
Lecture 5
January 18, 2011

4.3 GENERAL CASE: SOLVING
THE ACTUAL TR PROBLEM
(DOGLEG DOES NOT QUITE
DO IT)

Trust Region Equation

Theory of Trust Region Problem
Global convergence
away from saddle
point

Fast Local
Convergence

How do we solve the subproblem?

�• Very sophisticated approach based on theorem
on structure of TR solution, eigenvalue analysis
and/or an �“inner�” Newton iteration.

�• Foundation: Find Solution for

How do I find such a solution?

TR problem has a solution

Practical (INCOMPLETE) algorithm

It generally gives a machine precision solution in 2-3 iterations
(Cholesky)

The Hard Case
qj
T g = 0

= 1 p =
qj
T g

j 1j: j 1

qj

p() = qj
T g

j 1j: j 1

qj + q1

p() = k

If double root, things continue to be complicated �…

Summary and Comparisons

�• Line search problems have easier subproblems
(if we modify Cholesky).

�• But they cannot be guaranteed to converge to a
point with positive semidefinite Hessian.

�• Trust-region problems can, at the cost of solving
a complicated subproblem.

�• Dogleg methods leave �“between�” these two
situations.

Section 5
Matrix-free methods
Mihai Anitescu

5.1 PARALLEL COMPUTING
AND MATRIX-FREE
METHODS

5.1.1 SOME DISCUSSION FOR
PARALLEL COMPUTING/
SUPERCOMPUTING

The appeal of Supercomputing: Top500

ASCI

Earth Simulator

Blue Gene

Technology Trends:
Microprocessor Capacity

2X transistors/Chip
Every 1.5 years

Called �“Moore�’s Law�”:

Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore�’s Law

What are They Used For

�• Climate prediction & Weather forecasting

What are They Used For (cont.)

�• Computational chemistry
�• Crash analysis
�• Cryptography
�• Nuclear simulation
�• Structural analysis

Blue Gene L

From http://i.n.com.com/i/ne/p/photo/BlueGeneL_03_550x366.jpg

Packaging and Scale-Up

From http://www.rug.nl/cit/diensten/system_services/nieuwsbrief/200504/bouwbluegene-
buildup-800x571.jpg

In what way are they different from
programming regular computing.

�• Normal users tend to ignore the effects of data
movement (to/from RAM or to a less extent cache
memory).

�• In Supercomputers, processors (100ks) are
connected by a network, which although fast, is
nothing like processor to cache or processor to
RAM.

�• The memory hierarchy is �“deep�” with SLOW low
levels (e.g RAM on a different board or disk). So the
cost of data movement can no longer be ignored.

Memory Hierarchy Pyramid

Levels in
memory
hierarchy

Central Processor Unit (CPU)

Size of memory at each level

Level 1

Level 2

Level n

Increasing Distance
and Latency from

CPU,
Decreasing cost / MB

�“Upper�”

�“Lower�”

Level 3

. . .

(data cannot be in level i unless also in i+1)

5.1.2 LINEAR ALGEBRA ON
MASSIVELY PARALLEL
COMPUTERS

23

Solving Systems of Equation in
Parallel, High Performance

Computing ENVS Don�’ts:
�• Don�’t invert the matrix (x = A-1b). That�’s much

more costly than solving directly, and the matrix
storage cost will be unbearable.

�• Don�’t write your own solver code. There are
people who devote their whole careers to writing
solvers. They know a lot more about writing
solvers than we do.

24

Solving Do�’s

Do�’s:
�• Do use standard, portable solver libraries.
�• Do use a version that�’s tuned for the platform

you�’re running on, if available.
�• Do use the information that you have about

your system to pick the most efficient solver.

25

Linear Algebra Libraries

�• BLAS

�• LAPACK

�• ScaLAPACK

�• PETSc

26

BLAS

�• The Basic Linear Algebra Subprograms
(BLAS) are a set of low level linear algebra
routines:
�– Level 1: Vector-vector (e.g., dot product).
�– Level 2: Matrix-vector (e.g., matrix-vector multiply).
�– Level 3: Matrix-matrix (e.g., matrix-matrix multiply)

27

BLAS

�• Many linear algebra packages, including
LAPACK, ScaLAPACK and PETSc, are built
on top of BLAS.

