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4.3 GENERAL CASE: SOLVING 
THE ACTUAL TR PROBLEM 
(DOGLEG DOES NOT QUITE 
DO IT) 



Trust Region Equation 



Theory of Trust Region Problem 
Global convergence 
away from saddle 
point 

Fast Local 
Convergence 



How do we solve the subproblem?  

�• Very sophisticated approach based on theorem 
on structure of TR solution, eigenvalue analysis 
and/or an �“inner�” Newton iteration.  

�• Foundation: Find Solution for  



How do I find such a solution?  



TR problem has a solution 



Practical (INCOMPLETE) algorithm  

It generally gives a machine precision solution in 2-3 iterations 
(Cholesky) 



The Hard Case                
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If double root, things continue to be complicated �… 



Summary and Comparisons 

�• Line search problems have easier subproblems 
(if we modify Cholesky).  

�• But they cannot be guaranteed to converge to a 
point with positive semidefinite Hessian.  

�• Trust-region problems can, at the cost of solving 
a complicated subproblem.  

�• Dogleg methods leave �“between�” these two 
situations.  



Section 5 
Matrix-free methods 
Mihai Anitescu 



5.1 PARALLEL COMPUTING 
AND MATRIX-FREE 
METHODS 



5.1.1 SOME DISCUSSION FOR 
PARALLEL COMPUTING/
SUPERCOMPUTING 



The appeal of Supercomputing: Top500  

ASCI 

Earth Simulator 

Blue Gene 



Technology Trends: 
Microprocessor Capacity 

2X transistors/Chip 
Every 1.5 years 

Called �“Moore�’s Law�”:  

Alpha 21264: 15 million 
Pentium Pro: 5.5 million 
PowerPC 620: 6.9 million 
Alpha 21164: 9.3 million 
Sparc Ultra: 5.2 million 

Moore�’s Law 



What are They Used For 

�• Climate prediction & Weather forecasting 



What are They Used For (cont.) 

�• Computational chemistry 
�• Crash analysis 
�• Cryptography 
�• Nuclear simulation 
�• Structural analysis 



Blue Gene L 

From http://i.n.com.com/i/ne/p/photo/BlueGeneL_03_550x366.jpg 



Packaging and Scale-Up 

From http://www.rug.nl/cit/diensten/system_services/nieuwsbrief/200504/bouwbluegene-
buildup-800x571.jpg 



In what way are they different from  
programming regular computing.  

�• Normal users tend to ignore the effects of data 
movement (to/from RAM or to a less extent cache 
memory).  

�• In Supercomputers, processors (100ks) are 
connected by a network, which although fast, is 
nothing like processor to cache or processor to 
RAM.  

�• The memory hierarchy is �“deep�” with SLOW low 
levels (e.g RAM on a different board or disk). So the 
cost of data movement can no longer be ignored.  



Memory Hierarchy Pyramid 

Levels in 
memory  
hierarchy 

Central Processor Unit (CPU) 

Size of memory at each level 

Level 1 

Level 2 

Level n 

Increasing Distance 
and Latency from 

CPU, 
Decreasing  cost / MB 

�“Upper�” 

�“Lower�” 

Level 3 

. . . 

(data cannot be in level i unless also in i+1) 



5.1.2 LINEAR ALGEBRA ON 
MASSIVELY PARALLEL 
COMPUTERS 
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Solving Systems of Equation in 
Parallel, High Performance 

Computing ENVS Don�’ts: 
�• Don�’t invert the matrix (x = A-1b).  That�’s much 

more costly than solving directly, and the matrix 
storage cost will be unbearable.  

