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5.4 CONJUGATE GRADIENT
CONVERGENCE/
PRECONDITIONING



Consequences of using a Krylov space:

matrix polynomial formulation
* Iteration in Krylov Space

Xk+1 = Xo T+ QgPo + - -+ T O Pi

= xo + Yoro + 1Aro + - - + v A*ro,
* Matrix Polynomial

PHA) =yl + nA+--- + p AL,

* Iteration as a matrix Polynomial

Xi+1 = Xo + P; (A)ro.



Error in A—space

e Hrror in A-norm

IzIZ =z" Az, Ll —x*|3 = L — x)T A(x — x*) = p(x) — p(x*).

2

* So what is the conjugate gradient method
computing?

Xk+1 = Xo T+ Pk*(A)ro- n})in |x0 + Pi(A)ro — x*| 4.
k

e Another form of the error
Xpp1 — X =x9+ P (A)rg —x* = [I + P (A)A](xy — x¥).



The calculation in eigenvalue space

let 0 < A} < Ay < --- < A, be the eigenvalues of A, and let v;, vy, ..., v, be the
corresponding orthonormal eigenvectors, so that

n
A= E A,-v,-viT.
- i=1

=1

n
Ixks1 — x*[|15 = H;,inzki[l + A Pe(X)]°E7.
k

i=1

Pk 1<i<n

n
I — x*I3 < min max (144 P | ) 48]
j=l1

= min max |1 + A; Pk(li)]?'”xo — x*”i’
Py 1<i<n



Consequences for Convergence

2

-Linear Convergence Rate Estimate: min max [1 + 4; Pc(4:)]".
k ——
Consequences:
Theorem 5.4.

If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution
in at most r iterations.

Theorem 5.5.|
If A has eigenvalues .y < Ay < --- < A,, we have that

A —k ;\-1)2 2
* 112 n *
Xk — X ||z < Xop — X .
” +1 ”A — (A-n L | A-l " 0 ”l;\

*Note: finite termination in n steps.




Acceleration ot Conjugate Gradient

* Rescaling of the problem
x =Cx.
* The moditied objective function
p(x) =3z (CTACTHE —(C"h)' 1.
* BEquivalent linear system.

(C-TAC ™ Hz =C7Th,



How to find a preconditioner?

* Idea (from Theorem 5.5). Compute a C such
that the eigenvalues are “clustered”, then
convergence 1s fast. For example

C'"AC=I, or C=L":A=LL
* Preconditioners must be easy to factorize or
invert.
* Example preconditioners:

— Incomplete Cholesky (use sparsity pattern of A)

— Symmetric Successive overrelaxation
— Multigrid.



Preconditioned conjugate gradient

Algorithm 5.3 (Preconditioned CG).
Given xy, preconditioner M;
Setrg < Axq — b;
Solve My, = ry fﬁ}’o;
Set po = —yo, k < 0;
while r; # 0

reconditioner action

M=C"C

Xk+1 < Xk + Qi P
rks1 < e + o APy
Solve Myy1 = riq1;

T
Fre1Ye+1
ﬂk-}-l <« T ’
e Vi
Pk+1 < —Yk+1 + Br+1 Pk

k< k+1;

end (while)
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5.5 NONLINEAR CONJUGATE
GRADIENT
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The Fletcher-Reeves method

Algorithm 5.4 (FR).
Given xp;
Evaluate fy = f(x0), Vfo = V f(x0);
Set pg < —V fo, k < 0;
while V f; #£0

Actual line search
Compute o and set xz; = X + o pis

Evaluate V fi,; . errk :

Pk Apx
,BFR - kaT-Hka+l. Xk4+1 < Xk + Qg Pk
. kaTka ’ k41 < rk + ok Apg;
T

Pk+1 < _ka+1 + ,B,':ﬁ_lpk; ﬁk+1 - "k+;"k+1;

k <~ k+1; Ty Tk
Pk+1 < —Tks1 + By Pis

end (while) k < k41

He = Vf(xk)



The line search method

e Use a search that satisfies the Wolfe Conditions.

FOx +arpr) < flxx) + VT pr.
IV f(xx +aipi)’ pel < —eV A pr,

* Use the parameters

1

D<) <0 < 5.



