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3.3 DEALING WITH
INDEFINITE HESSIANS
MATRICES



Closest Positive Definite Matrix

But Hessian 1s positive 4], =

= \/m = iaf
definite (maybe) NS

ONLY at solution!! 4= 47 o4 = i‘%f = Jr(ah = |3 2

What do we do? e -
0/0,=0;0, =|0,A0,|, =|Al,

Answer: Perturb the

matrix.

Frobenius NORM A=0DO" - 4,=0B0

Closest Positive o | A A28>0

Definite Matrix 6 A <6

(symmetric A)



Moditying Hessian

Given initial point x;
for k=0,1,2,...

Factorize the matrix By = V? f (xx) + Ex, where E; = 0if V> f (x;)
is sufficiently positive definite; otherwise, E} is chosen to
ensure that By is sufficiently positive definite;

Solve By pr = —V f(xk);

Set x;41 < X + oy pr, where o, satisfies the Wolfe, Goldstein, or
Armijo backtracking conditions;

end



1.Adding Multiple ot the Identity

Algorithm 3.3 (Cholesky with Added Multiple of the Identity).
Choose B > 0;
if min,- a; >0
set g < 0;
else
7o = —min(a;;) + B;
end (if)
fork =0,1,2, ...
Attempt to apply the Cholesky algorithm to obtain LLT = A + 7, [;
if the factorization is completed successfully
stop and return L;
else
Ty41 < max(2t, B);
end (if)
end (for)

* Q: what may be the downside of the approach?



2. Moditied Cholesky

for j=1,2,..., n

¢ —aj; — I d s *Ensuring Quality of the Modified Factorization

A (i.e. entries do not blow up by division to smal
?f' € o | elelments)
or 1= ]+1,..., n . :
cij < aij — YI2) dilisl s AIM:
lij<_cij/dj; deé, Im,-j|§,3, i:j+1,j+2,...,l’l
end

end

*Solution: Once a “too small d” is encountered
Replace its value by :

_ T 7 \2
Bkd——Vf(xk) < LDL d—vf(xk) d; = max (lcjjl, (%J) ,8), with 6; = max |c;]|
j<i<n
B, :Vixf(xk)+Ek
*Then:
lcijl  lcijlp .
imi;| = |l;;\/d;| = < < B, forali>
J ]\/—J \/d—] Qj :3 ]

* Q: Cholesky does not need pivoting. But
does it make sense here to NOT pivot?




LLDI. factorization WITH

permutation (why?)

* EXPAND



3. Modified LDLT (maybe most

practical to implement ?)
* What seems to be a practical perturbation to PD
that makes it have smallest eigenvalue Deltar?

* Solution: Keep same [,P, modify only the B!

T ] | will ask you to
PAP" = LBL code it with

Armijo

0, Ap >0

F = Qdiag(t;) 07, 11 = ’ i=1,2,....n.
Q . Q 8—)\.,', )»,'<8,

P(A+E)P' = L(B+ F)L', where E = PTLFLTP.



3.4 QUASI-NEWTON
METHODS



3.4 QUASI-NEWTON
METHODS: ESSENTIALS
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Secant Method — Dertvation (NLE)

o)

f(xi)

f(xi.1)

Figure 1 Geometrical illustration of
the Newton-Raphson method. Xiv1 = X,

f(x)=0
Newton’s Method

N ¢ /2

x'+1 i ’
| J(x)

Approximate the derivative
f,(xl-) _ Fx) = f(x) (2)

X =X

Substituting Equation (2)
into Equation (1) gives the
Secant method

_ S )X = x)
J )= f(xg)




Secant Method — Derivation

The secant method can also be derived from geometry:

f(x) s .
A The Geometric Similar Triangles

AB DC
f(x) AE - DFE
can be written as
fG) _ fx)
X = Xin Xion =X

(1)
On rearranging, the secant
method is given as

. , : _ f('xi )(‘xi B xi—l)
Figure 2 Geometrical representation of Xiyg =X, —
the Secant method. Jx)—f(x) .

> X

—_—




Multidimensional Secant Condtions.