�• Don�’t write your own solver code.  There are 
people who devote their whole careers to writing 
solvers.  They know a lot more about writing 
solvers than we do. 
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Solving Do�’s 

Do�’s: 
�• Do use standard, portable solver libraries. 
�• Do use a version that�’s tuned for the platform 

you�’re running on, if available. 
�• Do use the information that you have about 

your system to pick the most efficient solver. 
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Linear Algebra Libraries 

�• BLAS 

�• LAPACK 

�• ScaLAPACK 

�• PETSc 



26 

BLAS 

�• The Basic Linear Algebra Subprograms 
(BLAS) are a set of low level linear algebra 
routines:  
�– Level 1: Vector-vector (e.g., dot product).  
�– Level 2: Matrix-vector (e.g., matrix-vector multiply). 
�– Level 3: Matrix-matrix (e.g., matrix-matrix multiply) 
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BLAS 

�• Many linear algebra packages, including 
LAPACK, ScaLAPACK and PETSc, are built 
on top of BLAS. 

�• Most supercomputer vendors have versions of 
BLAS that are highly tuned for their platforms. 
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LAPACK 

LAPACK (Linear Algebra PACKage) solves dense 
or special-case sparse systems of equations 
depending on matrix properties such as: 

�• Precision: single, double 
�• Data type: real, complex 
�• Shape: diagonal, bidiagonal, tridiagonal, banded, 

triangular, trapezoidal, Hesenberg, general dense 
�• Properties: orthogonal, positive definite, 

Hermetian (complex), symmetric, general 
LAPACK is built on top of BLAS,  
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LAPACK Example 

REAL,DIMENSION(numrows,numcols) :: A 
REAL,DIMENSION(numrows)         :: B 
REAL,DIMENSION(numrows)         :: X 
INTEGER,DIMENSION(numrows)      :: pivot 
INTEGER :: row, col, info, numrhs = 1 
DO row = 1, numrows 
  B(row) = �… 
END DO 
DO col = 1, numcols 
  DO row = 1, numrows 
    A(row,col) = �… 
  END DO 
END DO 
CALL sgesv(numrows, numrhs, A, numrows, pivot, & 
&          B, numrows, info) 
DO col = 1, numcols 
  X(col) = B(col) 
END DO 
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LAPACK: a Library and an API 

LAPACK is a library that you can download for 
free from the Web: 

www.netlib.org 
But, it�’s also an Application Programming 

Interface (API): a definition of a set of routines, 
their arguments, and their behaviors. 

So, anyone can write an implementation of 
LAPACK. 
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LAPACK Performance 

Because LAPACK uses BLAS, it�’s about as fast as 
BLAS.  

In fact, an older version of LAPACK, called 
LINPACK, is used to determine the top 500 
supercomputers in the world. 
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ScaLAPACK 

ScaLAPACK is the distributed parallel (MPI) 
version of LAPACK.  It actually contains only a 
subset of the LAPACK routines, and has a 
somewhat awkward Application Programming 
Interface (API). 

Like LAPACK, ScaLAPACK is also available 
from 

www.netlib.org. 
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PETSc 
�• PETSc (Portable, Extensible Toolkit for 

Scientific Computation) is a solver library for 
sparse matrices that uses distributed parallelism 
(MPI). 

�• PETSc is designed for general sparse matrices 
with no special properties, but it also works well 
for sparse matrices with simple properties like 
banding and symmetry. 

�• It has a simpler, more intuitive Application 
Programming Interface than ScaLAPACK. 
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Pick Your Solver Package 

�• Dense Matrix 
�– Serial: LAPACK 
�– Shared Memory Parallel: vendor-tuned LAPACK 
�– Distributed Parallel: ScaLAPACK 

�• Sparse Matrix: PETSc 



Matrix Free Methods for Parallel Computations 

�•  Many problems have simple, sparse matrices associated with the 
linear algebra (e.g., example from Homework 2). 

�• Nevertheless, factorization is extremely expensive on parallel 
architectures due to processsor-to-processor data motion needs 
of pivoting, ( as well as storage needs).  

�• Solution? Use methods (e.g., Krylov space or relaxation 
methods) that only multiply the matrix A times a vector x, code 
to calculate y=Ax can be written instead of storing the matrix A. 

�• This reduces the cost of the computer (which is mostly memory 
chips) and allows for vastly larger simulations. 