Convergence of Fletcher-Reeves

Lemma 5.6.

Suppose that Algorithm 5.4 is implemented with a step length oy that satisfies the strong
Wolfe conditions (5.43) with0 < ¢; < % Then the method generates descent directions py
that satisfy the following inequalities:

r _
1 <kapk<202 1

_ < < , forallk=0,1,.... (5.53)
l—c " IVAIP T 11—

Assumptions 5.1. Fixed fraction of steepest descent
(i) Thelevel set L := {x| f(x) < f(xp)} is bounded;

(ii) In some open neighborhood N of L, the objective function f is Lipschitz continuously
differentiable.

Theorem 5.7 (Al-Baali [3]).

Suppose that Assumptions 5.1 hold, and that Algorithm 5.4 is implemented with a line
search that satisfies the strong Wolfe conditions (5.43), with0 < ¢, < ¢; < 3. Then

liminf [|V fi | = 0. (5.63)
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6.1 MATRIX-FREE METHODS
CONVERGENCE FRAMEWORK
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Matrix Free Methods

Parallel computing: avoid tfactorization and return
only matrix-vector products (and not matrices) .

d — |Model|— B*d
d,x, — |Model| - V? f(x,)*x

XX

The last version in particular can be particularly
efficiently carried out with Automatic Differentiation.

Most common algorithms in optimization: Krylov
Algorithms (Lanczos, moditfied CG).

But I must deal with early termination (I will not wait
n steps) and indefinite matrices.



Framework for Early termination:

Inexact Newton Methods
* We modity the original Newton method:

VEfipi ==V fe. Ve fopi ==V,

e The residual:

ri = V2 fipk +V fi,

* CG loop termination rule

Irell < nellV fell, n,—0

Forcing sequence
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Convergence Result

e Main Result:

Theorem 7.1.

Suppose that V? f (x) exists and is continuous in a neighborhood of a minimizer x*, with
V2 f(x*) is positive definite. Consider the iteration xy, = Xy + px where py satisfies (7.3), and

assume that ny < n for some constantn € [0, 1). Then, if the starting point xo is sufficiently
near x*, the sequence {xy} converges to x* and satisfies

V2 f(x*) (1 — x¥)|| < AV ) (e — x¥)1, (7.4)

for some constant ) withn < n < 1.

* Note: if sequence is forced, superlinear
convergence will occut!
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6.2 KRYLOV-TYPE METHODS FOR
NONLINEAR UNCONSTRAINED
OPTIMIZATION



Main Concern:

e How do I deal with indefiniteness of the
matrices, since CG works only for positive
definite matrices?
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Line-Search CG

Algorithm 7.1 (Line Search Newton—CG).
Given initial point x;

fork=0,1,2,...

Define tolerance €; = IV DIV fells

Setzo =0,rp =V fi,dy = —ro = =

for j =0,1,2,...
1d; Brdj = Note double
ifj =0 iteration
return py = —V fi;
else
return py = z;; ° . D
ety = rTrofdl Buds How come it works:
Setzj+1 = zj +a;d;; . .
Setrons — 1 4 ot B CG itself 1s a descent
if [[rj1ll < &
: return py = zZ415 1’Il€th0d !!!
Set 1 = ro+1rj+1/ij"j;
Setdjyy, = —rjy1 + Bjnid;; .
endor) n = min(0.5, /TV /]

Set xg+1 = xx + ax px, where o satisfies the Wolfe, Goldstein, or
|Armijo backtracking conditions (using oy = 1 if possible);
end
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CG-Trust Region (STEIHAUG)

min mi(p) E fi+ (V) p+1pTBip subjectto [Ip|l < Ay,

Algorithm 7.2 (CG-Steihaug).
Given tolerance ¢; > 0;
Setzo =0,r0 = Vfi,do = —ro = =V fi;

if [|roll < e
return py = zo9 = 0;
for j=0,1,2,...

lfdeAdj <0

Find 7 such that py = z; + vd; minimizes my(py) in (4.5)
and satisfies || pg || = Ax;

return pyg;

Setaj = rorj/djTBkd-;

Setzj1 =2z +ajdj;

if |zj 1]l = Ak
Find t > 0 such that py = z; + td| satisfies || pr|| = Ag;
return pyg;

Setrjj =rj+a;Bid;;

if lrjsill < ek
return py = zZj41;

SetBj41 = ro+lrj+1/rorj;

Setdjyy = —rjy1 + Bjndjs

end (for).

