E THE UNIVERSITY OF

¥ | CHICAGO

STAT 310 Lecture 3

Mihai Anitescu

Outline

Homework Questions? Structure of an
optimization code (EXPAND)

Survey

2.3 Direct Linear Algebra — Factorization
2.4 Sparsity

3.1 Failure of vanilla Newton

3.2 Line Search Methods

3.3 Dealing with Indefinite Matrices

3.4 Quasi-Newton Methods

Some thoughts about coding

. 'Think ahead of time what functionality your
code will have, and define the interface
propetly

. If portions of code are similar, try to define a

function and “refactorize” (e.g the 3 different
iterations).

. Document your code.

4. Do not write long function files; they are

impossible to debug (unless very experienced).

Example Encapsulation

function [x,gradNerm]=newtonLikelteration(functionHandle,xStartPoint,

iterationType, iterIndex)

% computes one iteration of Newton Like method with a diagonal
% perturbation

% INPUT: functionHandle: (pointer) Functicn defining problem
% xStartPoint: {vector) The Starting Point
% iterIndex: (integer) The index of the iterate
% iterationType: k=1: Newton's Method
% k=2: Hessian peturbed by identity, I
% k=3: Hessian peturbed by o(iterInd)=*I
% OUTPUT: (vector) Next iteration Point.
function [xout,iteratesGradMorms]=newtonLikeMethod(functionHandle,
x5tartPoint,iterationType,stopTolerance, maxIterations)
% [xout,iteratesGradNorms]=newtonLikeMethod(functionHandle,xS5tartPoint,
iterationType,stopTolerance,maxIterations)
% PURPDSE: computes the outcome of a Newton-like Method with a perturbed
diagonal
% INPUT: functionHandle: (pointer) Handle to the optimization
% problem to be solved
% xS5tartPoint: (vector) The starting point
% iterationType: (integer) The type of the diagonal
peturbation to be
% used
% stopTolerance: (scalar) the gradient size at which the
iteration
> will stop.
% maxIterations: (integer) The maximum number of iterations
for which
% the algorithm should be run
% OUTPUT: xout: (vector) The final output
% iteratesGradNorms: (vector) The norms of the gradients

[xout,iteratesGradNorms]=newtonLikeMethod(@fenton_wrap,[3 4]',1,1e-12,200)

2.3 SOLVING SYSTEMS OF
LINEAR EQUATIONS

2.3.1 DIRECT METHODS: THE
ESSENTIALS

L. and U Matrices

* Lower Triangular Matrix[

* Upper Triangular Matrix

[U]: 0 u,, u,y
0 0 u,
0 0 0

/

[, 1 0
L:21 22
[2]-|]

/

LU Decomposition for Ax=0b

* LU decomposition / factorization

[A]ix;=[L]1[U]lixy=18}

e Forward substitution

[L]1{d}=10b}
e Back substitution
[Ulix} =14}

* Q:Why might I do this instead of
Gaussian elimination?

Complexity of LU Decomposition

to solve Ax=b:

— decompose A into LU -- cost
2 /3 flops

— solve [y=b for y by forw. substitution -- cost #?
flops

— solve Ux=y for x by back substitution -- cost #?
flops

slower alternative:

— compute A! -~ cost 27 flops

— multiply x=A1) -~ cost 27
flops

26 ¥y osts about 3 tirties asduaivretseasitf, U 9

Computing

Cholesky 1.U Factorization

If [A] is symmetric and positive definite, it 1s
convenient to use Cholesky decomposition.

[4] = [L][L]"= [U]'[U]
No pivoting or scaling needed if [A] is
symmetric and positive definite (all
eigenvalues are positive)

If [A] is not positive definite, the procedure
may encounter the square root of a negative
number

Complexity is /2 that of LU (due to symmetry
exploitation)

Cholesky 1.U Factorization

* [A] = [UI'[U]

e Recurrence relations

i1
. 2
u,; =.a; — El,”ki
=1

i—1
ay = D ity
_ k=1

U..

u

u;

forj=i+1,...,n

Prvoting in 1.U Decomposttion

¢ Still need pivoting in LU decomposition
(why?)

* Messes up order of [L]
* What to do?