�• It also results in very fast code, if BLAS is optimized, which is a 
much easier proposition than optimizing factorization.  



5.2 CONJUGATED GRADIENTS 
METHOD (AND 
PRECONDITIONED) 



From �“Conjugated Gradients 
without the Agonizing Pain�”- 

�• �“The Conjugate Gradient Method is the most 
prominent iterative method for solving sparse systems 
of linear equations. Unfortunately, many textbook 
treatments of the topic are written with neither 
illustrations nor intuition, and their victims can be 
found to this day babbling senselessly in the corners of 
dusty libraries. For this reason, a deep, geometric 
understanding of the method has been reserved for the 
elite brilliant few who have painstakingly decoded the 
mumblings of their forebears.�” -Schewchuck 



5.2.1 GRAM-SCHMIDT 



Gram-Schmidt orthogonalization 



Gram-Schmidt algorithm 



QR Factorization 



5.2.2  METHOD OF 
CONJUGATED DIRECTIONS 



Conjugated Search Directions 

�• Conjugated=orthogonal 
�• Positive definite A; linear system is 

equivalent to minimization.  

�• IDEA 1: A-conjugate directions:  

 

Sk = p0 , p1,�…, pk 1{ } pi
T Apj = 0 0 i j k 1

xk = minx x0 +Sk
x( ); x( ) = 1

2
xT Ax bT x

 
A 0 Ax = b min

x Rn
x( ) = 1

2
xT Ax bT x



Arithmetic of A-Conjugated Search 
Directions 
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where r0 = Ax0 b( ) = x x0( )

�• A-conjugated direction search methods: the 
subspace problems are much simpler:  



Arithmetic of A-Conjugated Search 
Directions-Consequences 
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1
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Conjugated Directions Methods 

�• Are truly minimization- line search methods but their 
quadratic nature makes the problem �“simple�”. 

�• The recursion in the variable is very simple.  
�• The residuals (the gradients) are orthogonal to the 

search direction space. 
�•  But, how do I find the A-conjugate search directions? 
�• IDEA 2: The space of the search directions should 

coincide with the space of the residuals. 
�• In principle, achievable with Gram-Schmidt using the 

A inner product, but maybe it is simpler �….   



5.2.3 KRYLOV SPACES 



Obtaining the A-conjugated Search 
Directions 

�• IDEA 2: The space of  the search directions should 
coincide with the space of  the residuals. 

�• Consequence K1: the gradients (residuals themselves) 
are orthogonal, that is they are conjugated. 

�• This fact gives the methods its name: The method of  
conjugated gradients.  

 Sk = p0 , p1,�…, pk 1{ } = r0 ,r1,�…,rk 1{ }

rk Sk (C3) rk
T ri = 0 K1( ); 0 i k



Obtaining the A-conjugated Search 
Directions 

�• Consequence K2: the search space = the gradient 
space from a Krylov space.  

�• Consequence K3 (the subtlest): computation of  the 
next search direction needs only two terms !!! 

 

Sk = p0 , p1,�…, pk 1{ } = r0 ,r1,�…,rk 1{ }
rk = rk 1 + k 1Apk 1(C2) Sk+1 Sk + ASk
By induction and (K1) Sk = r0 ,Ar0 ,�…,Ak 1r0{ } = Kk A,r0( ) (K2)

 

rk Sk (K1) = Kk (K2) rk ASk 1 = AKk 1 Kk (K2) rk
T Api = 0, i = 0,1,�…k 2

dk = rk + k pk 1 dk
T Api = 0 i = 1,2,�…k 2 !!! k =

pTk 1Ark
pTk 1Ark

; pk = rk + k pk 1



METHOD OF CONJUGATED 
GRADIENTS VERSION 1 



SOME SIMPLIFICATIONS 

I will ask you to 
prove it.  



CG: PRACTICAL VERSION 
(MINIMAL STORAGE) 

NEEDS ONLY 1 MATRIX-VECTOR MULTIPLICATION PER STEP. 
AX NEVER FORMED  AS BEFORE.  


