Mihai Anitescu, 01/06/2011

Stat 310, Part Il, Optimization. Homework 1.

Problem 1: (computation; Newton’s method)

[. Implement Newton’s method ((3.38) in Nocedal and Wright, or from lecture
notes).

[I. Apply the method to the following function (Fenton'’s function ; which you can
download from my website, from lecture list area, including with links to the
automatic differentiation package discussed in class -- if you wish to go this
route. If not you may have to compute the gradient and Hessian by hand. It is
also an easy function to code in AMPL if you want to test your work - but this is
not required).
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IIl. Initialize the method at x' =[3,2]. Describe what you observe.
IV. Modify the method in the following two ways; use x**' — x* = —B,'Vf(x"),

where the matrix B, is, instead of the Newton choice (1) B, = sz(xk ); one
of:

1 2 o( K
(2) Bk=(1+PjI+V £(x");

1 2 k
(3) Bk:PI+V £(+4)

Start the method from (3,2), again.
V. Propose a way to estimate the rate of convergence of the 3 methods (Newton +
(2),(3) ) and carry it out for the experiment at point 1.IV. I suggest finding a
way to graphically represent your answers, perhaps use a log-log plot.

Problem 2: (divided differences, derivative calculations). Consider the following
divided difference approach (called “central differences”) by which to approximate

the derivative of the function f(x):R— R, f eC", (the function fis 4 times
continuously differentiable):
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[. Use Taylor series expansions to justify that
| _Leoth=f =)0
dx|, 2h |

[I. Using the same argument as in class, what is the optimal perturbation amount
h with respect to the machine precision € =1le—167 (thatis, the & that
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produces the minimum value of the error). Is this minimum error smaller than
the one for forward differences (the case covered in class?)

I[II. Would you recommend central differences for approximating Vf, f:R"—R

(by doing the perturbation above in each component) over the forward
differences approach that we have discussed in class? Please explain your
conclusion.

Problem 3: (global minimum; convexity.). We say that a function f:R" — Ris
convex if x,ye R".a €[0,1]= f(ax+(1-a)y)<af(x)+(1-a) f(y). We say that a
subset S < R"is convex if Vx,ye S,0€[0,1]= ax+(1-a)yeS.

[. Prove that the set of global minimizers of a convex function f (which we

assume nonempty) is convex.
II. Using the consequences of sufficient second-order conditions for optimality

discussed in class, prove the following: Ifa global minimum x" of a convex
function f satisfies the strong second-order condition Vixf(x*) >0 (the
Hessian is positive definite at x"; we assume here that f is twice

continuously differentiable) then x"is the UNIQUE global minimizer.



