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Today 

�• 1.1  Logistics for the class 
�• 1.2 Example of Optimization Problems and the 

Optimization Landscape 
�• 1.3 Modeling Optimization Problems 
�• 1.4 The object of continuous Optimization and 

course objectives. 
�• 1.5 Newton�’s Method.  
�• 1.6 The role of linear algebra; recap of direct 

methods. 



1.1.Course Logistics 

�• Instructors: Mihai Anitescu 
(anitescu@galton.uchicago.edu) and Lek-Heng 
Lim 

�• Course Assistant: Han Han 
(han@galton.uchicago.edu) 

�• The course is divided in 2 parts (tentative); 
�– MA: Nonlinear Programming ~ 10 lectures 
�– LHL: Convex Optimization  ~ 10 lectures 



1.1 Course Logistics 

�• Assignments 
�– Combination of theoretical problems and computer 

projects using Matlab  
�– 4-5 assignments ~ 1 per week = your grade for this 

part. 
�• Office Hours: TTh, 3-4, Eck 104. 
�• Web site and contact: (remember my name 

 ). 
�• How do I get in touch with you? What do you 

use for computing?  



1.2 Context of Optimization 

�• What is nonlinear optimization optimization? 
�• Why? Example of optimization based on a subjective 

criterion. 
�• Why? Example of optimization problems derived 

from variational principles in physics.  
�• Thanks �– Sven Leyffer, etc �… 



Nonlinear Optimization-Nonlinear 
Programming 

�•The variables y are called slacks. 

�•In the latter case, the �“data�” functions f,c, are not identical with the 2 preceding 
cases. 

�•The problem is called nonlinear when either f or (c,h) or both are nonlinear. 

�•The set K may include integrality constraints, MINLP. 

�•The above is a powerful modeling paradigm, in which many problems may 
be rephrased or approximated, though it is important to exploit the 
particularities of the problem �– the �“structure�”. 



ES: �“Subjective�” criteria of optimization. 

�• Trying to optimize an user defined criterion: time to 
accomplish a task, or cost, or matching criterion �….  

�• Generally  a specialist makes a judgment and defines 
the criterion based on domain-specific knowledge. 

�• Optimal behavior and design of Engineering, 
Financial, Management applications.  

�• Examples: structural design and phase problems in 
crystallography.  



ES1: The Airbus wing  

(From Sven Leyffer): Optimizing the inboard inner leading edge ribs.  



ES1: Design considerations (Kocvara et 
al.) 

Minimize weight of the structure subject to load and design restrictions 



ES1: Final Design�—�”Truss 
topology�” 

STRUCTURE: linear objective function, nonlinear 
inequality and equality constraints, continuous variables.  



ES2: Xray crystallography 

�•How do we obtain a 3D structure (right) from its diffraction pattern  (left)? 

�•It is essentially the unique high resolution approach to detect protein 
structure irrespective of size. 

�•Problem: Find the atomic distributions that minimizes �“discrepancy�”.  



ES2: Phase problem-centrosymmetric 
(Sahinidis et al.) 

STRUCTURE: nonlinear objective, linear equality constraints, 
Mixed continuous and  integer variables 



ES3: Maximum Likelihood:  

�• STRUCTURE: Continuous Optimization, No 
Constraints.  

�• Difficulty, how do you compute the derivative of the 
determinant term?  
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Mihai Anitescu -- Stochastic Programming 
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Mihai Anitescu -- Stochastic Programming 

Demand 
Samples Wind 

Thermal 
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Min
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Mihai Anitescu -- Stochastic Programming 



17 

Convex quadratic problem IPM Linear System 

arrow-shaped linear system 
(via a permutation) 

nested  

Mihai Anitescu -- Stochastic Programming 
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Back substitution 

Implicit factorization 

Diagonal solve Forward substitution 
Mihai Anitescu -- Stochastic Programming 



Mihai Anitescu -- Stochastic Programming 
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Comparison of ScaLapack (LU), Elemental(LU), and              (1024 cores)

90.1% from 64 to 1024 cores; 

> 4,000 scenarios.

SAA problem:  
189 million 
variables 



ESO: Other applications. 

