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Nonlinear Equations

e Formulation: r:R"— R" r(x) =0,

e Newton’s Method ...

which may not ra(x)
rix) =

ri(x) )

converge.

Algorithm 11.1 (Newton’s Method for Nonlinear Equations). L ra(x)

Choose xg;
fork=0,1,2,...
Calculate a solution p; to the Newton equations

J(xi) pr = —r(xp);

Xk+1 < Xk + Pis
end (for)



Trust-region for nonlinear equations

m(p) =Ll +Lepl2 = i+ p I r + LT JT 1 .
e Model: k(p) = 3lire +Jkplly = f +p" I re+ 307 I Jip

* Trust-region problem: mpin mi(p),  subjectto ||p|| < A,
e Reduction ratio:

° Can use dogleg ' (Wlth - ”r(xk)”2 — ”r(xk + pk)”2
N . o Gl = I Gee) + J o) pe I
positive definite B)




TR algorithm for nonlinear equtions

Algorithm 11.5 (Trust-Region Method for Nonlinear Equations).
Given A > 0, Ay, € (0, A),and n € [0, i):
fork=0,1,2,...

Calculate py as an (approximate) solution of (11.46);
Evaluate p; from (11.47);
if pp < %
A1 = 3llpells
else
if pp > 7 and || pell = Ak
Arsy = min(2Ag, A);
else
Aps1 = A
end (if)
end (if)
if px > 1
Xk+1 = Xk + Pk
else
Xk+1 = Xk
end (if)
end (for).



ERE THE UNIVERSITY OF

@ | CHICAGO

Section 8: Constrained
Optimization

Mihai Anitescu, Stat 310
Reference: Section 12 Nocedal and Wright




CHICAGO |

8.1 INTRODUCTION IN
CONSTRAINED OPTIMIZATION
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Notations
* Problem Formulation
. . ( c,(x)=0 ief
min___, f(x) subject to - ()20 ieT

* Feasible set
Q:{xlci(x)zO,ieé’; cl.(x)zO,ieI}

* Compact formulation

miner f (.X)



CHICAGO |

IL.ocal and Global Solutions

* Constraints make make the problem simpler
since the search space 1s smaller.

* But it can also make things more complicated.
min(x2 + 100)2 +0.01x; subject to x, —cos x, =0

* Unconstrained problem has one minimum,
constrained problem has MANY minima.
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Types ot Solutions

* Similar as the unconstrained case, except that we now
restrict it to a neighborhood of the solution.

* Recall, we aim only for local solutions.

A vector x* is a local solution of the problem (12.3) if x* € € and there is a
neighborhood N of x* such that f(x) > f(x*) forx € N N L.

A point x* is an isolated local solution if x* € Q and there is a neighborhood A of x*
such that x* is the only local solution in " N Q.

Avector x* isa strict local solution (also called a strong local solution) if x* € 2 and there
is a neighborhood A of x* such that f(x) > f(x*) forallx € N N Q with x # x*.




Smoothness

* It1s ESSENTIAL that the problem be formulated
with smooth constraints and objective function (since
we will take derivatives).

* Sometimes, the problem is just badly phrased. For
example, when it 1s done 1n terms of max function.
Sometimes the problem can be rephrased as a
constrained problem with SMOOTH constrained
functions.

()
- f(x)

a

IANIN

max{f1 (x),f, (x)}Sa =2

a




Examples of max nonsmoothness

removal
e |In Constraints:

Ix]|, = x|+ |x,| <1 © max{—x,,x } + max{-x,,x,} <1 &

-x,—x, <1, x-x<I, —x+x,<1, x+x,<1

* In Optimization:
min t
min f(x); f(x)= max{xz,x}; &

subject to max{x2 ,x} <t

\

min t
—_—

subjectto  x” <t,x<t
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8.2 EXAMPLES



Examples

* Single equality constraint (put in KKT form)
min X4 + X, subject to X12 + X; —2=0
* Single inequality constraint (put in KKT form,
point out complementarity relationship)

. 2 2
min x, + X, subjectto - (xl + Xy — 2) > ()

* Two inequality constraints (KK'T, complementarity
relationship, sign of the multiplier)

MIN X, + X, subject to —(xl2 + X5 —2)20,x1 >0
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Multiplier Sign Example

* There are two solutions for the Lagrangian
equation, but only one is the right.




