and general neatness and 
readability of the code. 
 
Something new (and pretty neat) that I implemented was the use of the MathWorks 
commenting scheme.  This means that by typing ‘help function_name’ the description 
and inputs and outputs are described to the user as a help file.  I also implemented 
variable number of input arguments in many functions, allowing the user to use the 
default values for input variables or supply their own.  I feel that this adds a touch of 
professionalism to my codes I’m proud of. 
 

PATTERN SEARCH 

The pattern search method I implemented was the Hooke and Jeeves method as described 
in the text from ME6103.  This method involves finding a search direction, and then 
moving in that direction until the evaluation of the objective function reveals a non-
improvement, then a new search direction is established. 
 
For stopping criteria, I simply used a minimum size for the search area, when the search 
radius went below this value, the algorithm was considered converged.  I found a value of 
1e-5 was sufficient to obtain the 4 decimal places of accuracy I required.  I did not add a 
stopping condition for functional evaluation because I found this condition alone to be 
sufficient.  However, I did add an iteration limit to stop the algorithm if it diverged, and 
warned the user of this result.  
 
Convergence 
I found this algorithm to be robust, despite the number of parameters that affect the 
convergence and accuracy.  The algorithm would only converge to one of the negative 
quadrant minima if the initial step size was taken to be large enough to step over the 
asymptotic axis boundaries.  The algorithm will converge from any point within the 
10x10 region, except for strictly on the x-y axes.  An example of the steps taken during 
convergence is shown next in Figures 4 & 5, starting with x0 = [ 6 5 ].  However, the 
algorithm will also converge from further away, I have tested as far as starting at [ 100 
100 ]. 
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Figure 4 – Convergence to minima of Pattern Search Method 

 

 
Figure 5 – Convergence to minima of Pattern Search Method 

 
This convergence pattern requires many steps as it is forced to follow the pattern, a 
direction in 45 degree increments.  This creates the visible saw tooth pattern.  The 
convergence also slows around the point of the minima, as the movement is restricted and 
it jiggles around to find the minima. 
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Parametric Investigation 
There are many different parameters that can be set during the pattern search.  These 
parameters are: initial step size ‘s’, the step extension parameter to move in once a pattern 
is found ‘a’, and the step size reduction ratio, the amount the search area is reduced by 
when a pattern is not found ‘r’.  By changing these parameters, different rates of 
convergence will occur.  These are problem specific, but I felt it pertinent to investigate 
these effects.  The results are shown below in Figures 6-8. 

 
Figure 6 – Pattern Search Parametric Study, a = 2 

 
Figure 7 - Pattern Search Parametric Study, a = 1.5 
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Figure 8 - Pattern Search Parametric Study, a = 1 

 
Viewing the figures above, it is evident that the dominant parameter is r, the search radius 
reduction ratio.  The initial step size, s, only plays a minor role and a, the step size 
reduction ratio does not have any noticeable effect.  All of these tests were conducted 
from the same starting point x0 = [ 6 5 ], however I also tested the effects from several 
starting points and the results were the same.  Using these results I believe that my 
default value of step size reduction ratio of 0.5 is appropriate, as it allows for very good 
speed while maintaining the 4 decimal place accuracy I require. 
 

STEEPEST DESCENT 

I implemented Cauchy’s method of steepest decent, using a line search algorithm to find 
three points spanning a minima and then apply Brent’s Quadratic Fit method of finding a 
minimum using the Golden Section, as described in the ME6103 text.  This method 
involves finding the direction of steepest decent, using the gradient of the objective 
function, and then searching along that line to find the minimum, and then repeating. 
 
For stopping criteria, I used several conditions.  First was an absolute condition, if the 
gradient was below a certain value, the search was stopped.  Second was to check if the 
change in functional value changed less than a certain percentage and under a certain 
value within two consecutive iterations.  I found values of 1e-5, 1e-6 and 1e-4 resulted in 
the 4 decimal places of accuracy required from any starting point.  
 
Sub Functions 
The method of steepest descent uses several sub functions.  The first of which is the 
determination of the gradient.  I analytically computed the gradient by hand and checked 
it using the MAPLE engine in MATLAB.  This ensured that I was correct.  This 
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analytical gradient allowed for fast computation as the objective function did not have to 
be called to obtain a numerical derivative. 
 