Given two points X, and X, , we define (for an optimization problem)
gk - Vf(xk) and gk+1 = Vf(xkﬂ)
Further, let p, = x,,, - X, , then
g1 - g = Hx) py The Secant Condition
If the Hessian is constant, then
2.1 - & =Hp, which can be rewritten as q, = H p,
If the Hessian is constant, then the following condition would hold as well

H' ., 9 =p; O<i<k

This is called the quasi-Newton condition.

13



Broyden—Fletcher—Goldfarb—Shanno

Remember that q; = Hi, | p; and H-ly; q; =p; (or,B, 1 qi=p) O0=i=k

Both equations have exactly the same form, except that q; and p; are interchanged and H
is replaced by B (or vice versa).

This leads to the observation that any update formula for B can be transformed into a
corresponding complimentary formula for H by interchanging the roles of B and H and of
q and p. The reverse is also true.

Broyden—Fletcher—Goldfarb—Shanno formula update of Hj is obtained by taking the
complimentary formula of the DFP formula, thus:

gk’ Hy ppTH
ac'Pk Pk Hgpg

Hy, =Hi +

By taking the inverse, the BFGS update formula for By (i.e., H-1; ) is obtained:

1 +q™Brgqy  pePiT  Prdi !By + BragpiT
qx Pk ) Pklqyx qi TPk

By =B + (

14



Advantage of quasi-Newton

Matrix is ALWAYS positive detinite, so line
search works fine.

It needs ONLY gradient information.

It behaves *almost* like Newton in the limit
(convergence is superlinear).

In 1ts L-BFGS variant it 1s the workhorse of
weather forecast and operational data
assimilation in general (a max likelihood
procedure, really).



3.4.2 QUASI-NEWTON
METHODS: EXTRAS

16



Background

17

Assumption: the evaluation of the Hessian i1s impractical or costly.

e Central idea underlying quasi-Newton methods is to use an approximation of

the inverse Hessian based on THE NONLINEAR EQUATION SECANT
INTERPRETATION.

* Form of approximation differs among methods.

 The quasi-Newton methods that build up an approximation of
the inverse Hessian are often regarded as the most

sophisticated for solving unconstrained problems.

Question: What is the simplest approximation?




Modified Newton Method

18

‘The Modified Newton method for finding an extreme point is

Xk+] = Xk - o S Vy(Ep)

Note that:
if Sy = I then we have the method of steepest descent

if Sy = H'1(xy) and oo = 1, then we have the ‘pure” Newton method
if y®) = 0.5 xTQx - b'x, then Sk = H 1(xy) = Q (quadratic case)
Classical Modified Newton’s Method.:

Xp+1 = Xk - o H'1(xg) Vy(xp)

Note that the Hessian is only evaluated at the initial point xg.

Question: What is a measure of effectiveness for the Classical Modified Newton Method?



Quasi-Newton Methods

In quasi-Newton methods, instead of the true Hessian, an initial matrix H, is

chosen (usually H, = 1) which is subsequently updated by an update

formula:

Hier = H + HY

-whereH, istheupdatematrix:
This updating can also be done with the inverse of the Hessian H-'as
follows:

Let B = H-'; then the updating formula for the inverse is also of the form

—B'kj;B'quBu
+ K

Big question: What is the update matrix?

19




Rank One and Rank Two, Updates

Let B = H!, then the quasi-Newton condition becomes B,,; q.=p, 0=<i<k
Substitute the updating formula B, ,, = B, + BY, and the condition becomes

p; =By q; + BY q; (1)
(remember: p; = X;,, - X;and ¢; = g, - &)
Note: There is no unique solution to funding the update matrix BY
A general form is BY, =auu' + b vv!
where a and b are scalars and u and v are vectors satisfying condition (1).
The quantities auu’ and bvvT are symmetric matrices of (at most) rank one.

Quasi-Newton methods that take b = 0 are using rank one updates.
Quasi-Newton methods that take b # 0 are using rank two updates.

2glote that b # O provides more flexibility.