* Need to pivot both [L] and a permutation
matrix [P]

* Initialize [P] as identity matrix and pivot
when [A] is pivoted. Also pivot [L]

L.U Decomposition with Pivoting

Permutation matrix [P]
- permutation of identity matrix [I]

Permutation matrix performs “bookkeeping”
associated with the row exchanges

Permuted matrix [P] [A]
LU factorization of the permuted matrix
[P][A]=[L][U]

Solution

[LI[U] ;= [P] bs

L U-factorization for real symmetric Indefinite matrix A
(constrained optimization has saddle points)

LU — factorization A=

E ‘CT [E ¢’
c ‘B cE™| 1 B-cE'c

T -1 T
LDl — factorization A:(E} ;jz(u]](E YI‘ E ¢ J

B—cE'c") | 1

I r_[LLETS (1] E7
where L=|" and L =
ck 1 ‘ ‘

Question: 1) If Ais not singular, can | be guaranteed to find a nonsingular principal block E
after pivoting? Of what size?

2) Why not LU-decomposition?

History of LDL” decomposition: 1x1, 2x2 pivoting

diagonal pivoting method with complete pivoting:
Bunch-Parlett, “Direct methods fro solving symmetric indefinite
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971,
pp. 639-655

diagonal pivoting method with partial pivoting:

Bunch-Kanfman, “Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems,” Mathematics of
Computation, volume 31, number 137, January 1977, page
163-179

DEMOS

2.3.1 DIRECT METHODS:
EXTRA DETAILS

Gaussian Elimination (GE)

* Add multiples ot each row to later rows to make A upper triangular

* Solve resulting triangular system Ux = ¢ by substitution

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows
fori=1ton-1
... for each row j below row i
forj=i+1ton
... add a multiple of row i to row |
tmp = A(,i);
fork =iton
A(,k) = A(,k) - (tmp/A(i,i)) * A(i,k)

0 0 0 0
0 10 .10
. -1:10 -1:10
0 Olo Olol0O 0[0/0]q]0
After i=1 After i=2 After i=3 After i=n-1

Summer School Lecture 4 17

Refine GE (1/5)

 Initial Version

... for each column i
... zero it out below the diagonal by adding multiples of row i to later rows
fori=1ton-1
... for each row j below row i
forj=i+1ton
... add a multiple of row i to row |
tmp = A(,i);
fork=iton
A(,k) = A(,k) - (tmp/A(i,i)) * A(i,k)

Remove computation of constant tmp/A(i,1)
from 1nner loop.

fori=1to n-1
forj=i+1ton

fork=iton m
A(,k) = A(,k) - 7 *A(i,k) ~

Refine GE (2/5)

e J.ast version

fori =1 to n-1
forj=i+1ton
m = A(j,i)/A(i,i)
fork=iton

AG,K) = A(j,k) - m * Ai,k)

* Don’t compute what we already know:

zeros below diagonal in column 1

fori =1 to n-1
forj=i+1ton
m = A(j,i)/A(i,i)
fork=i ton

AG,K) = A(j,k) - m * Ai,k)

Summer School Lecture 4

R |
m
\\/ j
19 Do not compute zeros

Refine GE Algorithm (3/5)

e J.ast version

fori =1 to n-1
forj=i+1ton
m = A(j,i)/A(i,i)
fork=i+1ton

AG,K) = A(j,k) - m * Ai,k)

 Store multipliers m below diagonal in zeroed

entries for later use

fori=1to n-1
forj=i+1ton

fork =i+1ton

= AG,i)AG)

A(J’k) = A(J’k) -

* A(i,K)

Summer School Lecture 4

20

Store m here

Refine GE Algorithm (4/5)

e J.ast version

fori=1to n-1
forj=i+1ton
A(,1) = A(j,)/A(,)
fork =i+1ton
A(,k) = A(j,k) - A(j,1) * A(i,k)

» Split Loop

fori=1to n-1
forj=i+1ton i
A1) = AG,iYA(LT) B

fork =i+1ton j
AGK) = AGLk) - AGLi) * A k) / \

Store all m’s here before
updating rest of matrix

Summer School Lecture 4 21

Refine GE Algorithm (5/5)

e [.ast version fori =1 to n-1
forj=i+1ton
A(j,1) = A(,i)/A,)
forj=i+1ton
fork=i+1ton
A(,k) =A(,k) - AQ,i) * A(i,k)

Work at step i of Gaussian Elimination
i

Finished part of U

. : fori=1to n-1
i A, 1 AGi,Kx =— Al(i,i+1:n)
1 1
Finished ... BLAS 1 (scale a vector)
[multipliers
AG— AG)
- = - -=--! ... BLAS 2 (rank-1 update)

i

A(i+1:n,i) A(i+1:n,i+1:n)
Summer dcnool Lecture 4 22

What GE really computes

fori=1ton-1
A(i+1:n,i) = A(i+1:n,i) /A(i,i) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - A(i+1:n, i) *A(i , i+1:n) ... BLAS 2 (rank-1 update)

