ERE THE UNIVERSITY OF

“ | CHICAGO

Lecture 5

January 18, 2011

4.3 GENERAL CASE: SOLVING
THE ACTUAL TR PROBLEM
(DOGLEG DOES NOT QUITE
DO IT)

Trust Region Equation

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

%gmun=qufp+§pﬁw, st [Ipll < A, (4.7)

if and only if p* is feasible and there is a scalar .. > 0 such that the following conditions are

satisfied:

(B+AMI)p* = —g, (4.8a)
AA = [1p*Il) = o, (4.8b)
(B + AI) 1s positive semidefinite. (4.8¢)

Theory of Trust Region Problem

Global convergence Theorem 4.8.

away from saddle Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
point continuously differentiable in the level set S. Suppose that By = V* f (x;) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then

limy_ oo fl2¢ll = 0.
If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point Xy at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {xy} has a limit point x* in S at which the second-order necessary conditions hold.

Theorem 4.9.
Fast Local Let [be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
Conve rgence which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {xi}
converges to X* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xy) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps p; whenever || pi|l < %Ak,
that is,

lpx — Pl = ol pil)- (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xx} converges superlinearly to x*.

How do we solve the subproblem?

Very sophisticated approach based on theorem
on structure of TR solution, eigenvalue analysis

and/or an “inner” Newton iteration.

Foundation: Find Solution for

p(A) =—(B+Arl)"'g

Ip(A)]l = A.

How do I find such a solution?

B=QAQ" A = diag(ry, Az, ..oy Ap),

n

p() =—QA+1D)T'QTg =~

J=1

q; 8
i+ A

qj,

, by orthonormality of g1, g2, ..., gn

2

. T
_y- (a7e)
[P =]2:; T

TR problem has a solution

B

Figure4.5 | p(A)]| asa function of A.

lim |p(A)| =0. ¢fg#0 = lim [p()| =00

A— 00 A——Aj

Practical INCOMPLETE) algorithm

1 1 b (K(e))
(A) = — — ’ A+ — () _ :
SN PPN % (:0)

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for¢ =0,1,2,...
Factor B+ A9 = RTR;
Solve RTRpg =—g, RTC]e = Pe¢s

Set

JEFD 50 4 (nmn)2 (npgn - A) ,
el A

end (for).

It generally gives a machine precision solution in 2-3 iterations
(Cholesky)

The Hard Case

el

Figure 4.7) The hard case: ||p(1)|| < A forall X € (=2, 00).

q,8=0

T
Z q; 8
1 JAj# N Z‘j_/ll]

3t |p(7)|=A"

If double root, things continue to be complicated ...

Summary and Comparisons

Line search problems have easier subproblems

(if we modity Cholesky).

But they cannot be guaranteed to converge to a
point with positive semidetinite Hessian.

Trust-region problems can, at the cost of solving
a complicated subproblem.

Dogleg methods leave “between” these two
situations.

E THE UNIVERSITY OF

CHICAGO

Section 5

Matrix-free methods
Mihai Anitescu

5.1 PARALLEL COMPUTING
AND MATRIX-FREE
METHODS

5.1.1 SOME DISCUSSION FOR
PARALLEL COMPUTING/
SUPERCOMPUTING

The appeal of Supercomputing: Top500

Performance [GFlop/s]

1000000 -

Blue Gene 'JL,] 1 PFIOpIS *

100000 +

10000 -

1000

| 1 TFlopls
N=1

100

N=10 /X/(4////”

10

Jzyj,xaf*”

?/500

Frrrr+ v+ttt Tttt T

Technology Trends:

100000000

10000000

1000000

100000

10000

1000

Microprocessor Capacity

Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million

Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

2X transistors/Chip
Every 1.5 years

Called * 7

1970 1975 1980 1985 1990 1995 2000

Year

What are They Used For

* Climate prediction & Weather forecasting

BT T [[[T T e
Light Moderate Heavy Extreme

What are They Used For (cont.)