�• Data assimilation in weather forecasting  PDE constraint  
�•  Image reconstruction from acoustic wave data  PDE 

constraint  
�• Crew scheduling, vehicle routing  integer variables  
�• Reactor core reloading nonlinear  integer variables  
�• Radio therapy treatment planning  nonlinear integer 
�• Oil field infrastructure design  PDE c/s & integer var 
�• Simulation of competition in electricity markets  equilibrium 

c/s. 



EV: Variational Description of 
Phenomena in Physical Sciences 

�• In these problems, the �“state�” variable is the solution of an 
optimization problem, which is formulated based on a law of 
physics, rather than a subjective criterion.  

�• In electronic structure computation: the electronic density. 
�• In complex fluids the (density and species) distributions at 

thermodynamic equilibrium.  
�• In Hamiltonian systems, the trajectory is the solution of an 

optimization problem 
�• Fermat's variational principle states that a signal in anisotropic 

media propagates between two points along a curve which 
renders Fermat's functional I(l) stationary  

�• �…. 



EV1: (Thomas-Fermi) Density 
Functional Theory 

 Problem: For a given atomic configuration, determine electronic density from 
using the variational principle. STRUCTURE: nonlinear objective, linear 
constraints, continuous variables.     



EV1: Surface structure of the TiO2 
nanoparticle 

Computations carried out by Peter Zapol et al. from MSD-Argonne, using Kohn-
Sham DFT. 



EV1: Nano-indentation 

�• One of the �“hot pursuits�” in mechanical engineering: Simulating complex phenomena 
starting from first principles, as opposed to empirical potentials.  

�• Density Functional Theory based defect nucleation (Carter, Ortiz, et al.) 



EV2: Multi-rigid-body dynamics with 
contact and friction 

�• A subject pursued by the author of this presentation for some time.  

�• Essential in the study of robotics, granular materials, pharmaceutical drug processing 
(powders). 

�• The velocity of the system at the next step is the solution of the minimum energy 
problem subject to nonpenetration and frictional constraints.  

�• Example: the study of size-based segregation in granular materials. STRUCTURE: 
quadratic objective, quadratic constraints.   



1.3 Modeling Optimization 
Problems �• Here comes the big decision.  

�• Do we save the same problem over and over 
�– Then performance is what matters.  
�– Use C++, Fortran, MPI, PERL.  

�• Do we solve the problem once or only a few 
times? (e.g. algorithmics class like this) 
�– Productivity matters; use higher-level language.  
�– Matlab for general scientific computing 
�– AMPL or GAMS for optimization 

�• Domain-specific languages may blur the line 
�…  



Modeling: Ingredients 

�• Objective function 
�• Variables 
�• Constraints 



MODELING: Structure (see 
NEOS) 

Isn�’t any problem reducible to NLP? Sure, but it is very efficient to 
recognize and exploit structure.  



Modeling (Nonlinear) Optimization 
Problems 

AMPL & GAMS 
�• high level languages for nonlinear optimization 
�• interpret problem description, interface to solvers & 

returns results 
�• details of solver, derivatives & pre-solve are hidden 

from user 
�• modeling language (e.g. var, minimize, subject to, ...) 
�• programming language (e.g. while, if, ...) 



AMPL 

�• Has an exquisitely simple syntax, reminiscent 
of C (Kernighan is one of the authors), but 
adapted to optimization.  

�• Versions of it can be used even in parallel 
computation if done wisely. 

�• AMPL can be run:  
�– Student version is free and easy to use.  
�– Or you can run it using one of the online servers.   



AE1: AMPL Example 1 



AE1:�”Model�” 



AE2: �“Commands�” 



AMPL: standalone 

�• EXPAND AND DEMO 



AMPL ONLINE:  

�• EXPAND. Discuss taxonomy. How do 
different solvers behave?  



AE2: AMPL example 2. 

�•One-dimensional Thomas-Fermi problem.  

�•Once you have created the model, you can even run it over the internet with 
the NEOS server. 



AE2: (Thomas-Fermi) Density 
Functional Theory 

 Problem: For a given atomic configuration, determine electronic density from 
using the variational principle.     



