E THE UNIVERSITY OF

& | CHICAGO

Stat 310: Numerical Optimization

Mihai Anitescu




CHICAGO |

Today

1.1 Logistics for the class

1.2 Example of Optimization Problems and the Optimization
Landscape

1.3 Modeling Optimization Problems

1.4 The object of continuous Optimization and course
objectives.

1.5 Newton s Method.
1.6 The role of linear algebra; recap of direct methods.
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1.1.Course Logistics

 Instructors: Mihai Anitescu (anitescu@galton.uchicago.edu)
and Lek-Heng Lim

e Course Assistant: Yunda Zhong (ydzhong(@uchicago.edu)

e The course is divided 1n 2 parts (tentative);
— MA: Nonlinear Programming ~ 10 lectures

— LHL: Convex Optimization ~ 10 lectures

 Textbook (when needed): Nocedal and Wright:
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1.1 Course Logistics

e Assignments

— Combination of theoretical problems and (computer projects using
Matlab)?

— 4-5 assignments ~ 1 per week = your grade for this part.
» Office Hours: TTh, 4:30-5:20, Eck 104 (or by appointment).
* Web site and contact: (remember my name © ).
e Is email OK for me to communicate with you?

» Please answer the survey so that I can get an 1dea of the
background and interest so that I can steer assignments.
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1.2 Context of Optimization

* What is nonlinear optimization optimization?

 Why? Example of optimization based on a subjective
criterion.

 Why? Example of optimization problems derived
from variational principles in physics.

e Thanks — Sven Leyffer, etc ...
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Nonlinear Optimi7ati0ﬂ—NQﬂ;jﬂﬁari

Programming
min f(x) min f(x) min  f(x)
st. c(x)=0, A(x)<0| (or)|st. c(x)=0, Alx)+y=0|(or)|s.t. c(x)=0
y=20 xe K

*The variables y are called slacks.

*In the latter case, the “data” functions f,c, are not identical with the 2 preceding
cases.

*The problem is called nonlinear when either f or (c,h) or both are nonlinear.
*The set K may include integrality constraints, MINLP.

*The above is a powerful modeling paradigm, in which many problems may
be rephrased or approximated, though it is important to exploit the
particularities of the problem — the “structure”.
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77

1biective  criteria of

J

. - optimization.
* Trying to optimize an user defined criterion: time to

accomplish a task, or cost, or matching criterion ....

* Generally a specialist makes a judgment and defines
the criterion based on domain-specific knowledge.

* Optimal behavior and design of Engineering,
Financial, Management applications

« Examples: structural design and phase problems in
crystallography.



ES1: The Airbus wing

(From Sven Leyffer): Optimizing the inboard inner leading edge ribs.
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EST: 1on considerations (Kocvara et
\
al.)

Worst case multiple load design

Minimize weight of the structure subject to load and design restrictions
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’

ES1: Final Desion— T'russ to_pology’

STRUCTURE: linear objective function, nonlinear
inequality and equality constraints, continuous variables.



ES2: Xray crystallography

*How do we obtain a 3D structure (right) from its diffraction pattern (left)?

It is essentially the unique high resolution approach to detect protein
structure irrespective of size.

*Problem: Find the atomic distributions that minimizes “discrepancy”.
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ES2: Phase problem-centrosymmetric

(Sahinidis et al.)

. Parameters
Indices ;
m  mndex used for reflections (m = 1,... ,M) M number of reﬂectlpns _
t  index used for triplet invariants (t = 1,...,7) n number of atoms in the unit cell
T number of invariants
Variables |[E,|  structure factor amplitude associated with

¢  phase of the mth reflection
©m normalized phase of the mth reflection equal -
wr  triplet invariant defined by wy = @, + Gy +

reflection h,,
A:  constant equal to 212 |Ey, || Epy || Emy |

where h,, + h,,, 4+ h,,, — 0 Wy conditional expected value of the cosine of the
a;  binary decision variable triplet invariant, equal to fy (4;)/To (4)
B:  binary decision variable equal to (1 — cos w;) (Germain et al., 1970)
Model M1

- 7(8) = Ele A (4B, ‘; (1 4+ @ — 2w;))
ErzlAf
Siti Omy + Ot + Oy =200+ 5, t=1,...,T (1)
om € {0,1}, M= oo
oz, B € {0, 1}, = lyss o5

STRUCTURE: nonlinear objective, linear equality constraints,
Mixed continuous and integer variables



ES3: Maximum Likelithood for Large

Data Sets:

logp(y | ) = ——W(91) K (62) " "W (61) — —10gIK(92)| — 5 log2m

« STRUCTURE: Continuous Optimization, No
Constraints.