Computational chemistry
Crash analysis
Cryptography

Nuclear simulation

Structural analysis

Blue Gene L

From http://i.n.com.com/i/ne/p/photo/BlueGenelL_03_550x366.jpg

Packaging and Scale-Up

System
6 Racks, 6x32x32

BlueGene/L System Buildup rack
for LOFAR 32 Node Cards

Node Card 16.8/33.6 TF/s
(32 chips 4x4x2) 378
16 compute, 0-2 10 cards y
2.8/56 TF/s 6144 chips
L Td e 512 GB 12288 CPUs
cm- Card ‘ _.!; } : 1024 chips
2 chips, 1x2x1 S AT 2048 CPUs
90/180 GF/s
Chip 16 GB
2 processors v
5.6/11.2 GF/s
1.0 GB
2.8/5.6 GF/s
4 MB

From http://www.rug.nl/cit/diensten/system_services/nieuwsbrief/200504/bouwbluegene-
buildup-800x571.jpg

In what way are they different from

programming regular computing.
* Normal users tend to 1gnore the effects of data
movement (to/from RAM or to a less extent cache
memory).

* In Supercomputers, processors (100ks) are
connected by a network, which although fast, is
nothing like processor to cache or processor to

RAM.

* The memory hierarchy 1s “deep” with SLOW low
levels (e.g RAM on a different board or disk). So the

cost of data movement can no longer be ignored.

Memory Hierarchy Pyramid

« ” Increasing Distance
Upper and Latency from
CPU,
. Decreasing cost/ MB
Levels 1n
memory Level 2
hierarchy Level 3
“Lower’,
v Level n

Size of memory at each level

(data cannot be in level i unless also in i+1)

5.1.2 LINEAR ALGEBRA ON
MASSIVELY PARALLEL
COMPUTERS

Solving Systems ot Equation in

Parallel, High Performance
Don’ts: Computm o ENVS

* Don’t invert the matrix (x = A™'b). That’s much
more costly than solving directly, and the matrix
storage cost will be unbearable.

* Don’t write your own solver code. There are

people who devote their whole careers to writing

solvers. They know a lot more about writing
solvers than we do.

23

Solving Do’s

Do’s:
* Do use standard, portable solver libraries.

* Do use a version that’s tuned for the platform
you’re running on, if available.

* Do use the information that you have about
your system to pick the most etficient solver.

24

Linear Algebra Libraries

BLAS
LAPACK
ScaLAPACK
PETSc

25

BLAS

* The Basic Linear Algebra Subprograms
(BLAS) are a set of low level linear algebra
routines:

— Level 1: Vector-vector (e.g., dot product).
— Level 2: Matrix-vector (e.g., matrix-vector multiply).

— Level 3: Matrix-matrix (e.g., matrix-matrix multiply)

26

BLAS

* Many linear algebra packages, including
LAPACK, ScaLAPACK and PETSc, are built

on top of BLAS.

* Most supercomputer vendors have versions of
BLAS that are highly tuned for their platforms.

27

LAPACK

LAPACK (Linear Algebra PACKage) solves dense

or special-case sparse systems of equations
depending on matrix properties such as:

* Precision: single, double

* Data type: real, complex

* Shape: diagonal, bidiagonal, tridiagonal, banded,
triangular, trapezoidal, Hesenberg, general dense

* Properties: orthogonal, positive definite,
Hermetian (complex), symmetric, general

LAPACK 1s built on top of BLLAS,

28

LAPACK Example

REAL,DIMENSION (numrows, numcols)
REAL ,DIMENSION (numrows)

REAL ,DIMENSION (numrows)
INTEGER,DIMENSION (numrows) ivot
INTEGER :: row, col, info, numrhs =1

DO row = 1, numrows
B(row) = ..
END DO
DO col = 1, numcols
DO row = 1, numrows
A(row,col) = ..
END DO
END DO
CALL sgesv (numrows, numrhs, A, numrows, pivot, &
& B, numrows, info)
DO col = 1, numcols
X(col) = B(col)
END DO

O X Wy

29

LAPACK: a Library and an API

LAPACK is a library that you can download for
free from the Web:

www.netlib.org

But, it’s also an Application Programming
Interface (API): a definition of a set of routines,
their arguments, and their behaviors.

So, anyone can write an implementation of

LAPACK.

30

LAPACK Performance

Because LAPACK uses BLAS, it’s about as fast as
BLAS.

