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Today

* 1.1 Logistics for the class

* 1.2 Example of Optimization Problems and the
Optimization Landscape

* 1.3 Modeling Optimization Problems

* 1.4 The object of continuous Optimization and
course objectives.

e 1.5 Newton’s Method.

* 1.6 The role of linear algebra; recap of direct
methods.




1.1.Course Logistics

 Instructors: Mihai Anitescu
(anitescu(@galton.uchicago.edu) and Lek-Heng
Lim

* Course Assistant: Han Han
(han(@galton.uchicago.edu)

* The course 1s divided 1n 2 parts (tentative);
— MA: Nonlinear Programming ~ 10 lectures
— LHL: Convex Optimization ~ 10 lectures



1.1 Course Logistics

e Assignments

— Combination of theoretical problems and computer
projects using Matlab

— 4-5 assignments ~ 1 per week = your grade for this
part.

o Office Hours: TTh, 3-4, Eck 104.

* Web site and contact: (remember my name
©).

 How do I get in touch with you? What do you
use for computing?



1.2 Context ot Optimization

* What is nonlinear optimization optimization?

 Why? Example of optimization based on a subjective
criterion.

 Why? Example of optimization problems derived
from variational principles in physics.

e Thanks — Sven Leyffer, etc ...



Nonlinear Optimization-Nonlinear

Programming
min f(x) min f(x) min  f(x)
st. c(x)=0, h(x)<0| (or)|s.t c(x)=0, A(x)+y=0|(or)|s.t. c(x)=0
y20 xe K

*The variables y are called slacks.

*In the latter case, the “data” functions f,c, are not identical with the 2 preceding
cases.

*The problem is called nonlinear when either f or (c,h) or both are nonlinear.
*The set K may include integrality constraints, MINLP.

*The above is a powerful modeling paradigm, in which many problems may
be rephrased or approximated, though it is important to exploit the
particularities of the problem — the “structure”.



ES: “Subjective” criteria of optimization.

* Trying to optimize an user defined criterion: time to
accomplish a task, or cost, or matching criterion ....

* Generally a specialist makes a judgment and defines
the criterion based on domain-specific knowledge.

* Optimal behavior and design of Engineering,
Financial, Management applications.

« Examples: structural design and phase problems in
crystallography.
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ES1: The Airbus wing

(From Sven Leyffer): Optimizing the inboard inner leading edge ribs.



ES1: Design considerations (IKKocvara et

al.)

Worst case multiple load design

Minimize weight of the structure subject to load and design restrictions
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ES1: Final Design—""Truss

STRUCTURE: linear objective function, nonlinear
inequality and equality constraints, continuous variables.
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ES2: Xray crystallography

*How do we obtain a 3D structure (right) from its diffraction pattern (left)?

It is essentially the unique high resolution approach to detect protein
structure irrespective of size.

*Problem: Find the atomic distributions that minimizes “discrepancy”.



ES2: Phase problem-centrosymmetric

(Sahinidis et al.)

. Parameters
Indices !
m  mndex used for reflections (m = 1,... ,M) M number of reﬂectlpns _
t  index used for triplet invariants (t = 1,...,7) n number of atoms in the unit cell
T number of invariants
Variables |[E,|  structure factor amplitude associated with

¢  phase of the mth reflection
©m normalized phase of the mth reflection equal -
wr  triplet invariant defined by wy = @, + Gy +

reflection h,,
A:  constant equal to 22 V2| Ey, || Epy ||Emy |

where h,, + h,,, + h,,, — 0 Wy conditional expected value of the cosine of the
a;  binary decision variable triplet invariant, equal to fy (4;)/To (4)
B:  binary decision variable equal to (1 — cos w;) (Germain et al., 1970)
Model M1

- 7(8) = Ele A (4B, ‘; (1 4+ @ — 2w;))
EzzlAf
St Omy + Ot + Oy =200+ 5, t=1,...,T (1)
om € {0,1}, M= s en oM
oz, B € {0, 1}, = lyss o5

STRUCTURE: nonlinear objective, linear equality constraints,
Mixed continuous and integer variables



ES3: Maximum likelihood:

1 - 1 n
logp(y | 0) = —5 W (01)" K (02) "W (01) — 5 log | K (02)| — 7 log 27

« STRUCTURE: Continuous Optimization, No
Constraints.

