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3.3 DEALING WITH 
INDEFINITE HESSIANS 
MATRICES 



Closest Positive Definite Matrix 

�• But Hessian is positive 
definite (maybe) 
ONLY at solution!! 
What do we do?  

�• Answer: Perturb the 
matrix.  

�• Frobenius NORM 
�• Closest Positive 

Definite Matrix 
(symmetric A) 
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Modifying Hessian 



1.Adding Multiple of the Identity 

�• Q: what may be the downside of the approach? 



2. Modified Cholesky  
�•Ensuring Quality of the Modified Factorization  
(i.e. entries do not blow up by division to smal 
l elelments) 
�•AIM:  

�•Solution: Once a �“too small d�” is encountered 
Replace its value by : 

�•Then:  

�• Q: Cholesky does not need pivoting. But  
does it make sense here to NOT pivot?   

Bkd = f xk( ) LDLTd = f xk( )
Bk = xx

2 f xk( ) + Ek



LDL factorization WITH 
permutation (why?) 

�• EXPAND 



3. Modified LDLT (maybe most 
practical to implement ?) 

�• What seems to be a practical perturbation to PD 
that makes it have smallest eigenvalue Delta?  

�• Solution: Keep same L,P, modify only the B!  
I will ask you to 
code it with 
Armijo 



3.4 QUASI-NEWTON 
METHODS 
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3.4 QUASI-NEWTON 
METHODS: ESSENTIALS 
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Secant Method �– Derivation (NLE) 

Newton�’s Method 

Approximate the derivative 

Substituting Equation (2) 
into Equation (1) gives the 
Secant method 

(1) 

(2) 

Figure 1 Geometrical illustration of 
 the Newton-Raphson method. 

f (x) = 0



Secant Method �– Derivation 
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The Geometric Similar Triangles 

Figure 2 Geometrical representation of 
 the Secant method. 

The secant method can also be derived from geometry: 

can be written as 

On rearranging, the secant 
method is given as 



Multidimensional Secant Condtions. 
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Given two points xk and xk+1 , we dene (for an optimization problem) 
              and
Further, let pk = xk+1 - xk , then

gk+1 - gk  H(xk) pk    

If the Hessian is constant, then

gk+1 - gk = H pk   which can be rewritten as  qk = H pk   

If the Hessian is constant, then the following condition would hold as well

H-1
k+1 qi = pi 0  i  k

This is called the quasi-Newton condition.

gk = f xk( ) gk+1 = f xk+1( )

The Secant Condition 



Broyden�–Fletcher�–Goldfarb�–Shanno 
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Advantage of quasi-Newton   

�• Matrix is ALWAYS positive definite, so line 
search works fine.  

�• It needs ONLY gradient information.  
�• It behaves *almost* like Newton in the limit 

(convergence is superlinear).  
�• In its L-BFGS variant it is the workhorse of 

weather forecast and operational data 
assimilation in general (a max likelihood 
procedure, really).  



3.4.2 QUASI-NEWTON 
METHODS: EXTRAS 
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Background 

Assumption:  the evaluation of the Hessian is impractical or costly. 

�• Central idea underlying quasi-Newton methods is to use an approximation of 
the inverse Hessian based on THE NONLINEAR EQUATION SECANT 
INTERPRETATION. 

�• Form of approximation differs among methods. 
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Question:  What is the simplest approximation? 

�• The quasi-Newton methods that build up an approximation of 
the inverse Hessian are often regarded as the most 
sophisticated for solving unconstrained problems. 



Modified Newton Method 

Question:  What is a measure of effectiveness for the Classical Modified Newton Method? 
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Quasi-Newton Methods 
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Big question:  What is the update matrix? 

In quasi-Newton methods, instead of the true Hessian, an initial matrix H0 is 
chosen (usually H0 = I) which is subsequently updated by an update 
formula: 

Hk+1 = Hk + Hk
u 

where Hk
u is the update matrix. 

This updating can also be done with the inverse of the Hessian H-1as 
follows: 

Let B = H-1; then the updating formula for the inverse is also of the form 

Bk+1 = Bk + Bk
u 



Rank One and Rank Two Updates 
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Let B = H-1, then the quasi-Newton condition becomes Bk+1 qi = pi 0  i  k
Substitute the updating formula Bk+1 = Bk + Bu

k  and the condition becomes

pi = Bk qi + Bu
k qi                     (1)

(remember: pi = xi+1 - xi and qi = gi+1 - gi )

Note:  There is no unique solution to funding the update matrix Bu
k  

A general form is Bu
k = a uuT + b vvT   

where a and b are scalars and u and v are vectors satisfying condition (1).