 Difficulty, how do you compute the derivative of the
determinant term when you have 1076-10"12 data
sites?

e See Anitescu, Chen, Stein: The ScalaGauss project at
my web page.
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ESO: Other applications.

e ES4: Stochastic Unit Commitment and Dispatch
« Data assimilation in weather forecasting = PDE constraint

« Image reconstruction from acoustic wave data = PDE
constraint

* Crew scheduling, vehicle routing = integer variables

« Reactor core reloading nonlinear = integer variables
 Radio therapy treatment planning = nonlinear integer
 Qil field infrastructure design = PDE c¢/s & integer var

« Simulation of competition in electricity markets equilibrium
c/s.
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EV: Variational Description of

Phenomena 1in Physical Sciences

« In these problems, the “state” variable is the solution of an
optimization problem, which is formulated based on a law of
physics, rather than a subjective criterion.

 In electronic structure computation: the electronic density.

* In complex fluids the (density and species) distributions at
thermodynamic equilibrium.

e In Hamiltonian systems, the trajectory is the solution of an
optimization problem

« Fermat's variational principle states that a signal in anisotropic
media propagates between two points along a curve which
renders Fermat's functional I(1) stationary



EV1: (Thomas-Fermi) Density

Functional Theory

Problem: For a given atomic configuration, determine electronic density from
using the variational principle. STRUCTURE: nonlinear objective, linear
constraints, continuous variables.

min , E[p,{RAH
S.t. Jp =N,
E\pR}|=E,.[pR |+ I[pl+K[p]+T[p]+V,,([R,})
Tlpl=C, ] pi" dr, K[p]=—C.]p'" dr

Z j Zi PO e i) = j | p(r)p(r) e v’




EV1: Surface structure of the TiO2

nanoparticle

[101]

L stion

Computations carried out by Peter Zapol et al. from MSD-Argonne, using Kohn-
Sham DFT.
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EV1: Nano-indentation

[111] L[ii2] 0.00 3.32‘ ?.as [110] L[OOi] 000 5.8 ;;036
um O Mises(GPa) um 3 O Mises(GPa)

(a) (a)
) f_[gig JEE {1014, [oor] A
uwm O Mises(GPa) O Mises(GPa)

=
o 3

-1 0 1 -1 0 1

(b) (b)
* One of the “hot pursuits” in mechanical engineering: Simulating complex phenomena
starting from first principles, as opposed to empirical potentials.

 Density Functional Theory based defect nucleation (Carter, Ortiz, et al.)
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EV2: Multi-rigid-body dynamics with contact and

friction
* A subject pursued by Mihai for some time.

» Essential in the study of robotics, granular materials, pharmaceutical drug processing
(powders).

» The velocity of the system at the next step is the solution of the minimum energy
problem subject to nonpenetration and frictional constraints.

« Example: the study of size-based segregation in granular materials. STRUCTURE:
quadratic objective, quadratic constraints.

1
v = argming ! M7 + AOMT

subject to Egs(ﬂ') @)+ VD 5 4 1, DdD 5> 0, (16)
]"EA(Q(Z),G)’ k:1,2,,“,m(j),
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Multi-body dynamics simulation: the pebble-bed

reactor
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1.3 Modeling Optimization Problems

e Here comes the big decision.

* Do we save the same problem over and over

— Then performance 1s what matters.
— Use C++, Fortran, MPI, PERL.

* Do we solve the problem once or only a few times? (e.g.
algorithmics class like this)

— Productivity matters; use higher-level language.

— Matlab for general scientific computing
— AMPL or GAMS for optimization

« Domain-specific languages may blur the line ...
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Modeling: Ingredients

e Objective function
e Variables

e (Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints
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MODELING: Structure (see NEOS)

'
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Isn’ t any problem reducible to NLP? Sure, but it is very efficient to
recognize and exploit structure.
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Modeling (Nonlinear) Optimization

Problems

AMPL & GAMS

high level languages for nonlinear optimization

interpret problem description, interface to solvers &
returns results

details of solver, derivatives & pre-solve are hidden
from user

modeling language (e.g. var, minimize, subject to, ...)

programming language (e.g. while, 1f, ...)
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AMPL

« Has an exquisitely simple syntax, reminiscent of C (Kernighan
1s one of the authors), but adapted to optimization.

* Versions of it can be used even 1n parallel computation 1f done
wisely.
« AMPL can be run:

— Student version is free and easy to use.