 Difficulty, how do you compute the derivative of the
determinant term?



ES4: Stochastic Unit Commitment with Wind Power (SAA)
min COSTziZ(Z Zc5k+cj.k+c‘jk] ‘

s s€S\ jeN keT

st Y pat D, pi'=D,seSkeT

jeN JEN yina 1 '# |
Z;sjk_l_ Z psvjv'l:dsz_i'Rkasesake,T \ ‘ , y
jeN e N wind H ’ r“,j"
ramping constr., min. up/down constr. |

=  Wind Forecast —- WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Jazz@Argonne) 43t
- 3 ' \ ; ' 42}
45} f ~
#1 z 417
=z [
o 40f ]\ 2 40
2 # 5
= 35 :
30 7 38}
25" , 1 . | 37¢
120  -110  -100 —90 —80 o o1 To 85 o5 &
° Longitude W ° Longitude W
Mihai Anitescu -- Stochastic Programming Zavala & al 2010.

@ 14



Wind power forecast and stochastic programming

= Unit commitment & energy dispatch with uncertain wind

power generation for the State of lllinois, assuming 20% wind AN\ —>
power penetration, using the same windfarm sites as the one  wind :

existing today. power

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= Does uncertainty matter? ... Yes. The solution is only 1%
more expensive then the one with exact information. Solution

on average infeasible at 10%.

1200

—
o
o
o

800
600

Total Power [MW]

400

0
Mihai Anite€tu -- Stochastic Programming 24 48 72

Time [hr] 15



Y

Managament under uncertainty para&igm: stochastic
programming.

Two-stage stochastic programming with recourse (“here-and-now”)
Min{ £i(x,)+ E[Min f(x,a))]}
subj.x'go. A,x, ' = b,
A(w)x,+ Bw)x = b(w)
x 20, x(w)=0

» [ &)= (4(0). B().h(0).0(0).c(w)) |

|
v v

continuous

discrete

Sample average approximation (SAA)

.XU ,.\"] ,Tz g0 g

Min (943 £(x)

Sampling R subj. to.  A4,X, - b,
Akxo - F kaf( — bk’
Inference samples _
""""" i | X 20, x 20, k=1,..,S
Analysis

Mihai Anitescu -- Stochastic Programming

16




Linear Algebra of Primal-Dual Interior-Point Methods

Convex quadratic problem IPM Linear System
1
Min —x' Ox+c'x O+A A |[x
2 [ > =rhs
subj. to. Ax =5 A 01y
x=0
Multi-stage SP - _
] BIT 0 0
Two-stage SP B 0 40
T T
nested arrow-shaped linear system gz 52 ?4 8
(via a permutation) 2 2 :
Hs Bf 0
By 0 Ay 0
0 AlT 0 A2T 0 A§ Ho AOT
0 0 0 0 ..0 0 4 O

Mihai Anitescu -- Stochastic Programming

3 17



The Direct Schur Complement Method (DSC)

= Uses the arrow shape of H

_Hl GIT_ _Ll | _Dl | _L{ LITO |
H2 GQT L2 DZ LTZ LZO
HS G§ LS DN LTS Lgo

G G, Gy Hy| [Ly Ly Ly, L || D, || L, |

= Solving Hz=r

LDI'=H, L,=GL'D", i=1,...8,

Implicit factorization

S
C=1, —zGEH;‘Gf,[LDLT =G ]
i=1

\/
w=Ekr, i=1,...5, @J
|.W0 =" jro _il"ow-) ::> Vi =D;“1W,:, 1=0...,5 :> z, =L;T (vf _Li'rozo ),
= [

Back substitution Diagonal solve Forward substitution

Mihai Anitescu -- Stochastic Programming

=1
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Large-scale performance (with Miles Lubin, STATS)

= Comparison of ScalLapack (LU), Elemental(LU), and LDI' (1024 cores)

Units  1st Stage Size Factor (Sec.) Reduce (Sec.)
(O+A) LU(S) LU(E) LDL" LU LDLT
300 23436+1224 16.59 20.04 6.71 54.32 26.35
640  49956+2584 60.67 83.24 36.77  256.95 128.59 SAA problem:
1000 7803044024  173.67 263.53 90.82 56536 248.22<— | 189 million
variables
Total Walltime
2048 , —
Linear Scaling
et L DLAT
...... o LU
----- .
= Strongscalng 7
S e e 9
=  90.1% from 64 to 1024 cores; § --------------
= 75.4% from 64 to 2048 cores. ;)i 1024 1 ,:;::::?"'
= >4,000 scenarios. S
“"’.\-ﬁ:"
256 |
64 : -
64 256 1024 2048
Mihai Anitescu -- Stochastic Programming Processors

3 19
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ESO: Other applications.