* Only inner loop.

Define forcing
sequence as LS-CG

Iterate 1n x.
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6.3 LANCZOS ALGORITHMS
FOR UNCONSTRAINED
OPTIMIZATION
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A shortcoming of CG methods

* They accept even SMALL negative curvature
foregoing more promising directions.

* Solution: try to approximate the spectrum of the
Hessian, using the Lanczos algorithm



Conjugate Gradients and Lanczos Algorithm (Tremolet)

* The conjugate gradient algorithm minimizes a

quadratic function with a symmetric positive-

definite Hessian:  j(5) = l:z:TA;z: +blr +c
2

A The algorithm is:

Tp+1 = Tk + O dk step to the line minimum
Jk+1 = Gk + Qi Ady. recalculate the gradient
dk+1 = —0k+1 -+ 6 kd k calculate a new direction
where:
< Ok; Gk > 3, — < Ok+1; Ok+1 >
dy = —qo O = Pk = :
< dy, Ady > < Gks Gk >

d Eliminate dto get the 3-term recurrence (Lanczos):

A B N 6’k N 1 1
25 Jk+1 = Qk ar | Gro Jk+1 QHIQHQ



Lanczos Orthogonalization

Procedure
* It orthogonalizes the Krylov space

K2) =8, =1{r,An.... A =K, (Ar) (K2)

e But the iteration works even if the matrix is
NOT positive definite !l!

Agess = —Prgo 4 (Be 4 1 !
Jk+1 = o 9k ar | Gro Jk+1 @'k+lgk+2

* The coeftficients are found without needing d; by
just eliminating g (k+2). EXPAND
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Conjugate Gradients and Lanczos Algorithms

e Let @« be the matrix whose columns are 9/

e Then AQk=Qilr+ lez

where 1} is tri-diagonal and e = (0,...,0,1)
o After N iterations, we get QnAQn =Ty,
* e Ty has the same eigenvalues as A
* Intermediate matrices have interleaving eigenvalues:
Aj1(Tk) 2 Aj(Theya) = Aj(Tk)

* BEven for k < N, “the spectrum range” 1s well
27

approximated.
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L.anczos Iteration

qo =0

G =1

xq = arbitrary nonzero starting vector
ql = il’-O',."l'”;ITUHQ

fork=1,2,...
ur = Aqp
¥ = qg{-uk_
up = g — Fp_1qk—1 — Gy
O = |Juk2

if 5. =0 then stop

i1 = g/ O
end

Unless it breaks down, produces orthogonal basis of
Krylov space and a tridiagonal matrix similar to A.



L.anczos 1teration

@ o and J; are diagonal and subdiagonal entries of
symmetric tridiagonal matrix T3,

e If 7, =0, then algorithm appears to break down, but in that
case invariant subspace has already been identified (i.e.,
Ritz values and vectors are already exact at that point)



L.anczos 1teration

@ In principle, if Lanczos algorithm were run until & = =,
resulting tridiagonal matrix would be orthogonally similar to
A

@ In practice, rounding error causes loss of orthogonality,
invalidating this expectation

@ Problem can be overcome by reorthogonalizing vectors as
needed, but expense can be substantial

@ Alternatively, can ignore problem, in which case algorithm
still produces good eigenvalue approximations, but multiple
copies of some eigenvalues may be generated



Tridiagonal System

!
d u, O's || x D,
l, d, u, Xy b,
[, dy u X3 B b
ln—2 dn—l un—l xn—l bn—l
!
_OS ln—l n__xn_ e/

e Tridiagonal matrices are EXTREMELY easy to
factorize, solve with, and find eigenvalues of (if

symmetric) .
e u = [ui, uz, .., Un-1]
e d = [di, d2, .., dn-1, da]
e 1 = [1:, 12, .., ln-1]



LU decomposition of Tridiagonal Matrix

(1 1.1 SUEA A
kbllUleKy blIIlL_'clI)

1 0's dll ull O's
no1 dly ul,
n, 1 dly ul,
n., 1 i ul,
0's n,, 1 0's .
d, u, 0's
ll dz u2 .
Thomas Algorithm:
Zz d3 u3
: . n_,=I1_/dl
ln_z n-1 Uy dl =d —(l /dl )*u
O'S 3 dn _ n n n-1 n-1 n-1




Using LLanczos tor Optimization

* Solve trust-region (inner loop):

mi}g Tx +e1TQj(ka)eITw = %wTTjw subject to ||lw| < Ay,
we

* Note, however, that you must store ALL
vectors.

