
Lecture 2
Mihai Anitescu STAT 310

PLAN

�• Announcements.
�• 1.4 Course objective.
�• 2.1 Newton�’s method and implications.
�• 2.2 Computing Derivatives.
�• 2.3 Linear Algebra.
�• 2.4 Sparse Linear Algebra

ANNOUNCEMENTS

�• Homework.
�• 01/11 office hour.
�• Stop me at EXPAND and DEMO.
�• I will try to post slides; MATLAB diary;

homeworks; and software. If you cannot access
them contact me.

1.4 COURSE OBJECTIVES

Types of minima

�• which of the minima is found depends on the starting point
�• such minima often occur in real applications

x

f(x)
weak
local

minimum isolated
global

minimum

isolated
local

minimum

feasible region

Summary LOCAL optimality
conditions

�• Conditions for local minimum of
unconstrained problem:

�• EXPAND: Geometry.

�– First Order Necessary Condition:

�– Second Order Sufficient Condition:

�– Second Order Sufficient Condition:

xx
2 f 0

 xx
2 f 0

minx f (x); f C 2

How about global optimality?

�• There is no simple criterion; extremely hard
question (most such problems are NP hard).

�• One exception f is convex:

�• But we will consider the general case.

 xx
2 f 0 EVERYWHERE

Course objectives

�• Derive efficient iterative algorithms to �“solve�”
the problem (and its constrained form).

�• Solve= guarantee convergence to a point that
satisfies the NECESSARY conditions.

�• Typically, if point also SUFFICIENT, then local
convergence should be FAST (e.g. quadratic),

�• NOTE: WE WILL DO NO SIMULATION.

minx f (x); f C 2

2.1 Intro to Methods for Continuous
Optimization: Newton�’ Method

�• Focus on continuous numerical optimization
methods
�• Virtually ALL of them use the Newton

Method idea

Newton�’s Method

�• Idea in 1D:
�– Fit parabola through 3 points, find minimum
�– Compute derivatives as well as positions, fit cubic
�– Use second derivatives: Newton by means of

Taylor expansion at the current point.

Newton�’s Method

�• At each step:

�• Requires 1st and 2nd derivatives

minx
1
2
x xk()2 f (xk)+ f (xk) x xk() + f (xk)

xk+1 = xk
f (xk)
f (xk)

Interpolating Poly (Taylor)

Newton�’s Method

Newton�’s Method

Newton�’s Method

Newton�’s Method

Newton�’s Method in
Multiple Dimensions

�• Replace 1st derivative with gradient,
2nd derivative with Hessian

Newton�’s Method in
Multiple Dimensions

�• Replace 1st derivative with gradient,
2nd derivative with Hessian

�• So, xk+1 = xk H 1(xk) f (xk)

18

RECAP: Taylor Series

�• The Taylor series is a representation of a
function as an infinite sum of terms
calculated from the values of its derivatives
at a single point. It may be regarded as the
limit of the Taylor polynomials

Recap: Multi-dimensional Taylor expansion

A function may be approximated locally by its Taylor series expansion
about a point x*

where the gradient is the vector

and the Hessian H(x*) is the symmetric matrix

Q: What is a residual bound? How would you prove it from 1D?

Recap: Orders of convergence

�• R-convergence and Q-convergence.
�• EXPAND

�• Q: Which order of convergence is desirable?
Why?

Newton�’s Method in
Multiple Dimensions

�• EXPAND: Justify by Quadratic
Approximation, and sketch quadratic
convergence.

�• Tends to be extremely fragile unless function
very smooth and starting close to minimum.

�• Nevertheless, this iteration is the basis of most
modern numerical optimization.

Newton Method: Abstraction and
Extension

�• �“Minimizing a quadratic model iteratively�”
�• EXPAND

NM Implementations

�• Descent Methods, Secant Methods may be
seen as �“Newton-Like�”

�• All �“Newton-like�” methods need to solve a
linear system of equations.

�• All �“Newton-like�” methods need the
implementation of derivative information
(unless a modeling language provides it for
free, such as AMPL). .

2.2 Computing Derivatives

�• Three important ways.
�• 1. Hand Coding (rarely done and error prone).

Typical failure: do the physics, ignore the design
till it is too late.

�• 2. Divided differences.
�• 3. Automatic Differentiation.

The formulas developed next can be used to estimate the value of a derivative at a
particular value in the domain of a function, they are primarily used in the solution of
differential equations in what called finite difference methods.

Note: There a several ways to generate the following formulas that approximate f '(x).
The text uses interpolation. Here we use Taylor expansions.

2.2.1. Divided Differences

Note that the last formula also applies in multiple dimensions, if I perturb one
coordinate at the time. EXPAND

Forward Difference Approximation

Subtract f(x0)
from both sides
& divide by h.

Finite Differences

�• Nevertheless, we use forward differences,
particularly in multiple dimensions. (Q: How
many function evaluations do I need for
gradient?)

�• Q: How do we choose the parameter h?
EXPAND

�• DEMO.
�• EXPAND Multiple Dimension Procedure.

2.2.2 Automatic Differentiation

�• There exists another way, based upon the chain
rule, implemented automatically by a �“compiler-
like�” approach.

�• Automatic (or Algorithmic) Differentiation
(AD) is a technology for automatically
augmenting computer programs, including
arbitrarily complex simulations, with statements
for the computation of derivatives

�• In MATLAB, done through package �“intval�”.