-~ Update Formulas

Rank one updates are simple, but have limitations.

Rank two updates are the most widely used schemes.

The rationale can be quite complicated (see, e.g., Luenberger).

The tollowing two update formulas have received wide acceptance:
* Davidon -Fletcher-Powell (DFP) formula
* Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula.

21



22

Earliest (and one of the most clever) schemes for constructing the inverse
Hessian was originally proposed by Davidon (1959) and later developed by
Fletcher and Powell (1963).

It has the interesting property that, for a quadratic objective, it simultaneously
generates the directions of the conjugate gradient method while constructing
the inverse Hessian.

The method is also referred to as the variable metric method (originally
suggested by Davidon).

Quasi-Newton condition with rank two update substituted 1s
p;=Biq;+auuT q; +b T q;

Setu =Py, V=Bqy and let auTq, = 1, bvTq, = -1 to determine a and b.
Resulting Davidon-Fletcher-Powell update formula is

B _p . DO BBy
= KT pTqe T qiTBygy




Broyden—Fletcher—Goldfarb—Shanno

Remember that q; = Hi, | p; and H-ly; q; =p; (or,B, 1 qi=p) O0=i=k

Both equations have exactly the same form, except that q; and p; are interchanged and H
is replaced by B (or vice versa).

This leads to the observation that any update formula for B can be transformed into a
corresponding complimentary formula for H by interchanging the roles of B and H and of
q and p. The reverse is also true.

Broyden—Fletcher—Goldfarb—Shanno formula update of Hj is obtained by taking the
complimentary formula of the DFP formula, thus:

gk’ Hy ppTH
ac'Pk Pk Hgpg

Hy, =Hi +

By taking the inverse, the BFGS update formula for By (i.e., H-1; ) is obtained:

1 +q™Brgqy  pePiT  Prdi !By + BragpiT
qx Pk ) Pklqyx qi TPk

By =B + (

23



Some Comments on Broyden Methods

* Broyden—Fletcher—Goldfarb—Shanno formula is more complicated than
DFP, but straightforward to apply

* BFGS update formula can be used exactly like DFP formula.

* Numerical experiments have shown that BFGS formula's performance is
superior over DFP formula. Hence, BFGS is often preferred over DFP.

Both DFP and BFGS updates have symmetric rank two corrections that are
constructed from the vectors pk and Bkgk. Weighted combinations of these
formulae will therefore also have the same properties. This observation leads to
a whole collection of updates, know as the Broyden family, defined by:

Bf = (1 _ f)BDFP + fBBFGS

where f is a parameter that may take any real value.

24



Quasi-Newton Algorithm

1.Input x,, B, termination criteria.
2.For any k, set S, =— B, g,.

3.Compute a step size a (e.g., by line search on y(x, + aS,)) and
set X, = X, + aS,.

4.Compute the update matrix BY, according to a given formula (say, DFP or
BFGS) using the values q, = g, - & > Px = Xiu1 - Xy » and B,.

5.Set B,,, =B, + BY,.

6.Continue with next k until termination criteria are satisfied.

Note: You do have to calculate the vector of first order
derivatives g for each iteration.

25



Some Closing Remarks

26

Both DFP and BFGS methods have theoretical properties that guarantee
superlinear (fast) convergence rate and global convergence under certain

conditions.

However, both methods could fail for general nonlinear problems.
Specifically,

* DFP 1s highly sensitive to inaccuracies in line searches.

* Both methods can get stuck on a saddle-point. In Newton's method, a
saddle-point can be detected during modifications of the (true) Hessian.
Therefore, search around the final point when using quasi-Newton
methods.

* Update of Hessian becomes "corrupted" by round-off and other
inaccuracies.