— Or you can run it using one of the online servers.
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AE1: AMPL Example 1

M (g y 2) Z

subject to  go(z,y, z) = 2 + 3zt — 2% — 2 <0,
gi(z,y,2) = ——(x + vy )+y4+3xy—z <0,
g2(z,y, 2) = =22 +y* — 2 <0,
g3(z,y,2) = —3(2? + y?) + 2%y* =32y — 2z  <0.
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AE1:"Model”

var x1;

var x2;

var x3;

minimize objective: X3;

subject to constraint_1: x2**2-2*x1**2+3*x1**4-x3 <= (;
subject to constraint_2: -2*x2**2+x1**2+x2**4-x3 <= 0;
subject to constraint_3: -0.5*x2**2-0.5*x1**2+3*x1*x2-x3<=0;
subject to constraint_4: -0.5*x2**2-0.5*x1**2-3*x1*x2+x1**2*x2**2-
x3<=0;

let x1:=1;

let x2:=1;

let x3:=1;
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AE2: “Commands’

solve:

display x1,x2,x3;

display constraint_1.dual, constraint_2.dual,
constraint_3.dual, constraint_4.dual.
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AMPI.: standalone

« EXPAND AND DEMO
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AMPL ONLINE:

 EXPAND. Discuss taxonomy. How do different solvers
behave?
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AE2: AMPL example 2.

Comparison of two Thomas Femni implem entations

Total charge in subdomains

40
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s 2 2 #3222 rw b ok 1
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a d - ! ln 09 I 1 | 1 | 1 |
-0.2 0 0.2 04 06 0.8 1 1.2 14 e 2 3 4 7] 6 7 8 9 10 1
location Index of the domain

*One-dimensional Thomas-Fermi problem.

*Once you have created the model, you can even run it over the internet with

the NEOS server.



AE2: (Thomas-Fermi) Density

Functional Theory

Problem: For a given atomic configuration, determine electronic density from
using the variational principle.

mian[p,{RAH
S.t. jpzNe
E\pR}|=E,.[pR |+ I[pl+K[p]+T[p]+V,,([R,})
T|pl=C. jpg(r) dr, K|p|=-C, Jpg(r) dr

E.[p. Z j Zi PO e i) = j | p(r)p(r) e v’
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AE2: AMPL for Thomas Fermi DFT

#user-defined parameters
param n integer;

param ma integer;

param mg integer;

param dist;

param ratioGap;

param delta;

param cutoff integer;
param pi;

param Z;

#parameters of Thomas Fermi model
param CF:=0.3*(3*pi*pi)"(2/3);

param CX:=0.75*(3/pi)"(1/3);

param indexCutoff=2*(ma+mg)*cutoff;
#total number of nodes

param N:=(n+2)*(2*ma+2*mg);

param ZA{iin l.n}=Z;

param Nelec:=sum{i in 1..n} ZA[i];

param atomicPosition{i in 1..n}:=dist*i; #atomic positions
param xloc{i in 1..(ma+mg)}:= if i <= ma then (i-0.5)/ma*ratioGap*dist*0.5 else (ma-0.5)/ma*ratioGap*dist*0.5 + 0.5*(1-ratioGap)*dist *(i-ma)/mg;
param xi{i in 1.N}:= if (i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-0.5) < 0
then floor((i-1)/(2*(ma+mg)))*dist-xloc[abs(i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-1)]
else floor((i-1)/(2*(ma+mg)))*dist+xloc[i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg];
var x;
var tho{iin 1..N} >=0;
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Objective function

minimize obj: sum{i in 1..(N-1)} 0.5*(CF*(rho[i1]+delta)*(5/3)-CX*(rho[1]
+delta)~(4/3) + CF*(rho[1+1]+delta)™(5/3)-CX*(rho[1+1]+delta)*(4/3))*(x1
[1+1]-x1[1])

#Kinetic and Exchange

- sumf{iin 1..(N-1), jin 1..n} ZA[j]*(rho[1+1]/sqrt((x1[i+1]-atomicPosition
[1D)"2+delta)+rho[1]/sqrt((xi[1]-atomicPosition[j])*2+delta))*0.5*(xi[1+]1]-x1
[1])

# Electron-Nucleus
+ 0.5 * 0.25*sum {1 1n 1..(N-1), j in max(1,1-indexCutoff)..min(i
+indexCutoff,N-1)} (xi[1+1]-xi[1])*(xi[j+1]-x1[j])* (rho[i]*rho[j]/sqrt((x1
[1]-x1[j])"2+delta) +
rho[1]*rho[j+1]/sqrt((xi[1]-x1[j+1])"2+delta) +rho[i+1]*rho[j]/sqrt((x1[1+1]-
xi[j])"2+delta) + rho[1+1]*rho[j+1]/sqrt((xi[1+]1]-x1[j+1])*2+delta));

# Electron-electron

subject to

constr: sum{iin 1..(N-1)} 0.5*(xi[1+1]-xi[1])*(rho[1]+rho[i+]1])=Nelec;
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Then why study the algorithms at all if modeling is

so advanced ?