CHICAGO |

8.3 IMPLICIT FUNCTION
THEOREM REVIEW



Refresher (Marsden and Tromba)

3.5 The Implicit Function Theorem

Key Points in this Section.

1. One-Variable Version. If f : (a,b) — R is C! and if f/(z¢) # 0,
then locally near zo, f has a C! inverse function x = f~1(y). If
f'(x) > 0 on all of (a,b) and is continuous on [a,b], then f has
an inverse defined on [f(a), f(b)]. This result is used in one-variable
calculus to define, for example, the log function as the inverse of
f(x) = e® and sin™! as the inverse of f(z) = sinz.

2. Special n-variable Version. If F' : R*"*! — R is C! and at a
point (xg,2) € R, F(xq,z) = 0 and %(XO,ZO) # 0, then locally
near (Xo,zp) there is a unique solution z = g(x) of the equation
F(x,z) = 0. We say that F(x,z) = 0 tmplicitly defines 2 as a
function of x = (x1,...,2,).
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3. The partial derivatives are computed by tmplicit differentiation:

OF . oF 0z 0
ox; Oz Ox;
SO
0z  OF/0x;
oxr;  OF /02

4. The special implicit function theorem guarantees that if Vg(xg) # 0,
then the level set g = ¢ is a smooth surface near xg, a fact needed in
the proof of the Lagrange multiplier theorem.
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5. The general implicit function theorem deals with solving m equations

Fl(l‘l,...?1?71,21,...?2771)

En(a717°°°axnazlwﬂazm) = 0

for m unknowns z = (21,..., 2,,). If

OF} OF}
Ozy 0%
OF,, OF,,
dzy Oz

£0

at (Xg,Zg), then these equations define (z1,...,2,) as functions of
(21,...,2,). The partial derivatives 0z; /Ox,; may again be computed

by using implicit differentiation.
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8.4 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR NONLINEAR
PROGRAMMING



Inequality Constraints: Active Set

( c,(x)=0 ie&

min _, subject to <
vel f(x) sub; c,(x)20 ieZ

* One of the key differences with equality
constraints.

* Definition at a feasible point x.

xeQ(x) A(x)=€&U{ieT;c(x)=0}
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“Constraint Qualifications™ for

inequality constraints

* We need the equivalent of the “Jacobian has tull
rank” condition for the case with equality-only.

* This is called “the constraint qualification”.

* Intuition: “geometry of feasible set”=*“algebra
of feasible set”



Tangent and linearized cone

* Tangent Cone at x (can prove it i1s a cone)

T,(x)= {d|5|{zk} €z, = x,EI{tk} eR,,t, =>0,lim,___ Zkt_ * = d}
k

* Linearized feasible direction set (EXPAND)

F(x)= {d‘dTVcl. (x)=0,ie&;d Ve, (x)=20,ie A(x)N I} =T, (x)c F(x)

* Hssence of constraint qualification at a point x
(“geometry=algebra™):
To(x)=F (x )



What are sufficient conditions for

constraint qualification?
* The most common (and only one we will discuss
in the class): the linear independence constraint

qualification (I.LICQ)).

* We say that LICQ holds at a point xeQ if
\%

4 has full row rank.