To then determine how far to move a line search was implemented.  The fist stage was to 
find three points spanning the minimum, with the center point at the lowest evaluation.  
This was a simple process using the golden section approach.  Then, the search is 
continued using Brent’s Quadratic Golden Section algorithm.  This method uses a normal 
Golden Section approach, and then tries to fit a quadratic to the points to find a minimum, 
so speed the convergence.  I implemented a robust approach that considered many 
problematic scenarios, which makes it the bulkiest code I have written in this assignment.  
I believe that this results in the loss of computational speed  as found later. 
 
Convergence 
The final parameter, initial step size, I investigated in the same manner as the parameters 
for Pattern Search, however I found no difference in convergence rates.  However, this 
step size does play an important role in the convergence location of the method.  If the 
initial step size is too large, when starting from a far away point, the method can jump to 
a negative quadrant minima, as shown below in Figure 9.  The solution to this is to use a 
smaller step size, as shown in Figure 10 & 11, using x0 = [ 5 6 ].  However, if the initial 
point is very far away, such as around 50 in either dimension, the solution will converge 
to a different quadrant. 

 
Figure 9 – Convergence to negative quadrant minima, using step = 100 

 
 
 
 
 



Nathan Rolander  ME6301 – Hw#3 
Fall 2004 

  Page 10 

 
 

Figure 10 – Convergence of Steepest Descent Method, using step = 1 
 

 
Figure 11 – Convergence of Steepest Descent Method, using step = 1 

 
This convergence zigzags towards the minima following the gradient as expected.  The 
convergence slows considerably reaching the minima, however, not many iterations are 
required.  However, this is somewhat deceptive and during the line search, much iteration 
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is required which are not displayed on this plot.  This is investigated further in the results 
section.  An advantage of the Steepest Decent method is shown when the starting point is 
very far away.  In this situation, the method makes very large steps towards the minimum 
and converges, requiring only one or so extra iterations, usually the number of iterations 
never exceeded ten.  This makes it efficient if the starting position is completely random 
due to lack of knowledge of the functional domain. 
 

PURE NEWTON’S METHOD 

 
The Pure Newton’s Method is a foundation for many unconstrained optimization 
methods, although in this form it has limitations which will be shown.  It is a simple 
approach in which the second order gradients are considered using a Hessian matrix, 
which is used along with the gradient at a point to determine where and how far to move 
to the next point, and then iterate. 
 
I again only implemented a gradient based stopping condition, and found that 1e-4 was 
sufficient for 4 decimal places of accuracy, in the same matter as the Steepest Descent 
method stopping condition. 
 
Sub Functions 
The Pure Newton’s Method uses the same gradient sub function as the steepest descent 
method as well as a Hessian sub function, which again was determined analytically using 
MAPLE through MATLAB and verified by hand.  This allowed the function to fun much 
faster than normal, as numerically derived second derivatives are computationally 
expensive. 
 
Convergence 
The convergence of the Newton’s method only depends upon the starting point.  From 
there depending upon the gradient and the Hessian, the method will either converge, 
converge to a negative quadrant, or diverge.  This divergence is shown in Figures 12 & 
13, and convergence in Figures 14 & 15. 
 
The divergent solution takes progressively larger steps away from the minimum point, 
until the maximum iteration constraint is reached.  The convergent solution takes an 
initial jump overshooting the minimum, and then almost slides down the slope, 
perpendicular to the isobars, directly to the minimum, with little or no zigzagging. 
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Figure 12 – Divergence of Newton’s Method, x0 = [ 3 4 ] 

 
Figure 13 – Divergence of Newton’s Method, x0 = [ 3 4 ] 
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Figure 13 – Convergence of Newton’s Method, x0 = [ 3 2 ] 
 

 
Figure 14 – Convergence of Newton’s Method, x0 = [ 3 2 ] 

 



Nathan Rolander  ME6301 – Hw#3 
Fall 2004 

  Page 14 

Convergence Investigation 
I further investigated this convergence dependence upon starting point by plotting 
convergence versus possible staring position.  If the solution converged the point was 
colored green, if the solution converged to a negative quadrant, the point was colored red, 
and if the solution diverged, it was colored yellow.  This color scheme was applied to the 
surface plot of the Fenton and Easton’s function, and is displayed in Figure 15. 
 

 
Figure 15 – Convergence Zones of Newton’s Method 

 
The above plot shows that the method only converges when it starts quite close to the 
minimum.  However, there are also two bands where the solution diverges or is kicked 
into a negative quadrant.  This convergence or divergence is based upon the first step 
made which is based on the computed Hessian and Gradient function of the point. 
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 RESULTS & DISCUSSION 
 

ACCURACY 

All three of the methods can successfully converge to the minimum point at an accuracy 
of 4 decimal places, as compared to the benchmark.  The default values for the various 
sufficient condition and other parameters, as given in the compiled codes and in this 
assignment, are adequate to achieve this accuracy or greater for any starting point 
(assuming convergence) within the 10 by 10 region investigated.  The only major 
difference in accuracy is how many iterations are required to obtain the solution, where 
steepest descent method is the most accurate as it requires far less iterations than the 
other methods. 
 