* Call the strictly lower triangular matrix ot
multipliers M, and let . = I+M

* (Call the upper triangle of the final matrix U

* Lemma (LU Factorization): 1f the above
algorithm terminates (does not divide by zero)

then A = L*U

Summer School Lecture 4 23

What GE really computes

fori=1ton-1
A(i+1:n,i) = A(i+1:n,i) /A(i,i) ... BLAS 1 (scale a vector)
A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - A(i+1:n, i) *A(i , i+1:n) ... BLAS 2 (rank-1 update)

* Solving A*x=b using GE
— Factorize A = L*U using GE (cost =
2/3 n3 flops)
— Solve L*y = b for y, using substitution (cost = n?
flops)
— Solve U*x =y for x, using substitution (cost = n?
flops)
* Thus A*x = (IL*U)*x = L*(U*x) = L*y = b as
summAGSICL 4 g

Forward Substitution

* Once [L] is formed, we can use forward
substitution instead of forward elimination for

different {4}’s

L d}=

-

=5

.

I, 0 0 0]|d,
L, L, 0 0 <d2
131 l32 l33 0 d3
l41 l42 l43 l44 \d4

d =b,/1,
dz — (bz - 121d1)/122

(llldl A fbl\
J lZIdI + lZZdZ L — bZ [
l31d1 + l32d2 + l33d3 b3
\l4ld1 T l42d2 T l43d3 + l44d4, \b4,

Very efficient for

' !
d, =, —1,d —1,d,)/1, large matrices !
d,=(b,—1,d,~-1,d,-1,d;)/1,

Back Substitution

R x}=

=25

-

\

Uy Uy Uiz Uy || X UpX; T UpX, T UX; T U X,
0 u,, u, u, < X, | _ Uy X, T UyX; +UyX, | _
0 0 ug; uy||x; U3 X3 + Uz X,

0 0 0 u,||x, Uy Xy

Identical to
x,=d,/u, Gauss
xX; =(d; —uyx,) us, elimination
X, =(dy —uyx; —uyx,) uy,

X, =, —u,x,—u;x; —u,x,) u,

O
o

N
N

\
L
~
J/

[\)

(8) Forward Substitution

Example:
1 0 0
-1 1 0
L{d}=
L] 0 1/2 1
6 1 14
d, =1

d,=-1+d,=—-1+1=10
d,=2-(1/2)d =2
d,=1-6d,+d,—14d;, =1-6—14(2)=—-33

~S SO

a8

\
[\S} N&
J

o

B
I\

1>:{b}

{d}=<

(8) Back-Substitution

1 0 2 3(x,] [1
0.2 4 0||x 0
[U]{x}z 0 0 7 4< 2l =3 2>
_ X,

o 0 0 -70|\x,] [(-33
(x,=-33/-70=33/70 — 13/70
x,=4x,-2=-4/35 8/35

\ —
x,=-2x,=8/35 St 4/35
x;,=1-2x;—-3x,=-13/70 - 33/70

Forward and Back Substitutions

e Forward-substitution

d=b-31d fori=12,...,n
j=1

* Back-substitution (identical to Gauss
elimination)

x, =d, la,

n
d;— > ux,
_ Jj=i+l .

u

Excample: Cholesky .U

7] 2
9 -6 12 -3 u;, u,u,, U, u,u.,
2 2
[A]: -6 5 -9 2 _ | BuMiz Ui + U, Uju, +uyl,, U u, +u,u,
12 -9 21 0 W, u,, WU, + U, U, UW,+u.,+u u, u,,+u,u, +u,u
n; 13452 23U5; 13 23 33 1443 24U33 34U33

2 2 2 2

-3 2 0 6 Uy, U U, UG U, U U U U U U Uy, U, U, U,

I" column/row: u,, = V9 = 3; u,=—6/3=-2; u,=12/3=4; u,, =-3/3=-1

nd . 2 2 _ & — 0. _

Uy, =~5— (=2’ =1 u,, =(=9—-4(=2))/ 1=—1; u,, =2—(-1)(-2))/1=0

rd . 2 2 2 _ 7. _

Uy, = 21— (4)° = (=1)> =25 u,, =(0—(~1)(4) - (0)(~-D)/2 =2

4 row : wl, vl vl =6 = u, =6 (1)’ —(0) -(2)° =1

2.4 COMPLEXITY OF LINEAR
ALGEBRA; SPARSITY

Complexity of LU Decomposition

to solve Ax=b:

— decompose A into LU -- cost
2 /3 flops

— solve [y=b for y by forw. substitution -- cost #?
flops

— solve Ux=y for x by back substitution -- cost #?
flops

slower alternative:

— compute A! -~ cost 27 flops

— multiply x=A1) -~ cost 27
flops

26 ¥y osts about 3 tirties asduaivretseasitf, U 32

Computing

Complexity of linear algebra

lesson:

— if you see A!in a formula, read it as “solve a
system”, not “invert a matrix’”’

Cholesky factorization -~ cost n°/3 flops
L.DL. factorization -- cost 7°/3 flops

QW at 1s the cost ST CE4liEt’ s ttle (roughly)? ”

Sparse Linear Algebra

* Suppose you are applying matrix-vector multiply
and the matrix has lots of zero elements

— Computation cost? Space requirements?

* General sparse matrix representation concepts

— Primarily only represent the nonzero data values
(nnz)

— Auxiliary data structures describe placement of
nonzeros in “dense matrix”

* And *MAYBE* LU or Cholesky can be done in
O(nnz), so not as bad as (O(n"3)); since very
oftentimes nnz=0(n)

Sparse Linear Algebra

CS6963

Because of its phenomenal computational and
storage savings potential, sparse linear algebra is
a huge research topic.

VERY ditficult to develop.

Matlab implements sparse linear algebra based
on 1,],s format.

DEMO

Conclusion: Maybe I can SCALE well ... Solve
O(10™12) problems in O(10712).

35
L12: Sparse Linear Algebra

SUMMARY SECTION 2

* The heaviest components of numerical software
are Numerical differentiation (AD/DIVDIFF)

and linear algebra.

* Factorization 1s always preterable to direct
(Gaussian) elimination.

* Keeping track of sparsity in linear algebra can
enormously improve performance.

ERE THE UNIVERSITY OF

@ | CHICAGO

Section 3: Line Search Methods

Mihai Anitescu STAT 310

Reference: Chapter 3 in Nocedal and
Wright.

3.1 FAILURE OF NEWTON
METHODS

Problem definition

min f(x)

f - R" —> R - continuously differentiable
- gradient is available
-Hessian is unavailable

Necessary optimality conditions: V£ (x")=0

Sufficient optimality conditions: V2 £(x™) -0

DEMO

* Algorithm: Newton.

* Note: not only does the algorithm not converge,
the function values go to infinity.

e So we should have known ahead of time we
should have done something else earlier.

Ways ot enforcing that thinks do not

blow up or wander

e 1. Line-search methods.
— Make a “guess” of a good direction.
— Make good progress along that direction. At least
know you will decrease f.
* 2. Trust region model.
— Create a quadratic model of the function.

— Detine a region where we “believe”—"trust” the
model and find a “good” point in that “region”.

— If at that point the model 1s far from f, less trust—
smaller region, if not, more —larger region.

3.2 LINE SEARCH METHODS

3.2.1 LINE SEARCH METHODS:
ESSENTIALS

Line Search Methods Idea:

* At the current point X; find a “Newton-like”
direction d,

* Along that direction d, do 1-dimensional
minimization (simpler than over whole space)
x,,, =argmin, f(x, +od,)

* Because the line search always decreases f, we
will have an accumulation point (cannot diverge

if bounded below) — unlike Newton proper

Descent Principle

* Descent Principle: Carry Out a one-Dimensional
Search Along a LLine where I will decrease the
function.

g() = f(xe+0o pr) for Vf(x:)'pr <0
* If this happens, there exists an alpha (why?)

such that.
f(xk +(ka) < f('xk)

* So I will keep making progress.
* Typical choice (why)? B,p, =-Vf(x,); B, >0
* Newton may need to be moditfied (why?)

Line Search-Armijo

| cannot accept just about ANY decrease, for | may NEVER
converge (why , example of spurious convergence).

 IDEA: Accept only decreases PROPORTIONAL TO THE
SQUARE OF GRADIENT. Then | have to converge (since process
stops only when gradient is 0).