* How do we prove equality of the cones ? If

LICQ holds, then, from IFT

de F(x)=c,,(%(t))=1Ve,,d =31>0,V0<r<T;
(%(1))>05¢ 4z (2(2)) 2 053¢, (%(2)) = 0= X(1) e Q= d € T, (x)

€ a(x)
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8.4.1 OPTIMALITY
CONDITIONS FOR EQUALITY
CONSTRAINTS



Constrained optimality

@ If problem is constrained, only feasible directions are
relevant

@ For equality-constrained problem
min f(x) subjectto g(x)=20

where f: R" — R and g: R™ — R™, with in < n, necessary
condition for feasible point x* to be solution is that negative
gradient of f lie in space spanned by constraint normals,

—Vf(x*) = JI(x*)X

where J, is Jacobian matrix of g, and A is vector of
Lagrange multipliers

@ This condition says we cannot reduce objective function
without violating constraints

Expand, use implicit function theorem. Jacobian full rank



Constrained optimality

@ Lagrangian function L£: R"t™ — R, is defined by
Lz N) = f(x)+ A g(x)

@ Its gradient is given by

VL(x.A) = !Vf(‘n) +Jg (‘l’))\}

@ Its Hessian is given by

oy BN T
H/_(I)\)— [ Jg(;I?) O ]
where .
B(x.\) )+ Y NH,(

H

1=



Constrained optimality

@ Together, necessary condition and feasibility imply critical
point of Lagrangian function,

VL(2 ) = !W(w)gg? (m)A] o

@ Hessian of Lagrangian is symmetric, but not positive
definite, so critical point of £ is saddle point rather than
minimum or maximum

@ Critical point (x*, A*) of £ is constrained minimum of f if
B(x*,\") Is positive definite on null space of J,(x*)

@ If columns of Z form basis for null space, then test
projected Hessian Z' B Z for positive definiteness

Expand: Implicit Functions Theorem



Summary: Necessary Optimality

Conditions
 First order:

ch(x*,it*)=o

* Second order necessary conditions.

ch(x*)w =0= wTViXC(x*,/"L*)w >0



Sutticient Optimality Conditions

* The point is a local minimum if LICQ and the
following holds:
(l)Vxﬁ(x*,ﬂt*) =0; (2)ch(x*)w =0=>d0>0 wTVix[,(x*,?L*)w > o ||w|’
* Proof: By IFT, there is a change of variables
such that

ue N(0)cR"™"u e x(u); Fe N(x'),c(X)=0 & Jii € N'(0); = x(if)
ch(x*)Vux(iZ)

= 0; Z=V x(i)

* The original problem can be phrased as

min,, f(x(u))



Sutticient Optimality Conditions

* We can now piggy back on theory of

unconstrained optimization, noting that.
Vuf(x(u))‘uzo = Vxﬁ(x* ,/1*) =0;
mef(x(u))‘ = ZTVixﬁ(x*,l*)Z =0;Z=V x(u)

* Then from theory of unconstrained optimization

we have a local isolated minimum at O and thus the
original problem at . (following the local
isomorphism above),*



Another Essential Consequence

e If LICQ+ second-order conditions hold at the
solution x" , then the following matrix must be

nonsingular (EXPAND).
V:L (x* ,ﬂ,*) ch(x*)
Vie (x*) 0

* The system of nonlinear equations has an
invertible Jacobian,

v.L(x )

c(x)
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8.4.2 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR MIXED EQ AND INEQ
CONSTRAINTS



CHICAGO |

The Lagrangian

* BEven in the general case, it has the same
expression

E(x) = f(x) - ie%A)ﬁCi (X)
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First-Order Optimality Condition

Theorem

Suppose that x* is a local solution of (12.1), that the functions f and c; in (12.1) are
continuously differentiable, and that the LICQ holds at x*. Then there is a Lagrange multiplier
vector \*, with components oY, i € £ UZ, such that the following conditions are satisfied at

(x*, A%)

Vi L(x*, 1) =0, (12.34a)
ci(x*)=0, foralli €&, (12.34b)
ci(x*) >0, foralli eZ, (12.34¢)

Af >0, foralli eZ, (12.34d)
Aici(x*) =0, foralli e EUT. (12.34e)

Equivalent Form:

VF(x')= A% Ve ) (x7) =0 = Multipliers are unique !!
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Sketch of the Proof