�• Most supercomputer vendors have versions of
BLAS that are highly tuned for their platforms.

28

LAPACK

LAPACK (Linear Algebra PACKage) solves dense
or special-case sparse systems of equations
depending on matrix properties such as:

�• Precision: single, double
�• Data type: real, complex
�• Shape: diagonal, bidiagonal, tridiagonal, banded,

triangular, trapezoidal, Hesenberg, general dense
�• Properties: orthogonal, positive definite,

Hermetian (complex), symmetric, general
LAPACK is built on top of BLAS,

29

LAPACK Example

REAL,DIMENSION(numrows,numcols) :: A
REAL,DIMENSION(numrows) :: B
REAL,DIMENSION(numrows) :: X
INTEGER,DIMENSION(numrows) :: pivot
INTEGER :: row, col, info, numrhs = 1
DO row = 1, numrows
 B(row) = �…
END DO
DO col = 1, numcols
 DO row = 1, numrows
 A(row,col) = �…
 END DO
END DO
CALL sgesv(numrows, numrhs, A, numrows, pivot, &
& B, numrows, info)
DO col = 1, numcols
 X(col) = B(col)
END DO

30

LAPACK: a Library and an API

LAPACK is a library that you can download for
free from the Web:

www.netlib.org
But, it�’s also an Application Programming

Interface (API): a definition of a set of routines,
their arguments, and their behaviors.

So, anyone can write an implementation of
LAPACK.

31

LAPACK Performance

Because LAPACK uses BLAS, it�’s about as fast as
BLAS.

In fact, an older version of LAPACK, called
LINPACK, is used to determine the top 500
supercomputers in the world.

32

ScaLAPACK

ScaLAPACK is the distributed parallel (MPI)
version of LAPACK. It actually contains only a
subset of the LAPACK routines, and has a
somewhat awkward Application Programming
Interface (API).

Like LAPACK, ScaLAPACK is also available
from

www.netlib.org.

33

PETSc
�• PETSc (Portable, Extensible Toolkit for

Scientific Computation) is a solver library for
sparse matrices that uses distributed parallelism
(MPI).

�• PETSc is designed for general sparse matrices
with no special properties, but it also works well
for sparse matrices with simple properties like
banding and symmetry.

�• It has a simpler, more intuitive Application
Programming Interface than ScaLAPACK.

34

Pick Your Solver Package

�• Dense Matrix
�– Serial: LAPACK
�– Shared Memory Parallel: vendor-tuned LAPACK
�– Distributed Parallel: ScaLAPACK

�• Sparse Matrix: PETSc

Matrix Free Methods for Parallel Computations

�• Many problems have simple, sparse matrices associated with the
linear algebra (e.g., example from Homework 2).

�• Nevertheless, factorization is extremely expensive on parallel
architectures due to processsor-to-processor data motion needs
of pivoting, (as well as storage needs).

�• Solution? Use methods (e.g., Krylov space or relaxation
methods) that only multiply the matrix A times a vector x, code
to calculate y=Ax can be written instead of storing the matrix A.

�• This reduces the cost of the computer (which is mostly memory
chips) and allows for vastly larger simulations.

�• It also results in very fast code, if BLAS is optimized, which is a
much easier proposition than optimizing factorization.

5.2 CONJUGATED GRADIENTS
METHOD (AND
PRECONDITIONED)

From �“Conjugated Gradients
without the Agonizing Pain�”-

�• �“The Conjugate Gradient Method is the most
prominent iterative method for solving sparse systems
of linear equations. Unfortunately, many textbook
treatments of the topic are written with neither
illustrations nor intuition, and their victims can be
found to this day babbling senselessly in the corners of
dusty libraries. For this reason, a deep, geometric
understanding of the method has been reserved for the
elite brilliant few who have painstakingly decoded the
mumblings of their forebears.�” -Schewchuck

5.2.1 GRAM-SCHMIDT

Gram-Schmidt orthogonalization

Gram-Schmidt algorithm

QR Factorization

5.2.2 METHOD OF
CONJUGATED DIRECTIONS

Conjugated Search Directions

�• Conjugated=orthogonal
�• Positive definite A; linear system is

equivalent to minimization.