ROBUSTNESS 

The Pattern Search and Steepest Descent methods are the most robust, converging to the 
positive quadrant minimum in almost every starting point within the 10 by 10 quadrant.  I 
have noted the conditions and shown plots for each of these methods that can make the 
method converge to a negative quadrant minimum.  In all of these cases this can be 
avoided through changing the step parameters.  The Newton’s method is the only method 
that can diverge; making it quite unsuitable for any problem where mapping the function 
space would require excessive computational time. 
 

SPEED OF CONVERGENCE 

In order to determine the speed of convergence of the different methods, I wrote a 
function to run each method from a random starting point within the 10 by 10 grid 1000 
times.  For each method the cumulative running time was recorded for each converged 
run, the divergent runs were discarded to not penalize this, and to only test the speed of 
the algorithm.  By running the methods 1000 times more accurate results could be 
obtained as the short running times of the methods means that background computer 
processing has a large effect on the speed of the methods.  During these runs the user 
interaction was suppressed, as such no plots were made or warnings displayed to the user.  
I ran this program several times, and each time the results were very similar, allowing for 
some discrepancy because of the random starting points.  This again is why using many 
different starting points is important.  The 1000 random starting points are shown below 
for reference in Figure 16. 
 
The results for each method is shown in the bar chart in Figure 17.  In this chart the 
length of each bar shows the average of how one run took to converge.  The bar is 
subdivided into the average number of iterations needed per run.  Therefore each segment 
of the bar shows how long each iteration of the method takes.  The x-axis is in 
milliseconds. 
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Figure 16 – 1000 Random x0 locations:  

 

 
Figure 17 – Comparison of average time taken to converge 

 
 
The results of Figure 17 are also tabulated below. 
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Method Iterations Total Time (ms) Time/Iteration (ms) 

Pattern Search 38 7.4090 0.1950 
Steepest Descent 9 11.3990 1.2666 

Pure Newton 19 2.2810 0.1201 
Steepest Descent* 117 11.3990 0.0974 

 
Viewing the results above, it is clear that the Pure Newton’s method is the fastest to 
converge, when it does converge.  Pattern Search is the second fastest, despite requiring 
many iterations.  Steepest Descent is the slowest, despite having few iterations.  I will 
now discuss each of these methods results in turn. 
 
Pattern Search 
This method requires a lot of iterations, as is expected.  However, because of the 
simplicity of this method, and the fast evaluation of the objective function, this allows for 
fast convergence.  This is a simple and effective method for finding a minimum, and my 
coding of it is simple and efficient, with little or no regions of computational inefficiency. 
 
Steepest Descent 
This result surprised me.  I had expected it to be quite fast, and require more iterations 
than it actually takes.  This is surprising, because the gradient function is computed 
analytically which is significantly faster than a numerical approximation.  However, upon 
further investigation, I realized the source of the slow speed.  During the line search, the 
routine iterates an average of 13 times per iteration of the Steepest Descent algorithm.  
This results in closer to 117 iterations, and the recomputed values are shown in the last 
row of the table above. 
 
To try to rectify this, I re-evaluated my coding for the line search to try to improve the 
efficiency.  However, even with the modifications I made it still requires the longest time 
to converge.  I believe that using a simpler, although possibly less robust, line search 
scheme would help this method converge faster.  I believe that the endless if else 
statements required (as suggested by the text) slow this evaluation considerably.  I also 
believe that the quadratic fit is almost a complete waste of time, supported by the results I 
have obtained using Newton’s Method. 
 
Pure Newton Method 
I feel that this result is skewed because of this specific problem and the lack of a penalty 
for failing to converge.  The method converges very fast because of the analytically 
computed gradient function and Hessian matrix.  MATLAB is also very efficient at linear 
algebra, and the inversion of this simple 2 by 2 matrix would be far more complex with 
more variables.   The high number of iterations is surprising, as I would have thought that 
this method would require very few iterations, but that each would take some time to 
compute. 
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EASE OF USE 

I feel that this “ease of use/coding” is going to be skewed by the impression that I got 
from following the ME6103 text, with which there were aspects I was very unimpressed.  
However, my gut feeling is as follows. 
 
