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5.4 CONJUGATE GRADIENT 
CONVERGENCE/
PRECONDITIONING 



Consequences of using a  Krylov space: 
matrix polynomial  formulation   

�• Iteration in Krylov Space 

�• Matrix Polynomial 

�• Iteration as a matrix Polynomial 



Error in A-space 

�• Error in A-norm 

�• So what is the conjugate gradient method 
computing? 

�• Another form of the error 



The calculation in eigenvalue space 



Consequences for Convergence 

�•Linear Convergence Rate Estimate:  
�•Consequences:  

�•Note: finite termination in n steps. 



Acceleration of Conjugate Gradient 
�• Rescaling of the problem 

�• The modified objective function 

�• Equivalent linear system. 



How to find a preconditioner?  

�• Idea (from Theorem 5.5). Compute a C such 
that the eigenvalues are �“clustered�”, then 
convergence is fast. For example 

�• Preconditioners must be easy to factorize or 
invert. 

�• Example preconditioners:  
�– Incomplete Cholesky (use sparsity pattern of A) 
�– Symmetric Successive overrelaxation 
�– Multigrid.  

C T AC I; or C LT ; A = LLT



Preconditioned conjugate gradient 

Preconditioner action 

M = CTC



5.5 NONLINEAR CONJUGATE 
GRADIENT 



The Fletcher-Reeves method 

�• he 

Actual line search 

rk = f xk( )



The line search method 

�• Use a search that satisfies the Wolfe Conditions. 

�• Use the parameters  



Convergence of Fletcher-Reeves 

Fixed fraction of steepest descent 



Section 6 
Very Large Scale Methods 



6.1 MATRIX-FREE METHODS 
CONVERGENCE FRAMEWORK 



Matrix Free Methods 
�• Parallel  computing: avoid factorization and return 

only matrix-vector products (and not matrices) .  

�• The last version in particular can be particularly 
efficiently carried out with Automatic Differentiation.  

�• Most common algorithms in optimization: Krylov 
Algorithms (Lanczos, modified CG).  

�• But I must deal with early termination (I will not wait 
n steps) and indefinite matrices.  

d Model B*d

d, xk Model xx
2 f (xk )* x



Framework for Early termination: 
Inexact Newton Methods 

�• We modify the original Newton method: 

�• The residual:  

�• CG loop termination rule 

2 fk pk fk

k 0

Forcing sequence 



Convergence Result 

�• Main Result: 

�• Note: if sequence is forced, superlinear 
convergence will occur!  



6.2 KRYLOV-TYPE METHODS FOR 
NONLINEAR UNCONSTRAINED 
OPTIMIZATION 



Main Concern:  

�• How do I deal with indefiniteness of the 
matrices, since CG works only for positive 
definite matrices?  



Line-Search CG 

Note double 
iteration  

�• How  come it works? 
CG itself is a descent 
method !!!  



CG-Trust Region (STEIHAUG) 

�• Only inner loop. 
�•  Define forcing 

sequence as LS-CG  
�•  Iterate in x. 

  



6.3 LANCZOS ALGORITHMS 
FOR UNCONSTRAINED 
OPTIMIZATION 



A shortcoming of CG methods 

�• They accept even SMALL negative curvature 
foregoing more promising directions.  

�• Solution: try to approximate the spectrum of the 
Hessian, using the Lanczos algorithm 
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�• The conjugate gradient algorithm minimizes a 
quadratic function with a symmetric positive-
definite Hessian: 

Conjugate Gradients and Lanczos Algorithm (Tremolet) 

The algorithm is: 
step to the line minimum 

recalculate the gradient 

calculate a new direction  

where: 

Eliminate     to get the 3-term recurrence (Lanczos): 



Lanczos Orthogonalization 
Procedure 

�• It orthogonalizes the Krylov space 

�• But the iteration works even if the matrix is 
NOT positive definite !!! 

�• The coefficients are found without needing d; by 
just eliminating g_(k+2). EXPAND 

  (K2) Sk = r0 ,Ar0 ,�…,Ak 1r0{ } = Kk A,r0( ) (K2)
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Conjugate Gradients and Lanczos Algorithms 

�• Let      be the matrix whose columns are            . 

�• Then  

     where        is tri-diagonal and 

�• After       iterations, we get                       . 

�• i.e.      has the same eigenvalues as    . 

�• Intermediate matrices have interleaving eigenvalues: 

�• Even for           , �“the spectrum range�” is well 
approximated. 



Lanczos Iteration 

Unless it breaks down, produces orthogonal basis of 
Krylov space and a tridiagonal matrix similar to A. 



Lanczos iteration 



Lanczos iteration 



Tridiagonal System 

�• Tridiagonal matrices are EXTREMELY easy to 
factorize, solve with, and find eigenvalues of (if 
symmetric).  

�• u = [u1, u2, �…, un-1] 
�• d = [d1, d2, �…, dn-1, dn] 
�• l = [l1, l2, �…, ln-1]  



LU decomposition of Tridiagonal Matrix 
(Cholesky similar) 



Using Lanczos for Optimization 

�• Solve trust-region (inner loop):  

�• Note, however, that you must store ALL 
vectors.  

�• But you will not truncate a promising direction 
just before it gives a negative inner product.  

�• Iteration continues, until a similar stopping test 
is reached (i.e residual=gradient is small) 



Section 7: Special Optimization 
Problem Classes 
Mihai Anitescu, Stat 310 



Special Problem Classes   

�• Nonlinear Least Squares 
�• Nonlinear Equations 
�• The latter is ALSO affected by the divergence of 

classical Newton, so needs to be �“globalized�” 



7.1 NONLINEAR LEAST 
SQUARES 



Framework 

�• Problem: 
�• Vector of residuals 
�• Jacobian 
�• Derivatives:  

min
x Rn



Gauss-Newton 
�• Use only the Jacobian to generate the search 

direction. 

�• This can be done with QR factorization since it 
is a LINEAR least squares  

�• Followed by a line search since iteration matrix 
is positive (semi)-definite.  

�• But what if it is singular or close to? The 
iteration can be poor (numerical instability) �…. 



Levenberg-Marquardt: Use a trust-
region approach ! 

�• Trust-region problem: 
�• Computational 

Foundation:  



LM: Can still USE QR !! 

�• Trust region acts like 
regularization 

�• I do not need to form 
the matrix product or 
factorize it, equivalent to 
a linear least squares. 

�• Solve same way as other 
TR (replacing Cholesky 
with QR and adding TR 
management) 



Nonlinear Equations 

�• Formulation: 
�• Newton�’s Method �… 

which may not 
converge.  



Trust-region for nonlinear equations 

�• Model: 
�• Trust-region problem: 
�• Reduction ratio: 
�• Can use dogleg ! (with 

positive definite B)  



TR algorithm for nonlinear equtions 