�• IDEA 1: A-conjugate directions:

Sk = p0 , p1,�…, pk 1{ } pi
T Apj = 0 0 i j k 1

xk = minx x0 +Sk
x(); x() = 1

2
xT Ax bT x

A 0 Ax = b min

x Rn
x() = 1

2
xT Ax bT x

Arithmetic of A-Conjugated Search
Directions

Sk = p0 , p1,�…, pk 1{ } pi
T Apj = 0 0 i j k 1

min
i{ }i=0
k 1

1
2 i pi

i=0

k 1

+ x0

T

A i pi
i=0

k 1

+ x0 bT i pi
i=0

k 1

+ x0 =

min
i{ }i=0
k 1

1
2 i pi

i=0

k 1 T

A i pi
i=0

k 1

+ Ax0 b()T i pi
i=0

k 1 A Conjugated Directions

=

min
i{ }i=0
k 1

1
2 i

2 pi
T Api

i=0

k 1

+ ir0
T pi

i=0

k 1

= 1
2 i

2 pi
T Api + ir0

T pi
i=0

k 1

;

where r0 = Ax0 b() = x x0()

�• A-conjugated direction search methods: the
subspace problems are much simpler:

Arithmetic of A-Conjugated Search
Directions-Consequences

min
i{ }i=0
k 1

1
2 i

2 pi
T Api + ir0

T pi
i=0

k 1

; i =
r0
T pi

pi
T Api

;

xk = x0 +
r0
T pi

pi
T Api

pi
i=0

k 1

= xk 1 + k 1pk 1(C1)

xk() = Axk b = rk = rk 1 + k 1Apk 1(C2)

rk
T pi = xk() pi =

i x=xk

= 0; 0 = 1,2,�…k 1 C3()

xk() = min xk 1 + pk 1() (C4)

Conjugated Directions Methods

�• Are truly minimization- line search methods but their
quadratic nature makes the problem �“simple�”.

�• The recursion in the variable is very simple.
�• The residuals (the gradients) are orthogonal to the

search direction space.
�• But, how do I find the A-conjugate search directions?
�• IDEA 2: The space of the search directions should

coincide with the space of the residuals.
�• In principle, achievable with Gram-Schmidt using the

A inner product, but maybe it is simpler �….

5.2.3 KRYLOV SPACES

Obtaining the A-conjugated Search
Directions

�• IDEA 2: The space of the search directions should
coincide with the space of the residuals.

�• Consequence K1: the gradients (residuals themselves)
are orthogonal, that is they are conjugated.

�• This fact gives the methods its name: The method of
conjugated gradients.

 Sk = p0 , p1,�…, pk 1{ } = r0 ,r1,�…,rk 1{ }

rk Sk (C3) rk
T ri = 0 K1(); 0 i k

Obtaining the A-conjugated Search
Directions

�• Consequence K2: the search space = the gradient
space from a Krylov space.

�• Consequence K3 (the subtlest): computation of the
next search direction needs only two terms !!!

Sk = p0 , p1,�…, pk 1{ } = r0 ,r1,�…,rk 1{ }
rk = rk 1 + k 1Apk 1(C2) Sk+1 Sk + ASk
By induction and (K1) Sk = r0 ,Ar0 ,�…,Ak 1r0{ } = Kk A,r0() (K2)

rk Sk (K1) = Kk (K2) rk ASk 1 = AKk 1 Kk (K2) rk
T Api = 0, i = 0,1,�…k 2

dk = rk + k pk 1 dk
T Api = 0 i = 1,2,�…k 2 !!! k =

pTk 1Ark
pTk 1Ark

; pk = rk + k pk 1

METHOD OF CONJUGATED
GRADIENTS VERSION 1

SOME SIMPLIFICATIONS

I will ask you to
prove it.

CG: PRACTICAL VERSION
(MINIMAL STORAGE)

NEEDS ONLY 1 MATRIX-VECTOR MULTIPLICATION PER STEP.
AX NEVER FORMED AS BEFORE.