All kind of "tricks" such as scaling and preconditioning exist to boost the
performance of the methods.
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4.1 TRUST REGION
FUNDAMENTALS



Trust Region Idea

* Notations
ff=rflx) Vrt=vr(x)
* (QQuadratic Model
m(p)=f"+p'g"+ %pTka
* Order of Quadratic Model (Taylor)

f(xk +p)=fk +p'g" +%pTVixf(xk+tp)p t€[0,1]

mk(p)—f(xk+p):<




Trust Region Subproblem

minpeRn m,(p)

subjectto | p|| < A

1

Called Trust Region
Constraint

e If B*-0andp™=(B') g; where Hp*"H <A* then »* is
the solution of the TR subproblem.
* But the interesting case lies in the opposite situation

(since not, why would you need the TR 1n first
place )?



Trust Region Geometric Intuition

IREEEEREES ... Trust region
B Line search direction

contours of m;

Trust region step
contours of f




Example

min (x2 — 1)2

* Line search started at 0 cannot progtress.

* How about the trust-region?
min,—2d*; |d|<A

* FHither solution will escape the saddle point --
that is the principle of trust-region.



General approach

* How do we solve the TR subproblem?

e If B*s~0 (orif we are not obsessed with
stopping at saddle points) we use “dogleg”

method. (LS, NLE). Most linear algebra 1s in
computing
Bf U — _ gk
* It fear saddle points, we have to mess around

with eigenvalues and eigenvectors — much

harder problem.



Trust Region Management:

Parameters
* The quality of the reduction.

Actual Reduction
pk_f(xk)—f(xk“’k)
— o ;
m, (0) mk(p) T Predicted Reduction

* Define the acceptance ratio

1
0,—
"e{ 4)

e Define the maximum TR size

Va\

A A e[o,A)



TR management

Algorithm 4.1 (Trust Region).
Given A > 0, Aq € (0, A), and n e [0, i):
fork=0,1,2,...
Obtain py by (approximately) solving (4.3);
Evaluate po; from (4.4);

if 1
| will ask you to Pe=a2
code It with A1 = Ak
dogleg else
if oy > 3 and | pell = Ar
Ars1 = min(2Ag, A)
else
Apy1 = Ags
if o > 1

Xk+1 = Xk + Pk
else



What if I cannot solve the TR

exactly ¢

Since it is a hard problem.

Will this destroy the “Global” convergence
behavior?

Idea: Accept a “sufficient” reduction.
But, I have no Armijo (or Wolfe, Goldshtein

criterion) ...
What do I do?

Idear Solve a simple TR problem that creates the
yardstick for acceptance — the Cauchy point.



4.2 THE CAUCHY POINT



The Cauchy Point

What is an easy model to solve? Linear model
L(p)=f"+8""p
Solve TR linear model

k,s __ .
pri=argmin . L b (p)

The Cauchy point.

Tk = arg IniIlTeR H‘L’pk’SHSAk mk (Tpk,s)

k

k k__k,s. , k k,
pr=1Tpr, x‘=x+p°

The reduction m(©-m(p*) becomes my yardstick; if
trust region has at least this decrease, I can guarantee
“global” convergence (reduction is of[s'[') )



Cauchy Point Solution

e First, solution of the

linear problem 1s .
B ek
* Then, it immediately e ﬁg
follows that V

1 gZBkgk <0

=
=
Il

3
min - Hgk H .1 otherwise
(gk B.g, ) Ay




Dogleg Methods: Improve CP

* If Cauchy point is on the boundary I have a lot
of decrease and I accept it (e.g if ¢“"B g" >0; )

 If Cauchy point 1s interiof,

sk,

k,T k k,c
"B.g" >0; "=
8 kg P gk’TBkgk

* Take now ‘“Newton” step p”=-B'g" (note, B
need not be pd, all I need is nonsingular).



Dogleg Method Continued

| will ask you to
code it with TR

Detfine dogleg path

The dogleg point:
f)(TD); T, =arg minr;”p(f)”ﬂk m, (1’5(7))
It 1s obtained by solving 2 quadratics.

Suftticiently close to the solution it allows me to
choose the Newton step, ;=2 and thus
quadratic convergence.



Dogleg Method: Theory

.. Trust region

Optimal trajectory p(A)

§ ; : < pB (full step)
pY( uncdiisl_r_ained min along —&) TN

....... \\\_g
dogleg path >

Lemma 4.2.
Let B be positive definite. Then

(i) ||p(T)|l is an increasing function of T, and

(ii) m(p(t)) is a decreasing function of T.