The Pure Newton’s method was the easiest to code because implementing mathematics 
and mathematical formulae in MATLAB is very easy and straightforward, and there are 
very few steps.  The Pattern Search method was the second most straightforward.  The 
search for a direction is simple, as is the movement in that direction once it is found.  The 
Steepest Descent method was a pain in the ass to code.  Finding the gradient was very 
easy, and finding the three points spanning the minimum was also fairly simply.  The line 
search with the quadratic fit was terrible.  I feel that replacing this with a simple cleaner 
pure golden section search may be more effective, and certainly would be easier to code.  
However, this being said, it is also my most robust algorithm, and part of this complexity 
is the considerations of things such as machine error. 
 

EFFICIENCY 

I consider the efficiency of a method different than the number of iterations, but rather 
the number of function calls required.  In this manner the Pure Newton’s method is most 
efficient, followed by the Steepest Descent and then Pattern Search.  This correlates 
somewhat well to the speed results.  However, I believe that if an analytical gradient 
function were not provided, then this efficiency of particularly the Newton and to a much 
lesser extent the Steepest Descent methods would decrease.  This is because in order to 
calculate a first order derivative, two points are needed, and for a second derivative three 
are needed.  This is then required in each dimension, and for the Hessian, all of the partial 
derivative combinations are required also.  This would require an additional 24 function 
calls per iteration just for the 2D Hessian, which would massively reduce the 
computational efficiency of this method.  In this way I feel that the Steepest Descent 
method is the most efficient. 
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RECOMMENDATIONS 
 
Considering what I have learned through implementing these three methods for an 
analytical objective function, I would recommend different methods for different 
situations. 
 
Pattern Search 
I feel that this would be a very good default choice.  It is simple to code, and runs 
quickly.  It also does not depend on any analytical or numerical gradients.  Its only flaw 
is determining good parameter values, however I believe that a reduction factor of 0.25 
will almost always yield fast results.  That leaves the initial step size, which is dependent 
upon the problem.  However, being conservative with this means more functional 
evaluations, but not too many, and thus this in not critical.  If I had to recommend only 
one method, this would be it. 
 
Steepest Descent 
This method requires the least functional evaluations of a method that is robust enough to 
use without a lot of knowledge a priori.  Even with a numerical gradient, second order 
approximations of the slope only require two evaluations per dimension.  The line search 
also only needs one evaluation per iteration, leaving it many times lower than the pattern 
search.  This would be a good method to use if the objective function is complex and 
requires a long time to compute, such as a Finite Element Method or other numerical 
scheme.  However, this method also took me the longest time to code, although with a 
simpler line search routine this could be cut down at the cost of some efficiency. 
 
Pure Newton’s Method 
I really do not feel I can recommend the Pure Newton method because of its tendancy to 
diverge.  However, it is very efficient when using an analytical Hessian, and because of 
its low number of iterations is still acceptable when using a numerical Hessian.  
However, this method is really only applicable when a lot is known about the objective 
function space, in order to provide the method with a starting point from which it will 
converge to the minimum. 
 
 
 



Nathan Rolander  ME6301 – Hw#3 
Fall 2004 

  Page 20 

LEARNING 
  
Through completing this assignment I feel I have learned the following key points: 
 

 The if/but/else structure in a logical sequence is a pain to code and is also 
slow and inefficient, mathematics is much simpler and faster 

 Quadratic fits are very finicky and can easily explode 
 Our text book needs a few more revisions 
 Starting point selection is key, as is using multiple starting points 
 Knowing a little about the objective function space is also useful, as you 

can see if multiple minima or any asymptotic regions exist that may affect 
the optimization routine. 

 How to use a variable number and type on input arguments into a 
MATLAB function, and write file headers that can be read by the help 
files 

 With today’s computational power available, the simpler methods such as 
pattern search are very viable methods 
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MATLAB CODE COMPILATION 
 

I have compiled my MATLAB codes in the following pages.  They are in order of main 
function, followed by a sub function that they call.  This is outlined below, sub functions 
that are also called, but have already been compiled are shown in italics: 
 

1. Pattern Search 
a. FEfunction 
b. Explore 
c. SpacePlotter 

2. SteepestDescent 
a. FEfunction 
b. FEgradient 
c. ThreePoint 
d. QuadFit 
e. SpacePlotter 

3. NewtonsMethod 
a. FEfunction 
b. FEgradient 
c. FEHessian 
d. SpacePlotter 

 
The following codes are also compiled.  These functions are used to gather performance 
information from the various methods. 
 

4. NewtonTest 
5. SpeedComparison 
6. PSParameters 


