E THE UNIVERSITY OF

¥ | CHICAGO

Lecture 2
Mihai Anitescu STAT 310

CHICAGO |

PLLAN

* Announcements.

* 1.4 Course objective.

¢ 2.1 Newton’s method and implications.
* 2.2 Computing Derivatives.

* 2.3 Linear Algebra.
* 2.4 Sparse Linear Algebra

CHICAGO |

ANNOUNCEMENTS

e Homework.

e 01/11 office hour.
¢ Stop me at EXPAND and DEMO.

* [will try to post slides; MATLAB diary;
homeworks; and software. If you cannot access

them contact me.

CHICAGO |

1.4 COURSE OBJECTIVES

Types of minima

weak isolated
local local
f(X) minimum isolated minimum

global
minimum

fff
aa

zzz

feasible region X

* which of the minima 1s found depends on the starting point

* such minima often occur in real applications

CHICAGO |

Summary LOCAL optimality

. . conditions
e Conditions for loca/ minimum of
. . . 2
unconstrained problem: min, f(x); feC
— First Order Necessary Condition: Vf =0
— Second Order Sufficient Condition: 2
V220
— Second Order Sufficient Condition: Vixf >~ 0

 EXPAND: Geometry.

CHICAGO |

How about global optimality?

* There is no simple criterion; extremely hard
question (most such problems are NP hard).

* One exception f is convex:

V:f=0 EVERYWHERE

* But we will consider the general case.

CHICAGO |

Course objectives

* Dertve ettficient iterative algorithms to “solve”
the problem (and its constrained form).

min_ f(x); feC’

* Solve= guarantee convergence to a point that

satisfies the NECESSARY conditions.

* Typically, if point also SUFFICIENT, then local
convergence should be FAST (e.g. quadratic),

e NOTE: W]

H WILL DO NO SIMULATION.

2.1 Intro to Methods for Continuous

Optimization: Newton” Method

* Focus on continuous numerical optimization
methods

* Virtually ALL of them use the Newton
Method idea

CHICAGO |

Newton’s Method

e Ideain 1D:

— Fit parabola through 3 points, find minimum
— Compute derivatives as well as positions, fit cubic

— Use second derivatives: Newton by means of
Taylor expansion at the current point.

CHICAGO |

Newton’s Method

Interpolating Poly (Taylor)
* At each step:
1

min, E(X — Xy)2 S (x)+ f,(xk)(x — xk)"' JF(x)
e L)
S (x)

« Requires 1%t and 2™ derivatives

CHICAGO |

Newton’s Method

CHICAGO |

Newton’s Method

CHICAGO |

Newton’s Method

CHICAGO |

Newton’s Method

Newton’s Method in

Multiple Dimensions
* Replace 1% derivative with gradient,
21d derivative with Hessian

f(x,»)
()
ox
Vf = 2
\

(9%f

| ox?
H = 2
\axay

321)
oxdy
0% f
oy° /

Newton’s Method in

Multiple Dimensions
* Replace 1% derivative with gradient,

2nd derivative with Hessian

)_ék o H_l(';ék)vf(%k)

’ SO’ Xk+1

RECAP: Taylor Series

* The Taylor series is a representation of a
function as an infinite sum of terms
calculated from the values of its derivatives
at a single point. It may be regarded as the
limit of the Taylor polynomials

Taylor series fora polynominal function, the wt. sum of its derivatives

f(x)= f(());o)(x—xo)O + %/XO)(X—XO) +f//2§x°)(x—xo)2 +...+ —f(n;gx())(x—xoy

Taylor series foran arbitrary function,any function= by the wt.sum of its derivatives

f(x)—f(());o)(x—xo)0 = %;C())(x—xo)] +f//25xo)(x—xo)2 +...+ —f(}ZSXO)(x—xOY+R

(n+l)
Where R = 7. (p)(x—xo Y

(n+1Y

18

Recap: Multi-dimensional Taylor expansion

A function may be approximated locally by its Taylor series expansion
about a point X*

f(X*+x)~ f(x*)+ VfIx+ %XTHX

where the gradient V f(x*) 1s the vector

o_[of or)
X1 LN
and the Hessian H(x*) is the symmetric matrix
W’El o 8.’1,‘18.’1,‘5\1
H(x) = | _
02 f 9% f
_dde’n T dqj‘?\r |

Q: What is a residual bound? How would you prove it from 1D?

Recap: Orders of convergence

* R-convergence and Q-convergence.
« EXPAND

* Q: Which order of convergence 1s desirable?
Why?