Automatic Differentiation (AD) in a
Nutshell

�• Technique for computing analytic derivatives
of programs (millions of loc)

�• Derivatives used in optimization, nonlinear
PDEs, sensitivity analysis, inverse problems,
etc.

Automatic Differentiation (AD) in a
Nutshell

�• AD = analytic differentiation of elementary
functions + propagation by chain rule
�– Every programming language provides a limited

number of elementary mathematical functions
�– Thus, every function computed by a program may

be viewed as the composition of these so-called
intrinsic functions

�– Derivatives for the intrinsic functions are known
and can be combined using the chain rule of
differential calculus

Automatic Differentiation (AD) in a
Nutshell

�• Associativity of the chain rule leads to many
ways of combining partial derivatives,
including two main modes: forward and
reverse

�• Can be implemented using source
transformation or operator overloading

Accumulating Derivatives

�• Represent function using a directed acyclic
graph (DAG)

�• Computational graph
�– Vertices are intermediate variables, annotated with

function/operator
�– Edges are unweighted

�• Linearized computational graph
�– Edge weights are partial derivatives
�– Vertex labels are not needed

�• EXPAND: Example 1D case, + reverse.

A Small Example

... lots of code...
a = cos(x)
b = sin(y)*y*y
f = exp(a*b)
... lots of code...

Forward mode: 9 + 12p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
 g_1(1:p) = d1dy*g_y(1:p)
tmp2 = tmp1*y
 g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p)
b = tmp2*y
 g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p)
tmp1 = a*b
 g_1(1:p) = b*g_a(1:p)+a*g_b(1:p)
f = exp(tmp1)
 g_f(1:p) = f*g_1(1:p)

New algorithm: 17 + 3p

a = cos(x)
 dadx = -sin(x)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1 * y
b = tmp2*y
f = exp(a*b)
 adjx = f*a*dadx
 adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y))
 g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)

ADIC mode: 11 + 5p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1*y
b = tmp2*y
 adjy = y*y*d1dy + y*tmp1 + tmp2
 g_b(1:p) = adjy*g_y(1:p)
f = exp(a*b)
 adja = f*b
 adjb = f*a
 g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) p independents

Preaccumulation:
�•Reduces flops (factor 2 or more)
�•Reduces memory requirements (adjoint mode)
�•Optimal strategy can reduce flops by another
factor of 2 y x

*

sin

cos

*
*

exp

...

...

q dependents

a

b

f

a

cos(y)

f

t2

-sin(x)

y

y t1

b

y x

...

...

q dependents

f

adjy adjx

y x

...

...

q dependents

a

b

f

adjy

-sin(x)

adja

adjb

A simple example

b = sin(y)*y
a = exp(x)
c = a*b
f = a*c

y x

sin exp

*
*

a

b

f *

c

A simple example

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

y x

f

a

c

t0

y

d0

b

a

a

y x

sin exp

*
*

a

b

f *

c

Vertex elimination

f

a

c

b

a

�• Multiply each in edge by each out edge,
add the product to the edge from the
predecessor to the successor

�• Conserves path weights
�• This procedure always terminates
�• The terminal form is a bipartite graph

Vertex elimination

f
�• Multiply each in edge by each out edge,

add the product to the edge from the
predecessor to the successor

�• Conserves path weights
�• This procedure always terminates
�• The terminal form is a bipartite graph

a*a
c + a*b

Forward mode: eliminate vertices in
topological order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Forward mode: eliminate vertices in
topological order

x y

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y

v2

v3

v4

Forward mode: eliminate vertices in
topological order

x y

f

c

d2

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a

v3

v4

Forward mode: eliminate vertices in
topological order

x y

f

d4

d2 d3

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c

v4

Forward mode: eliminate vertices in
topological order

x y

f

dfdx dfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c
dfdy = d2*a
dfdx = d4 + d3*a

6 mults 2 adds

Reverse mode: eliminate in reverse
topological order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Reverse mode: eliminate in reverse
topological order

y x

f

d1
d2

t0

y

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a v1

v2

v3

Reverse mode: eliminate in reverse
topological order

y x

f

d4 d2

d3

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1

v1 v3

Reverse mode: eliminate in reverse
topological order

y x

f

d2

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4

v3

Reverse mode: eliminate in reverse
topological order

x y

f

dfdx dfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4
dfdx = a*d2

6 mults 2 adds

Forward gradient Calculation

�• Forward mode computes
�– At a cost proportional to the number of

components of f.
�– Ideal when number of independent variables is

small
�– Follows control flow of function computation
�– Cost is comparable to finite differences (can be

much less, rarely much more)

f ; f :Rn Rm

Forward versus Reverse

�• Reverse mode computes
�– At a cost proportional to m
�– Ideal for JTv, or J when number of dependent

variables is small
�– Cost can be substantially less than finite

differences

�• COST IF m=1 IS NO MORE THAN 5*
COST OF FEVAL. EXPAND.

J = f ; f :Rn Rm

AD versus divided differences

�• AD is preferable whenever implementable.
�• C, Fortran versions exist.
�• In Matlab, free package INTVAL (one of the

main reasons not doing C). DEMO
�• Nevertheless, sometimes, the source code

DOES not exist. (e.g max likelihood).
�• Then, divided differences.