« Example: Armijo Rule. It uses the concept of BACKTRACKING.

f(x)-f(x +B"t.d)>-pB"t Vf(x,) d g(0)+crog’(a)
Be(0,1) pe(0,1/2)

g(0)+ o g’(o)

Some Theory

Global Convergence:
Let | be twice continuously differentiable on an open set D, and assume that the starting
point xo of Algorithm 3.2 is such that the level set L = {x € D : f(x) < f(xo)} is compact.
Then if the bounded modified factorization property holds, we have that

k— 00

k(Bi) = |Bell 1B < C, someC > Oandallk =0,1,2,....

Fast Convergence:
Newton is accepted by LS

Suppose that f is twice differentiable and that the Hessian V? f (x) is Lipschitz continuous
(see (A.42)) in a neighborhood of a solution x* at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration Xyy1 = Xy + px, where py. is given by (3.30). Then
(1) if the starting point x, is sufficiently close to x*, the sequence of iterates converges to x*;

(ii) the rate of convergence of {xy} is quadratic; and

(iii) the sequence of gradient norms {||V fi ||} converges quadratically to zero.

Extensions

e J.ine Search Refinements:

— Use interpolation
— Wolfe and Goldshtein rule

* Other optimization approaches

— Steepest descent,

- CG ...

3.2.2 LINE SEARCH METHODS:
EXTRAS.

3.2.2.1 LINE SEARCH
METHODS: USING
INTERPOLATION IN LINE
SEARCH

Quadratic Interpolation
& Approximate g(a) with h(0)

h(0)=g(0), h’(0) =g’(0), g(ao)

g(0w)

a1
(g(o0)— g(0)—0ug' (&) >
2

Quadratic Interpolation

Potential step o = g'(a)ow:
2(g(0w)— g(0)—oug'(o

-

)

g(0w)

ol

Cubic Interpolation

Cubic Interpolation

h(0) = a0tz +b0o.2 +0g'(0)+ g(0)

[al I [ow—on Yg(ou)-g(0)-g'(0)ou
plE o —0l —ows o | g(ow)- g(0)- 2(0)0w |

—b+ \Jb2 =3ag'(0)
O =
3a

3.2.2.2 LINE SEARCH
METHODS: OTHER LINE
SEARCH PRINCIPLES

Unconstrained optimization methods

X =X, T akdk

OCk . Step length dk . Search direction

1) Line search

2) Trust-Region algorithms

Quadratic approximation

Influences

Step length computation:

1) Armijo rule:
f(x)= f(x, +B"t,d)=-pB"t, Vf(x,) d,
B <(0,1) pe(0,1/2)

7, =~V () d)/|d,|

2) Goldstein rule:

plakg/fdk < f(xk T akdk) o f(xk) < pzakglfdk

0<p,<,<p, <l

3) Wolfe conditions:

f(xk T Ofkdk)— f(xk) < pakg]f
Vi(x, +a.d) d >og’d
O<p<ox«l

Implementations:

Shanno (1978)

Moré - Thuente (1992-1994)

3.2.2.3 LINE SEARCH
METHODS: TAXONOMY OF
METHODS

Methods for Unconstrained Optimization

1) Steepest descent (Cauchy, 1847)
d =-Vf(x,)

2) Newton

2 -1
dk ==V f(xk) Vf(xk)
3) Quasi-Newton (Broyden, 1965; and many others)

d =HVf(x)

4) Conjugate Gradient Methods (1952)

dk+1 ==& T ﬁkSk

B. Is known as the conjugate gradient parameter

5) Truncated Newton method (Dembo, et al, 1982)

d=-Vf(x)'g Ir|= HW f(x)d, + ng

6) Trust Region methods

/) Conic model method (Davidon, 1980)

|
q(d)= f(xk)+g£d+5dTBkd

T T
1 a’Ad
c(d X)+ + —
(d)=/() 1+ de 2(1+de)

8) Tensorial methods (Schnabel & Frank, 1984)
m (x +d)= f(xc)+Vf(xc)-d+%V2f(xc)-d2

Ty g
6 ¢ 24 ¢

9) Methods based on systems of Differential Equations

_ Gradientflow Method (Courant, 1942y

V() 'V ()
x(0)=x,

10) Direct searching methods

Hooke-Jevees (form searching) (1961)

Powell (conjugate directions) (1964)

Rosenbrock (coordinate system rotation)(1960)
Nelder-Mead (rolling the simplex) (1965)

Powell —-UOBYQA (quadratic approximation) (1994-2000)

N. Andrei, Critica Retiunii Algoritmilor de Optimizare fara Restrictii
Editura Academiei Romane, 2008.