Global Convergence of CP Methods

Lemma 4.3.

The Cauchy point p; satisfies (4.20) with ¢, = %, that is,

. . Il 8kl
mi(0) — mi(pg) = 318kl min (Ak, Sk )

I Bl
| pkll < ¥y Ay, for some constant y > 1. (4.25)
, : 18|
mi(0) — mg(px) = c1ll gl min | Ag, 1Bell ) (4.20)

Theorem 4.5.

Let n = 0 in Algorithm 4.1. Suppose that ||B|| < B for some constant 8, that [ is
bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(Ry) for some Ry > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants ¢, and y. We then have

li;n inf || gx|| = 0. (4.26)




Numerical comparison between

methods

What is a fair comparison between methods?

Probably : starting from same point 1) number of
function evaluations and 2) number of linear systems
(the rest depends too much on the hardware and
software platform). I will ask you to do this.

Trust region tends to use fewer function evaluations
(the modern preterred metric; ) than line search .

Also dogleg does not force positive definite matrix, so
it has fewer chances of stopping at a saddle point, (but
it 1s not guaranteed either).



4.3 GENERAL CASE: SOLVING
THE ACTUAL TR PROBLEM
(DOGLEG DOES NOT QUITE
DO IT)



Trust Region Equation

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

%gmun=qufp+§pﬁw, st [Ipll < A, (4.7)

if and only if p* is feasible and there is a scalar .. > 0 such that the following conditions are

satisfied:

(B+AI)p* = —g, (4.8a)
AA = [1p*Il) = o, (4.8b)
(B + AI) 1s positive semidefinite. (4.8¢)



Theory of Trust Region Problem

Global convergence Theorem 4.8.

away from saddle Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
point continuously differentiable in the level set S. Suppose that By = V* f (x;) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then

limy_ oo fl2¢ll = 0.
If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point Xy at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {xy} has a limit point x* in S at which the second-order necessary conditions hold.

Theorem 4.9.
Fast Local Let [ be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
Conve rgence which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {xi}
converges to X* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xy) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps p; whenever || pi|l < %Ak,
that is,

lpx — Pl = ol pil)- (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xx} converges superlinearly to x*.



How do we solve the subproblem?

Very sophisticated approach based on theorem
on structure of TR solution, eigenvalue analysis

and/or an “inner’” Newton iteration.

Foundation: Find Solution for

p(A) =—(B+Arl)"'g

Ip(A)]l = A.



How do I find such a solution?

B — QAQT A — dlag()\-], )‘-2, ¢ o oy )\'n)’

n

p() =—QA+1D)T'QTg =~

J=1

q; 8
i+ A

qj,

, by orthonormality of g1, g2, ..., gn

2

. T
_y- (a7e)
[P = ]2:; T



TR problem has a solution

B

Figure4.5 | p(A)]| asa function of A.

lim |p(A)| =0. ¢fg#0 = lim [p()| =00

A— 00 A——Aj



Practical INCOMPLETE) algorithm

1 1 b (K(e))
(A) = — — ’ A+ — () _ :
SN PPN % (:0)

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for¢ =0,1,2,...
Factor B+ A9 = RTR;
Solve RTRpg =—g, RTC]e = Pe¢s

Set

JEFD 50 4 (nmn)2 (npgn - A) ,
el A

end (for).

It generally gives a machine precision solution in 2-3 iterations
(Cholesky)



The Hard Case

el

Figure 4.7) The hard case: [|[p(1)|| < Aforall A € (=2, 00).

q,8=0

T
Z q; 8
1 JAj# M Z‘j_/ll ]

3t |p(7)|=4A"

If double root, things continue to be complicated ...



Summary and Comparisons

Line search problems have easier subproblems

(if we modity Cholesky).

But they cannot be guaranteed to converge to a
point with positive semidetinite Hessian.

Trust-region problems can, at the cost of solving
a complicated subproblem.

Dogleg methods leave “between” these two
situations.