The quantities  auuT  and bvvT are symmetric matrices of (at most) rank one.

Quasi-Newton methods that take b = 0 are using rank one updates.
Quasi-Newton methods that take b  0 are using rank two updates.

Note that b  0 provides more exibility.



Update Formulas 

The following two update formulas have received wide acceptance: 

 �•  Davidon -Fletcher-Powell (DFP) formula 

 �•  Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula. 
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Rank one updates are simple, but have limitations. 
Rank two updates are the most widely used schemes. 
The rationale can be quite complicated (see, e.g., Luenberger). 



Davidon-Fletcher-Powel Formula 
�• Earliest (and one of the most clever) schemes for constructing the inverse 

Hessian was originally proposed by Davidon (1959) and later developed by 
Fletcher and Powell (1963). 

�• It has the interesting property that, for a quadratic objective, it simultaneously 
generates the directions of the conjugate gradient method while constructing 
the inverse Hessian. 

�• The method is also referred to as the variable metric method (originally 
suggested by Davidon). 
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Broyden�–Fletcher�–Goldfarb�–Shanno 
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Some Comments on Broyden Methods 

�• Broyden�–Fletcher�–Goldfarb�–Shanno formula is more complicated than 
DFP,  but straightforward to apply 

�• BFGS update formula can be used exactly like DFP formula. 

�• Numerical experiments have shown that BFGS formula's performance is 
superior over DFP formula.  Hence, BFGS is often preferred over DFP. 
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Both DFP and BFGS updates  have symmetric  rank two corrections  that  are 
constructed from the vectors pk and Bkqk.  Weighted combinations of these 
formulae will therefore also have the same properties.  This observation leads to 
a whole collection of updates, know as the Broyden family, dened by:

B  = (1 - )BDFP + BBFGS   

where  is a parameter that may take any real value.



Quasi-Newton Algorithm 
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Note: You do have to calculate the vector of first order 
derivatives g  for each iteration. 

1. Input x0, B0, termination criteria.

2. For any k, set Sk = �– Bkgk.

3. Compute a step size  (e.g., by line search on y(xk + Sk)) and 
set xk+1 = xk + Sk.

4. Compute the update matrix Bu
k according to a given formula (say, DFP or 

BFGS) using the values qk = gk+1 - gk , pk = xk+1 - xk , and Bk.

5. Set Bk+1 = Bk + Bu
k.

6. Continue with next k until termination criteria are satised.



Some Closing Remarks 
�• Both DFP and BFGS methods have theoretical properties that guarantee 

superlinear (fast) convergence rate and global convergence under certain 
conditions. 

�• However, both methods could fail for general nonlinear problems.  
Specifically,  

 �• DFP is highly sensitive to inaccuracies in line searches. 

 �• Both methods can get stuck on a saddle-point. In Newton's method, a 
saddle-point can be detected during modifications of the (true) Hessian.  
Therefore, search around the final point when using quasi-Newton 
methods. 

 �• Update of Hessian becomes "corrupted" by round-off and other 
inaccuracies. 

�• All kind of "tricks" such as scaling and preconditioning exist to boost the 
performance of the methods. 
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SECTION 4 : Trust Region 
Methods 
Mihai Anitescu 



4.1 TRUST REGION 
FUNDAMENTALS 



Trust Region Idea 

�• Notations 

�• Quadratic Model  

�• Order of Quadratic Model (Taylor)  

f k = f xk( ) f k = f xk( )

mk p( ) = f k + pT gk + 1
2
pT Bk p

f xk + p( ) = f k + pT gk + 1
2
pT xx

2 f xk + tp( ) p t [0,1]

mk p( ) f xk + p( ) =
O p 2( )
O p 2( ) Bk = xx

2 f xk( )



Trust Region Subproblem 
min

p Rn
mk p( )

subject to p k

Called Trust Region 
Constraint 

�• If                                   where                then       is 
the solution of the TR subproblem.  

�• But the interesting case lies in the opposite situation 
(since not, why would you need the TR in first 
place )?    

 B
k 0 and p*k = Bk( ) 1

gk ; p*k k pk



Trust Region Geometric Intuition 



Example 

minx x2 1( )2

�• Line search started at 0 cannot progress.  
�• How about the trust-region? 

�• Either solution will escape the saddle point -- 
that is the principle of trust-region.  

mind 2d 2; d



General approach 

�• How do we solve the TR subproblem?  
�• If                (or if  we are not obsessed with 

stopping at saddle points) we use �“dogleg�” 
method. (LS, NLE). Most linear algebra is in 
computing 

      
�• If  fear saddle points, we have to mess around 

with eigenvalues and eigenvectors �– much 
harder problem.  