* But you will not truncate a promising direction
just before 1t gives a negative inner product.

* Iteration continues, until a similar stopping test
is reached (1.e residual=gradient is small)
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Special Problem Classes

* Nonlinear Least Squares

* Nonlinear Equations

* The latter is ALSO affected by the divergence of

classical Newton, so needs to be “globalized”




CHICAGO |

7.1 NONLINEAR LEAST
SQUARES
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Framework
* Problem: min .. f(x) = Z ri(x),
1=1

e Vector of residuals
, r(x) = (r(x), r(x), ..., rm(x)7.
* Jacobian

e Derivatives:

m

VI =Y rx)Vri(x) = J(x)r (), C Vr(x)" ]
j=1
m m ar. Vr2(-x)T
V()= Vrix)Vri)" + ) rix)Virix)  J(x) = [ f] ' —
j=1 j=1 ax; | i=12...m .
m i=1,2,....n
= J(x)TJ(x)+ er(x)Vzrj(x). i Vrm (x)T |

j=1



(Gauss-Newton

* Use only the Jacobian to generate the search
direction.

T . T
Vi = I I Jepd = I k.

* This can be done with (QK tactorization since it
is a LINEAR least squares

min 3 Jip +rill”
* Followed by a line search since iteration matrix
is positive (semi)-definite.
* But what if it 1s singular or close to? The
iteration can be poor (numerical instability) ....



Levenberg-Marquardt: Use a trust-

region approach !

* Trust-region problem: U Jep +rel?,  subjectto [ pll < A,
p

* Computational
Foundation: mi(p) = rl® + pT I re + 1T I dip.

Lemma 10.2.
The vector p'™ is a solution of the trust-region subproblem

min ||Jp + r||?, subject to || p]| < A,
P

M is feasible and there is a scalar . = 0 such that

if and only if p

(JT'T+2Dp™ =—JTr,
A(A —|[p™]]) = 0.
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I.M: Can still USE QR !

* Trust region acts like
(J'T+Aal)p=—J"r.

|

factorize it, equivalent to min ;

a linear least sun

* Solve same way as other

TR (replacing Cholesky
with QR and adding TR

management)

regularization

e ] do not need to form

2

the matrix product or




Nonlinear Equations

e Formulation: r:R"— R" r(x) =0,

e Newton’s Method ...

which may not ra(x)
rix) =

ri(x) )

converge.

Algorithm 11.1 (Newton’s Method for Nonlinear Equations). L ra(x)

Choose xg;
fork=0,1,2,...
Calculate a solution p; to the Newton equations

J(xi) pr = —r(xp);

Xk+1 < Xk + Pis
end (for)



Trust-region for nonlinear equations

m(p) =Ll +Lepl2 = i+ p I r + LT JT 1 .
e Model: k(p) = 3lire +Jkplly = f +p" I re+ 307 I Jip

* Trust-region problem: mpin mi(p),  subjectto ||p|| < A,
e Reduction ratio:

° Can use dogleg ' (Wlth - ”r(xk)”2 — ”r(xk + pk)”2
N . o Gl = I Gee) + J o) pe I
positive definite B)




TR algorithm for nonlinear equtions

Algorithm 11.5 (Trust-Region Method for Nonlinear Equations).
Given A > 0, Ay, € (0, A),and n € [0, i):
fork=0,1,2,...

Calculate py as an (approximate) solution of (11.46);
Evaluate p; from (11.47);
if pp < %
A1 = 3llpells
else
if pp > 7 and || pell = Ak
Arsy = min(2Ag, A);
else
Aps1 = A
end (if)
end (if)
if px > 1
Xk+1 = Xk + Pk
else
Xk+1 = Xk
end (if)
end (for).