Newton’s Method in

Multiple Dimensions

« EXPAND: Justify by Quadratic
Approximation, and sketch quadratic
convergence.

* Tends to be extremely fragile unless function
very smooth and starting close to minimum.

* Nevertheless, this iteration 1s the basis of most
modern numerical optimization.

Newton Method: Abstraction and

Extension
* “Minimizing a quadratic model iteratively”

* EXPAND

NM Implementations

* Descent Methods, Secant Methods may be
seen as “Newton-Like”

* All “Newton-like” methods need to solve a
linear system of equations.

* All “Newton-like” methods need the
implementation of derivative information

(unless a modeling language provides it for
free, such as AMPL). .

2.2 Computing Derivatives

* Three important ways.

* 1. Hand Coding (rarely done and error prone).
Typical failure: do the physics, 1ignore the design
till it 1s too late.

e 2. Divided differences.

e 3. Automatic Differentiation.

CHICAGO |

2.2.1. Divided Differences

The formulas developed next can be used to estimate the value of a derivative at a

particular value in the domain of a function, they are primarily used in the solution of
differential equations in what called finite difference methods.

Note: There a several ways to generate the following formulas that approximate f '(x).
The text uses interpolation. Here we use Taylor expansions.

|A difference quotient is a change in function values divided by the corresponding domain values.
For example

Ay _¥1—Yo
AX X —X;

Fory = f(x) with X = Xp and x; we have
Ay _ T(x4) - 1(Xp)
AX Xq—Xg
or fory = f(x) with X = Xp and x1=Xp + h we have
Ay _T(xg +h)-T(Xg) _ T(X, +h)-T(X,)
AX X,+h-x, h |
Note that the last formula also applies in multiple dimensions, if | perturb one
coordinate at the time. EXPAND

CHICAGO |

Forward Difference Approximation

Giveny =f(x) and y;, = f(Xo +h': —MXo) o h >0 and some fixed value Xo. Assume also that

Is bounded by a constant C. Show that f'(xy) =y + O(h). Here we use Taylor's Theorem.

f(x)|

Proof: Expand f(xy + h) using Taylor's Theorem with center of expansion xo we get

Subtract f(x,) (X0 +h)=Ff(xo)+hf'(xo) + =-f"(2) where is between Xo and Xo + h.
from both sides

ivi : ' h o
& divide by h fpo/)+hf (xo)+?f (i)-)(’{o)
h

It follows then that yy, =

. h..
=f (X0)+§f ().

SO Yy, = f'(x0)+gf"(§) . Using that

f"(x)| <C we get that |f'(x0)—yh|sgc. It then follows that
f'(xg) =yh +O(h).

f(xg +h)—f(xp)

IS called the Forward Difference Approximation to f '(x) at x = Xp.

Finite Differences

* Nevertheless, we use forward differences,
particularly in multiple dimensions. (QQ: How
many function evaluations do I need for
oradient?)

* (Q: How do we choose the parameter h?

EXPAND
e DEMO.
 EXPAND Multiple Dimension Procedure.

2.2.2 Automatic Differentiation

* There exists another way, based upon the chain
rule, implemented automatically by a “compiler-

like” approach.

* Automatic (or Algorithmic) Differentiation
(AD) is a technology for automatically
augmenting computer programs, including
arbitrarily complex simulations, with statements
for the computation of dertvatives

* In MATLAB, done through package “intval”.

Automatic Differentiation (AD) in a

Nutshell

* Technique for computing analytic dertvatives
of programs (millions of loc)

* Dertvatives used in optimization, nonlinear

PDEs, sensitivity analysis, inverse problems,
etc.

Automatic Differentiation (AD) in a

Nutshell

* AD = analytic differentiation of elementary
functions + propagation by chain rule

— Bvery programming language provides a limited
number of elementary mathematical functions

— Thus, every function computed by a program may
be viewed as the composition of these so-called
intrinsic functions

— Derivatives for the intrinsic functions are known
and can be combined using the chain rule of
differential calculus

Automatic Differentiation (AD) in a

Nutshell

* Associativity of the chain rule leads to many
ways of combining partial derivatives,
including two main modes: forward and
reverse

* Can be implemented using source
transtormation or operator overloading

Accumulating Derivatives

* Represent function using a directed acyclic
ograph (DAG)
* Computational graph

— Vertices are intermediate variables, annotated with
function/operator

— Edges are unweighted
* Linearized computational graph
— Edge weights are partial dertvatives

— Vertex labels are not needed

 EXPAND: Example 1D case, + reverse.