In fact, an older version of LAPACK, called
LINPACK, 1s used to determine the top 500

supercomputers in the world.

31

ScaLAPACK

ScalLAPACK is

the distributed parallel (MPI)

version of LAPACK. It actually contains only a

subset of the !
somewhat aw]

LAPACK routines, and has a
kward Application Programming

Intertace (AP]

Like LAPACK,

from

).
Scal APACK is also available

www.netlib.orgq.

32

PETSc

 PETSc (Portable, Extensible Toolkit for
Scientific Computation) is a solver library for

sparse matrices that uses distributed parallelism
(MPI).

* PETSc is designed for general sparse matrices
with no special properties, but it also works well

for sparse matrices with simple properties like
banding and symmetry.

* It has a simpler, more intuitive Application
Programming Interface than ScaLAPACK.

Pick Your Solver Package

* Dense Matrix
— Serial: LAPACK
— Shared Memory Parallel: vendor-tuned LAPACK
— Distributed Parallel: ScaLAPACK

* Sparse Matrix: PETSc

34

Matrix Free Methods for Parallel Computations

Many problems have simple, sparse matrices associated with the
linear algebra (e.g., example from Homework 2).

Nevertheless, factorization is extremely expensive on parallel
architectures due to processsor-to-processor data motion needs
of ptvoting, (as well as storage needs).

Solution? Use methods (e.g., Krylov space or relaxation
methods) that only multiply the matrix A times a vector x, code
to calculate y=Ax can be written instead of storing the matrix A.

This reduces the cost of the computer (which 1s mostly memory
chips) and allows for vastly larger simulations.

It also results in very fast code, if BLLAS is optimized, which is a
much easier proposition than optimizing factorization.

5.2 CONJUGATED GRADIENTS
METHOD (AND
PRECONDITIONED)

From “Conjugated Gradients

without the Agonizing Pain’-

* “The Conjugate Gradient Method is the most
prominent iterative method for solving sparse systems
of linear equations. Unfortunately, many textbook
treatments of the topic are written with neither
illustrations not intuition, and thelr victims can be
found to this day babbling senselessly in the corners of
dusty libraries. For this reason, a deep, geomettric
understanding of the method has been reserved for the
elite brilliant few who have painstakingly decoded the
mumblings of their forebears.” -Schewchuck

5.2.1 GRAM-SCHMIDT

Gram-Schmidt orthogonalization

@ Given vectors a; and as, we seek orthonormal vectors ¢
and g2 having same span

@ This can be accomplished by subtracting from second
vector its projection onto first vector and normalizing both
resulting vectors, as shown in diagram

ay

Gram-Schmidt algorithm

@ Process can be extended to any number of vectors
ai,....ap, orthogonalizing each successive vector against
all preceding ones, giving classical Gram-Schmidt
procedure

fork=1ton
qi = aj,
forj=1tok—1
7‘_}' = qf j
qk = 4k — Tjkq;
end
ik = || qk||2
Qi = Qi / Tk
end
@ Resulting ¢; and r;;, form reduced QR factorization of A

QR Factorization

@ Given m x n matrix A, with m > n, we seek m x m
orthogonal matrix @ such that

el

where R i1s n x n and upper triangular

@ Linear least squares problem Az = b is then transformed
into triangular least squares problem

Ta.. _ | B || _ A7
s [He=] -

which has same solution, since

. 5 R . R 9
Irl = 1o~ sl = |- Q| 5| 2l = 1Q70 || 2l2

5.2.2 METHOD OF
CONJUGATED DIRECTIONS

Conjugated Search Directions

* Conjugated=orthogonal

* Positive definite A; linear system 1s
equivalent to minimization.