 Bk 0

Bkdk ,U = gk



Trust Region Management: 
Parameters 

�• The quality of the reduction. 

�• Define the acceptance ratio 

�• Define the maximum TR size 

k =
f xk( ) f xk + pk( )
mk 0( ) mk pk( )

Actual Reduction 

Predicted Reduction 

0, 1
4

�ˆ ; 0, �ˆ )



TR management 

I will ask you to 
code It with 
dogleg 



What if I cannot solve the TR 
exactly ?  

�• Since it is a hard problem.  
�• Will this destroy the �“Global�” convergence 

behavior?  
�• Idea: Accept a �“sufficient�” reduction.  
�• But, I have no Armijo (or Wolfe, Goldshtein 

criterion) �…  
�• What do I do?  
�• Idea? Solve a simple TR problem that creates the 

yardstick for acceptance �– the Cauchy point.  



4.2 THE CAUCHY POINT 



The Cauchy Point 
�• What is an easy model to solve? Linear model 

�• Solve TR linear model  

�• The Cauchy point. 

�•  The reduction                   becomes my yardstick; if 
trust region has at least this decrease, I can guarantee 
�“global�” convergence  (reduction is             ) 

lk p( ) = f k + gk ,T p

pk ,s = argmin
p Rn p k lk p( )

k = argmin
R pk ,s k mk pk ,s( )

pk ,c = k pk ,s; xk ,c = xk + pk ,c

m(0) m pk ,c( )

O gk
2( )



Cauchy Point Solution 

�• First, solution of the 
linear problem is 

�• Then, it immediately 
follows that   

pk
s =

k

gk
gk

k =

1 gk
T Bkgk 0

min
gk

3

gk
T Bkgk( ) k

,1 otherwise



Dogleg Methods: Improve CP 

�• If Cauchy point is on the boundary I have a lot 
of decrease and I accept it (e.g if                      )  

�• If Cauchy point is interior, 

�• Take now �“Newton�” step                      (note, B 
need not be pd, all I need is nonsingular).   

gk ,T Bkg
k > 0; pk ,c =

gk
2

gk ,T Bkg
k g

k

gk ,T Bkg
k > 0;

pB = Bk
1gk



Dogleg Method Continued 

�• Define dogleg path 

�• The dogleg point:  

�• It is obtained by solving 2 quadratics. 
�• Sufficiently close to the solution it allows me to 

choose the Newton step,        and thus 
quadratic convergence.   

 

p( ) =
pk ,c 1

pk ,c + 1( ) pB pk ,c( ) 1 2

= 2

 
p D( ); D = argmin ; p( ) k

mk p( )( )

I will ask you to 
code it with TR 



Dogleg Method: Theory 



Global Convergence of CP Methods 



Numerical comparison between 
methods 

�• What is a fair comparison between methods?  
�• Probably : starting from same point 1) number of 

function evaluations and 2) number of linear systems 
(the rest depends too much on the hardware and 
software platform). I will ask you to do this.  

�• Trust region tends to use fewer function evaluations 
(the modern preferred metric; ) than line search .  

�• Also dogleg does not force positive definite matrix, so 
it has fewer chances of stopping at a saddle point, (but 
it is not guaranteed either).  



4.3 GENERAL CASE: SOLVING 
THE ACTUAL TR PROBLEM 
(DOGLEG DOES NOT QUITE 
DO IT) 



Trust Region Equation 



Theory of Trust Region Problem 
Global convergence 
away from saddle 
point 

Fast Local 
Convergence 



How do we solve the subproblem?  

�• Very sophisticated approach based on theorem 
on structure of TR solution, eigenvalue analysis 
and/or an �“inner�” Newton iteration.  

�• Foundation: Find Solution for  



How do I find such a solution?  



TR problem has a solution 



Practical (INCOMPLETE) algorithm  

It generally gives a machine precision solution in 2-3 iterations 
(Cholesky) 



The Hard Case                
qj
T g = 0

= 1 p =
qj
T g

j 1j: j 1

qj

p( ) = qj
T g

j 1j: j 1

qj + q1

p( ) = k

If double root, things continue to be complicated �… 



Summary and Comparisons 

�• Line search problems have easier subproblems 
(if we modify Cholesky).  

�• But they cannot be guaranteed to converge to a 
point with positive semidefinite Hessian.  

�• Trust-region problems can, at the cost of solving 
a complicated subproblem.  

�• Dogleg methods leave �“between�” these two 
situations.  