CHICAGO |

A Small Example

... lots of code...

a = cos(x)

f = exp(a*b)

... lots of code...

y*a_y(1:p)

PIDPY ehya1:P)
WD H,
S TR)E b'g_a(1:p)+a*g_b(1:p)

Gl L)
f 531‘1’%%5"5%‘* ja38,-a01:p)+adjb*g_b(1:p)

q dependents

exp f

‘\

y

COS

Preaccumulatici:
*‘Reduces flops (factor 230r more)
*‘Reduces memory requiirements (adjo
-Optimal strategy can lieduce flops b
factor of 2 cos(y) y y

=

p independents

S

int.mode)
another

A simple example

f@ *
a = exp(x)
c=a'b
f=a%c el &
/’> |

CHICAGO |

A simple example

f@ * f@
d0 = cos(y)
a = exp(x) ol c
c=a'b]
f=a"c .
y
exp a

t0
do a

CHICAGO |

Vertex elimination

Multiply each in edge by each out edge,
add the product to the edge from the

predecessor to the successor
Conserves path weights
This procedure always terminates

The terminal form is a bipartite graph

CHICAGO |

Vertex elimination

c+a*b

Multiply each in edge by each out edge,
add the product to the edge from the

predecessor to the successor
Conserves path weights
This procedure always terminates

The terminal form is a bipartite graph

Forward mode: eliminate vertices in

topological order
dO = cos(y)
a = exp(x)

c=ab
f=a*c

do

o’ @ X

Forward mode: eliminate vertices in

topological order
dO = cos(y)

a = exp(x)
c=ab
f=a*c

d1 =10 + dO%y

o’ @ X

Forward mode: eliminate vertices in

topological order
dO = cos(y)

a = exp(x)
c=ab
f=a*c

d1 =10 + dO%y
d2 =d1*a

Forward mode: eliminate vertices in

topological order
'@ dO = cos(y)

a = exp(x)
c=ab
e\ f=a*c
d1 =10 + dO*y
d2 =d1*a
d3 =a*b
d2 d3 d4 = a*c

Forward mode: eliminate vertices in

topological order
'@ dO = cos(y)

a = exp(x)

c=a'b

f=a*c

d1 =10 + dO*y
dfdy dfdx d2 = d1*a

d3 =a*b

d4 = a*c

dfdy = d2*a

dfdx = d4 + d3*a

6 mults 2 adds

Reverse mode: eliminate in reverse

topological order

dO = cos(y)

a = exp(x)
c=a*b
f=a*c

Vi
A V3

do

o’ @ X

Reverse mode: eliminate in reverse

topological order

f@

dO = cos(y)

. a2 a = exp(x)
c=a*b
f=a*c

v d1 = a*a

y 2
d2 =c + b*a
"2 v,

t0
do

o’ @ X

Reverse mode: eliminate in reverse

topological order

dO = cos(y)

dd a2 a = exp(x)
c=a%b
f=a*c

d3 d1 = a*a
d2 =c+ b*a

O v, d3 = t0*d1

d4 = y*d1

do

Reverse mode: eliminate in reverse

topological order

dO = cos(y)

a2 a = exp(x)
c=a%b
f=a*c
dfdy d1 = a*a
d2 =c+ b*a
® v, d3 =t0*d1
d4 = y*d1
dfdy = d3 + d0*d4

Reverse mode: eliminate in reverse

topological order

dO = cos(y)

a = exp(x)
c=a%b
f=a*c
dfdy dfdx d1 - a*a
d2 =c+ b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4
dfdx = a*d2

6 mults 2 adds

Forward gradient Calculation

* Forward mode computes /3 iR =R

— At a cost proportional to the number of
components of f.

— Ideal when number of independent variables 1s
small

— Follows control flow of function computation

— Cost is comparable to finite differences (can be
much less, rarely much more)

Forward versus Reverse

* Reverse mode computes/ =Vf; f:R"—R"
— At a cost proportional to m

— Ideal for J'v, or] when number of dependent
variables is small

— Cost can be substantially less than finite
differences

* COST IF m=1 IS NO MORE THAN 5*
COST OF FEVAL. EXPAND.

CHICAGO |

AD versus divided differences

* AD is preferable whenever implementable.

* C, Fortran versions exist.

* In Matlab, free package INTVAL (one of the
main reasons not doing C). DEMO

* Nevertheless, sometimes, the source code

DOES not exist. (e.g max likelihood).
e Then, divided differences.