1
A-0=Ax=bomin_, ¢(x)=—x"Ax—b'x
xXe 2

* IDEA 1: A-conjugate directions:

S, ={p0,p1,...,pk_1} pl.TApJ. =0 0<i#j<k-1

xk — minxex0+5k (D(X), (D(X) = %'XTAX o bT'x

Arithmetic of A-Conjugated Search

Directions
* A-conjugated direction search methods: the
subspace problems are much simpler:

Skz{po,pl,...,pk_l} pl.TApj=O 0<i#j<k-1
1(&l s k=1
e min . E(Z“J’f . XO] A[Zaipi o j L (Zaipi R xoj _
i=0 i=0 i=0 i=0
1 k-1 r k—1 T k-1 A—Conjugated Directions
mln{ai}g E(Zaipij A(lzo,aipi)'l'(Axo _b) (Zaipij =
k

1 k—1 k—1 1
min{ai},:; EEOCiniTApi + ZairOTpi = Z[E%ZPZTAP,- + OC,-I’OTP,- };

i=0 i=0

Arithmetic of A-Conjugated Search

Directions-Consequences

rOTpi
T
p: Ap,

. 1 57 .
mm{%}féZ[z o p; Ap, + o, pl}, =0, =— =

l"
= Xy T Z{ = } =X, +0_ p (C1)

i=0 pl Apl
Vo(x,)=Ax,—-b=r,=r_ +0, Ap, (C2)
rkTpl=V¢(xk)pl=% =0; 0=1,2,...k-1(C3)

¢(x,)=min, ¢(x,_, +ap,_,) (C4)

Conjugated Directions Methods

Are truly minimization- line search methods but their
quadratic nature makes the problem “simple”.

The recursion in the variable is very simple.

The residuals (the gradients) are orthogonal to the
search direction space.

But, how do I find the A-conjugate search directions?

IDEA 2: The space of the search directions should
coincide with the space of the residuals.

In principle, achievable with Gram-Schmidt using the
A inner product, but maybe it is simpler

5.2.3 KRYLOYV SPACES

Obtaining the A-conjugated Search

Directions

* IDEA 2: The space of the search directions should
coincide with the space of the residuals.

Se = 1PosProe>Pict f = UipsTioe T |

* Consequence K1: the gradients (residuals themselves)
are orthogonal, that is they are conjugated.

r, LS (C3)=r/r,=0(K1); 0<izk
* This fact gives the methods its name: The method of
conjugated gradients.

Obtaining the A-conjugated Search

Directions

* Consequence K2: the search space = the gradient
space from a Krylov space.

S, ={p0,p1,...,pk_1}:{ro,rl,...,rk_l}
r.=r_,ta, Ap, (C2)=S§,,, S, +AS,

By induction and (K1) S, ={r,,Ar,.....A" ', } = K, (A,r)) (K2)

* Consequence K3 (the subtlest): computation of the

next search direction needs only two terms !!!
r, LS (K=K (K2)=r, LAS,_ =AK_ cK,(K2)=1r Ap,=0, i=0,1,...k—2

T

. D, Ar,

dk:—rk+ﬁkpk_1:>dkTApl.:O i=12,...k—=2 !!!ﬁﬁk:ﬁ;pk:_rk—i_ﬁkpk—l
k1437

METHOD OF CONJUGATED

GRADIENTS VERSION 1

Algorithm 5.1 (CG-Preliminary Version).
Given xg;
Setryg < Axg — b, po < —ro, k < 0;

while ry #£ 0

rkTPk)
T]

Py Apy

Xp41 < Xg + O Py

o < —

Fkt1 < AXgyy — b;

Pk+1 < —Tik41 + Bi+1 Pk
k < k+ l;|

end (while)

SOME SIMPLIFICATIONS

Pk+1 < —Tk+1 + Pr+1 Pk’

rkTp;:O, fori =0,1,...,k—1,

arApr = rky1 — I,

o = T
P Apy
ﬁk : rk+]rk+l
+ om—
rkTrk

| will ask you to
prove it.

CG: PRACTICAL VERSION

(MINIMAL STORAGE)

Algorithm 5.2 (CG).
Given xg;
Setrg < Axg — b, po < —ro, k < 0;

while ry #£ 0

T

Xk41 < Xk + O Pk

Fks1 < e + o Apg;

T
rk+]rk+l'
ﬂk-l-l <« T)

Pik4+1 < —Tig1 + Bet1Prs

k<~ k+1;

end (while)

NEEDS ONLY 1 MATRIX-VECTOR MULTIPLICATION PER STEP.
AX NEVER FORMED AS BEFORE.