« Data assimilation in weather forecasting > PDE constraint

« Image reconstruction from acoustic wave data > PDE
constraint

» Crew scheduling, vehicle routing = integer variables

« Reactor core reloading nonlinear = integer variables

« Radio therapy treatment planning = nonlinear integer
 Qil field infrastructure design = PDE c¢/s & integer var

« Simulation of competition in electricity markets equilibrium
c/s.



EV: Variational Description of

Phenomena in Physical Sciences

* In these problems, the “state” variable 1s the solution of an
optimization problem, which is formulated based on a law of
physics, rather than a subjective criterion.

 In electronic structure computation: the electronic density.

* In complex fluids the (density and species) distributions at
thermodynamic equilibrium.

* In Hamiltonian systems, the trajectory is the solution of an
optimization problem

 Fermat's variational principle states that a signal in anisotropic
media propagates between two points along a curve which
renders Fermat's functional I(I) stationary



EV1: (Thomas-Fermi) Density

Functional Theory

Problem: For a given atomic configuration, determine electronic density from
using the variational principle. STRUCTURE: nonlinear objective, linear
constraints, continuous variables.

mian{p,{RAH
S.t. Jp =N,
Elp.RY=E. p.R Y+ [pl+K[p]+T[p]+V,, (R, ]}

Tlpl=C. Jp%m dr, Kl|p|=-C, J-p%(r) dr

Elo R 3=2] W Jlp)- I P‘“)P(”drdr




EV1: Surface structure of the TiO2

nanoparticle

[101]

L stion

Computations carried out by Peter Zapol et al. from MSD-Argonne, using Kohn-
Sham DFT.



EV1: Nano-indentation

(1] 4 [ii2) JEma 11014, [oo7) M=l

T Mises(GPa) O Mises(GPa)

(a) (a)

)4 (i1 - {1014, [oo1]

O Mises(GPa) O Mises(GPa)

NN
s ‘4‘
NPT N

(b) (b)
» One of the “hot pursuits” in mechanical engineering: Simulating complex phenomena
starting from first principles, as opposed to empirical potentials.

 Density Functional Theory based defect nucleation (Carter, Ortiz, et al.)



EV2: Multi-rigid-body dynamics with

contact and friction

* A subject pursued by the author of this presentation for some time.

 Essential in the study of robotics, granular materials, pharmaceutical drug processing
(powders).

* The velocity of the system at the next step is the solution of the minimum energy
problem subject to nonpenetration and frictional constraints.

« Example: the study of size-based segregation in granular materials. STRUCTURE:
quadratic objective, quadratic constraints.

v = argming E@TMEF—# AOMT

subject to Egso’) @)+ VD5 4 1, DdD 5 > 0, (16)
jEA(q(Z)’e), k:l,Q’.“,m(j)’
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1.3 Modeling Optimization

* Here comes the big decision. Problems

* Do we save the same problem over and over

— Then performance 1s what matters.
— Use C++, Fortran, MPI, PERL.

* Do we solve the problem once or only a few
times? (e.g. algorithmics class like this)

— Productivity matters; use higher-level language.
— Matlab for general scientific computing

— AMPL or GAMS for optimization
* Domain-specific languages may blur the line
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Modeling: Ingredients

* Objective function
* Variables

 Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints
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MODELING: Structure (see

NEOS)

' o (7 B
Stochastic
j ngmmmmg

Integer
Progmmmm

Optimization

Isn’t any problem reducible to NLP? Sure, but it is very efficient to
recognize and exploit structure.
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Modeling (Nonlinear) Optimization

Problems

AMPL & GAMS

high level languages for nonlinear optimization

interpret problem description, interface to solvers &
returns results

details of solver, derivatives & pre-solve are hidden
from user

modeling language (e.g. var, minimize, subject to, ...)

programming language (e.g. while, if, ...)
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AMPL

* Has an exquisitely simple syntax, reminiscent
of C (Kernighan 1s one of the authors), but
adapted to optimization.