AE2: AMPL for Thomas Fermi 
DFT 

#user-defined parameters 
param n integer; 
param ma integer; 
param mg integer; 
param dist; 
param ratioGap; 
param delta; 
param cutoff integer; 
param pi; 
param Z; 

#parameters of Thomas Fermi model  
param CF:=0.3*(3*pi*pi)^(2/3); 
param CX:=0.75*(3/pi)^(1/3); 
param indexCutoff=2*(ma+mg)*cutoff; 
#total number of nodes  
param N:=(n+2)*(2*ma+2*mg); 
param ZA{i in 1..n}=Z; 

param Nelec:=sum{i in 1..n} ZA[i]; 

param atomicPosition{i in 1..n}:=dist*i; #atomic positions 
param xloc{i in 1..(ma+mg)}:= if i <= ma then (i-0.5)/ma*ratioGap*dist*0.5 else (ma-0.5)/ma*ratioGap*dist*0.5 + 0.5*(1-ratioGap)*dist *(i-ma)/mg; 
param xi{i in 1..N}:= if (i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-0.5) < 0  

       then floor((i-1)/(2*(ma+mg)))*dist-xloc[abs(i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-1)] 
       else  floor((i-1)/(2*(ma+mg)))*dist+xloc[i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg]; 

var x; 
var rho{i in 1..N} >=0; 



Objective function 

minimize obj: sum{i in 1..(N-1)} 0.5*(CF*(rho[i]+delta)^(5/3)-CX*(rho[i]
+delta)^(4/3) + CF*(rho[i+1]+delta)^(5/3)-CX*(rho[i+1]+delta)^(4/3))*(xi
[i+1]-xi[i])   

#Kinetic and Exchange 
- sum{i in 1..(N-1), j in 1..n} ZA[j]*(rho[i+1]/sqrt((xi[i+1]-atomicPosition

[j])^2+delta)+rho[i]/sqrt((xi[i]-atomicPosition[j])^2+delta))*0.5*(xi[i+1]-xi
[i])    

# Electron-Nucleus 
     + 0.5 * 0.25*sum{i in 1..(N-1), j in max(1,i-indexCutoff)..min(i

+indexCutoff,N-1)} (xi[i+1]-xi[i])*(xi[j+1]-xi[j])* (rho[i]*rho[j]/sqrt((xi
[i]-xi[j])^2+delta) +  
 rho[i]*rho[j+1]/sqrt((xi[i]-xi[j+1])^2+delta) +rho[i+1]*rho[j]/sqrt((xi[i+1]-
xi[j])^2+delta) + rho[i+1]*rho[j+1]/sqrt((xi[i+1]-xi[j+1])^2+delta)); 

# Electron-electron 
subject to  
constr: sum{i in 1..(N-1)} 0.5*(xi[i+1]-xi[i])*(rho[i]+rho[i+1])=Nelec; 



Then why study the algorithms at all 
if modeling is so advanced ? 

�• Some problems CANNOT be solved well by 
current high-level languages.  
�– Problems that have non smooth data (and need to 

understand limitations of algorithms if 
approximating them). 

�–  Problems that use non-intrinsics (e.g. max 
likelihood).  

�• One can take an enormous performance hit if 
the problem is large or has to be solved many 
times.  



1.3 What is state of art in 
optimization? 

�• We can solve problems with 10^9-10^12 
variables LOCALLY.  

�• We have designed algorithms that make 
excellent use of massive parallelism (see unit 
commitment example).  

�• We can take advantage �“smartly�” of the latest 
architectures �… 



The Quadratic Assignment (facility 
location) Problem 

�•How does one place n facilities at n location such that the total cost is 
minimized? 

�•Solved by the METANEOS team (Linderoth, Goux, Wright) and friends. 

�•The branch-and-bound procedure IDEAL for distributed computing (cloud, 
grid).  

�•The solution of the NUG30 �– a 30 year open problem made the headlines. 



NUG30 statistics 



What we (optimizers) still need to figure 
out 

�• Global NONCONVEX (including integer) 
optimization problems are still far from being 
systematically solved on the large scale (many times 
we dance of joy when we solve N=30 ).  

�• Iterative solvers for constrained optimization beyond 
PDE constraints --- the preconditioning problems.  

�• There always appear new classes of problems that do 
not satisfy the usual assumptions �– for example 
complementarity constraints.  