 If x is a solution of the original problem, it is
also a solution of the problem.

min f (x) subject to C () (x)=0
* From the optimality conditions of the problem
with equality constraints, we must have (since

LICQ holds)

IH A, }ieA(x*) such that Vf(x*)— Z A Ve (x*) =0

ieA(x")

* But I cannot yet tell by this argument ﬂi >0
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Sketch of the Proof: The sign of the

o multiplier
* Assume now one multiplier has the “wrong”

sign. That 1s *
jeA(x )ﬂI, A, <0

* Since LICQ holds, we can construct a feasible
path that “takes oft” from that constraint
(inactive constraints do not matter locally)

. ~ - . d .
CAlx) (x(t)) =le, = X(1)eQ Define b= Ex(t)tzo = Ve, b=e¢
d ./ . AT
” F(F(r)_ =VF(x') b= A Veyyb=24<0 =

3t,>0, f(%(1,))<f(%(0))=f(x"), CONTRADICTION!!



Strict Complementarity

* It 1s a notion that makes the problem look
“almost” like an equality.

Definition 12.5 (Strict Complementarity).
Given a local solution x* of (12.1) and a vector A* satisfying (12.34), we say that the

strict complementarity condition holds if exactly one of A" and c;(x*) is zero for each index
i € 1. In other words, we have that A¥ > 0 for eachi € T N A(x*).
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8.5 SECOND-ORDER
CONDITIONS



Critical Cone

* The subset of the tangent space, where the
objective function does not vary to first-order.

* The book definition.

C(x*, %) = {w e F(x*) | Ve (x*)Tw =0,alli € A(x*) NZ with AF > 0}.

* An even simpler equivalent definition.

C(x*,?L*):{weTQ(x*)‘Vf(x*)Twzo}



CHICAGO |

Rephrasing of the Critical Cone

* By investigating the definition

T

(Vcl.(x* w=0 ief
we(f()c*,ﬂ,*)c>< Vcl.(x*Tsz ieA(x*)ﬂI A >0

Vcl.(x* "w20 ieA(x*)ﬂI A =0

* In the case where strict complementarity holds,
the cones has a MUCH simplex expression.

weC(x*,)L*)<:>Vci(x*)w=O Vi eA(x*)



Statement of the Second-Order

Conditions

Theorem 12.5 (Second-Order Necessary Conditions).
Suppose that x* is a local solution of (12.1) and that the LICQ condition is satisfied. Let
L* be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

wTfo,C(x*, A9 )w >0, forallw e C(x*, A*%). (12.57)

* How to prove this? In the case of Strict
Complementarity the critical cone is the same as
the problem constrained with equalities on
active index.

* Result follows from equality-only case.



Statement of second-order sufficient

conditions

Theorem 12.6 (Second-Order Sufficient Conditions).
Suppose that for some feasible point x* € R" there is a Lagrange multiplier vector A*

such that the KKT conditions (12.34) are satisfied. Suppose also that
w! V2 L(x*, 2¥)w >0, forallw € C(x*, 1*), w # 0. (12.65)

Then x* is a strict local solution for (12.1).

* How do we prove this? In the case of strict
complementarity again from reduction to the equality

case.
x =argmin_ f(x) subjecttoc,(x)=0



How to derive those conditions in

the other caser?
* Use the slacks to reduce the problem to one
with equality constraints.

minxe]R" ,zeR™M | f(X)
st. c; (x) =0
[c,(x)]j—zjz. =0 j=L2,..n

* Then, apply the conditions for equality
constraints.

* I will assign 1t as homework.
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Summary: Why should I care about

Lagrange Multipliers?

* Because it makes the optimization problem in

principle equivalent to a nonlinear equation.

v.L(x A

e (x)

=(0; det

| VAL(xA) Ve (x)

Vie, (x*) 0

#0

* I can use concepts from nonlinear equations

such as Newton’s for the algorithmics.