* Versions of 1t can be used even in parallel
computation if done wisely.

« AMPL can be run:

— Student version 1s free and easy to use.

— Or you can run 1t using one of the online servers.



CHICAGO |

AE1: AMPL Example

M (g y 2) Z

subject to  go(z,y, z) = 2 + 3zt — 2% — 2 <0,
gi(z,y,2) = ——(x + vy )+y4+3xy—z <0,
g2(z,y, 2) = =22 +y* — 2 <0,
g3(z,y,2) = —3(2? + y?) + 2%y* =32y — 2z  <0.
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AE1:”’Model”

var x1;

var x2;

var x3;

minimize objective: x3;

subject to constraint_1: x2**2-2*x1**2+3*x1**4-x3 <= 0;
subject to constraint_2: -2*x2**2+x1**2+x2**4-x3 <= 0;
subject to constraint_3: -0.5*x2**2-0.5*x1**2+3*x1*x2-x3<=0;
subject to constraint_4: -0.5*x2**2-0.5*x1**2-3*x1*x2+x1**2*x2**2-
x3<=0;

let x1:=1;

let x2:=1;

let x3:=1;
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AE2: “Commands’

solve:

display x1,x2,x3;

display constraint_1.dual, constraint_2.dual,
constraint_3.dual, constraint_4.dual.
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AMPL.: standalone

« EXPAND AND DEMO
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AMPL ONLINE:

« EXPAND. Discuss taxonomy. How do
different solvers behave?
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AE2: AMPL example 2.

Comparison of two Thomas Femni implem entations

Total charge in subdomains

40 T T T T T T

g ¥ ; —&— Linear Reconstruction

ol § % % § £ % g % % % % 1 s —&— Quadratic Reconstruction| |

£ ¢ ¢+ ¥ T T T % & 2 '
wl %%%%*%1%@54’? _

SEREEEEERE N,

SEEREEERRE
25l ESEEEEEEERE I

¢ttt 2Lty ¢ e

f %22 g i A
20l < % op B w oW om e o kb ]

*ﬁﬁmﬁzwwmw%}

3 A g o g A 8
15k | T I ' } | H ~{ T‘[ %‘«‘ =

\ | \ {

P —— -
¥

i
A
i

e

MR~

1.04 T T T T T T T T T
—#— Direct Simulation

—#— Direct Simulation

e

\
B! | |
10k i By R T- T —=— |nterpolation reconstruction i
(111 L L ([ T] 1] [T ]
P .%%% ]‘LL ¢85 ¢ o i Pe Bw ‘;‘é %G'L
, siilavsnzaftatststie s
JUYVVUVUUUUU
l \
0 b 1 1 1 1 1 S 09 L L | L L L L I L
-02 0 0.2 04 06 08 1 1.2 14 e 2 3 4 ] 6 7 8 9 10 1"
location Index of the domain

*One-dimensional Thomas-Fermi problem.

*Once you have created the model, you can even run it over the internet with
the NEOS server.



AE2: (Thomas-Fermi) Density

Functional Theory

Problem: For a given atomic configuration, determine electronic density from
using the variational principle.

mian{p,{RAH
S.t. Jp =N,
Elp.RY=E. p.R Y+ [pl+K[p]+T[p]+V,, (R, ]}

Tlpl=C. Jp%m dr, Kl|p|=-C, J-p%(r) dr

Elo R 3=2] W Jlp)- I p‘<f>f’<f>drdr
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AE2: AMPL for Thomas Fermi

DFT

#user-defined parameters
param n integer;

param ma integer;

param mg integer;

param dist;

param ratioGap;

param delta;

param cutoff integer;
param pi;

param Z;

#parameters of Thomas Fermi model
param CF:=0.3*(3*pi*pi)"(2/3);

param CX:=0.75*(3/pi)"(1/3);

param indexCutoff=2*(ma-+mg)*cutoff;
#total number of nodes

param N:=(n+2)*(2*ma+2*mg);

param ZA{iin 1..n}=Z;

param Nelec:=sum{i in 1..n} ZA[i];

param atomicPosition{i in 1..n}:=dist*i; #atomic positions
param xloc{i in 1..(ma+mg)}:= if i <= ma then (i-0.5)/ma*ratioGap*dist*0.5 else (ma-0.5)/ma*ratioGap*dist*0.5 + 0.5*(1-ratioGap)*dist *(i-ma)/mg;
param xi{i in 1..N}:= if (i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-0.5) <0
then floor((i-1)/(2*(ma+mg)))*dist-xloc[abs(i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-1)]
else floor((i-1)/(2*(ma+mg)))*dist+xloc[i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg];
var x;
var rho{i in 1..N} >=0;



Objective function

minimize obj: sum{i in 1..(N-1)} 0.5*(CF*(rho[i1]+delta)*(5/3)-CX*(rho[1]
+delta)~(4/3) + CF*(rho[i+1]+delta)™(5/3)-CX*(rho[1+1]+delta)"(4/3))*(x1
[1+1]-x1[1])

#Kinetic and Exchange

- sum{iin 1..(N-1), jin 1..n} ZA[j]*(rho[i+1]/sqrt((xi[1+]1]-atomicPosition
[1D"2+delta)+rho[1]/sqrt((x1[1]-atomicPosition[j])*2+delta))*0.5*(xi[1+1]-xi
[1])

# Electron-Nucleus
+ 0.5 * 0.25*sum{i in 1..(N-1), j in max(1,1-indexCutoff)..min(i
+indexCutoff,N-1)} (xi[1+1]-xi[i])*(xi[j+1]-x1[j])* (rho[i]*rho[j]/sqrt((x1
[1]-x1[j])"2+delta) +
rho[1]*rho[j+1]/sqrt((xi[1]-x1[j+1])"2+delta) +rho[i+1]*rho[;]/sqrt((xi[1+1]-
xi[j])"2+delta) + rho[1+1]*rho[j+1]/sqrt((xi[1+]1]-x1[j+1])*2+delta));

# Electron-electron

subject to

constr: sum{iin 1..(N-1)} 0.5*(xi[1+1]-xi[1])*(rho[i]+rho[i+1])=Nelec;
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Then why study the algorithms at all

it modeling 1s so advanced ?

* Some problems CANNOT be solved well by
current high-level languages.

— Problems that have non smooth data (and need to
understand limitations of algorithms 1f
approximating them).

— Problems that use non-intrinsics (e.g. max
likelihood).
* One can take an enormous performance hit if
the problem 1is large or has to be solved many
times.



1.3 What is state of art in

optimization?
* We can solve problems with 1079-10"12
variables LOCALLY.

* We have designed algorithms that make
excellent use of massive parallelism (see unit
commitment example).

* We can take advantage “smartly” of the latest
architectures ...



The Quadratic Assignment (facility

location) Problem

Loc1l
Fac 2 Loc 2
Fac 1 ]
mind"Y°
Loc4 _‘PEH fi‘-? z)p (-?)
Loc3 1=1 J 1
Fac 3
Fac 4

*How does one place n facilities at n location such that the total cost is
minimized?

*Solved by the METANEQOS team (Linderoth, Goux, Wright) and friends.

*The branch-and-bound procedure IDEAL for distributed computing (cloud,
grid).
*The solution of the NUG30 — a 30 year open problem made the headlines.
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NUG30 statistics

Table 2: nug30 Run Statistics

Average number of available workers 652.7
Maximum number of available workers 1003
Running wall clock time (sec) 597 872
Total cpu time (sec) 346,640,860
Average machine speed 0.56
Minimum machine speed 0.045
Maximum machine speed 1.074
Equivalent CPU time (sec) on an HP-C3000 218,823 577
Parallel Efficiency 93%

Number of times a machine joined the computation 19,063



What we (optimizers) still need to figure

out

* Global NONCONVEX (including integer)
optimization problems are still far from being
systematically solved on the large scale (many times
we dance of joy when we solve N=30 ©).

« Iterative solvers for constrained optimization beyond
PDE constraints --- the preconditioning problems.

* There always appear new classes of problems that do
not satisfy the usual assumptions — for example
complementarity constraints.