* Some problems CANNOT be solved well by current high-
level languages.

— Problems that have non smooth data (and need to understand
limitations of algorithms 1f approximating them).

— Problems that use non-intrinsics (e.g. max likelihood).
— The solvers for the problems we want to solve do not exist (ES4)

* One can take an enormous performance hit if the problem 1is
large or has to be solved many times (ES4).
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ES4: Stochastic Unit Commitment with Wind

sk
s €S\ _jeN keT

min COST——Z(ZZC ret ! j ‘ f (SAA>

ngk+ Z p”d— Ss€SkeT 7 \ .
JeN jeN,, | | i
ijk+ 2 p'”d>D +R ,seSkeT } ‘ \
jeN JEN i

ramping constr., min. up/down constr.
*  Wind Forecast — WRF(Weather Research and Forecasting) Model
— Real-time grid-nested 24h simulation

— 30 samples require 1h on 500 CPUs (Tazz@Arg: s3]
J AU N Wy~~~

Z L#1 4l _
o 40} k —\] q 3 40
3 #:
= 35} °

30 1

38

[\
[6,]

I " L . ! 37t
-120 -110 -100 -90 -80 292 —91 -90 -89 -8s -a7
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Mihai Anitescu --Zatatih 8stic2010. 36
Programming
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Wind power forecast and stochastic programming

" Unit commitment & energy dispatch with uncertain wind
power generation for the State of lllinois, assuming 20% wind AN/ —>
power penetration, using the same windfarm sites as the on¢  wind
existing today. power

|/

=Full integration with 10 thermal units to meet demands.
Consider dynamics of start-up, shutdown, set-point changes

= Does uncertainty matter? ... Yes. The solution is only 1%
more expensive then the one with exact information. Solution
on average infeasible at 10%.

1200

—
o
o
o

800
600

Total Power [MW]

400

200

0 Mihai Anitescu -- Stochastic 48 72 37
Progrﬂﬁiﬁiﬁ'g]



Sss@Nelol Optimization under uncertainty : stochastic

. o « __programming.
Two-stage stochastic programming with recourse ( hergan(g S

)

now >Mm{ f;)(xo)+E[Mxm f(x,a))J}
subj.to. A X, = ,
Alw)x,+ B(w)x = b(w)
x,20, x(w)z=0
[ £() = (4(0).B().50).0().c(0) |
|

v v
continuous discrete Sample average approximation (SAA)
o
Min  f,(x)+=) f(x)
Xy 5Xq 5% e+ X g S i=1
Sampling @ subj. to. ono - bo
| Ax,+ Bx = b,
Inference | M samples
fened HTITCT IO il > _
Analysis Yo = 0, L = 0, 125 Lol
Mihai Anitescu -- Stochastic 38

Programming
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Linear Algebra of Primal-Dual Interior-Point

Convex quadratic problem

1
Min ExTQx +c'x

IPM Linear Systerm""

subj. to. Ax=b
x=0

Multi-stage SP
Two-stage SP

nested arrow-shaped linear system

(via a permutation)

Mihai Anitescu -- Stochastic
Programming

X O+A A’
A
_El BlT
B 0
Hy B
B, 0
0 4 0 !
0 0 0 0

|

S

SO

X
Y

AR O RO RO

ethods

:l =rhs

OC?AHOOOO SO

39
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Do we really need to do our own solver? Well....

.... AMPL needs 1 week only to preprocess the problem.

* Some instances of the problem have
— 3 billion variables

— Needs to be solved in 1 hour

e We need *x100 000 CPU-hours

* So only BG/L — Argonne Intrepid — has that kind of power
around (100K CPUs), but software for Optimization problems
on it did not exist on this scale.

e DPlus, the solution MUST SCALE; commercial solutions have not
been run on more than hundreds of processors ....

 Conclusion: YES, WE NEED A NEW SOLVER.
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The Direct Schur Complement Method (DSC)

e Uses the arrow shap_
Hl GlT
H, G,
H; Gy
Gl G2 GS HO

. Soh_fing Hz=r

c of H
Ll
LZ
B LIO LZO

LDL =H,L =GL'D, i=1,...5,

S
C=H,-Y GH'G', [LchLj =C. }
i=1

Implicit factorization

LT

10

20

S0

>

-1 .
v.=D"w,i=0,.,5

v

Back substitution

Diagonal solve

Mihai Anitescu -- Stochastic

Programming

& i

!

0 =L
ZZ.ZL.T(V.—LTZ

i i070

L
X ).
i=1,...5.

Forward substitution
41
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Large-scale performance (with Miles Lubin),

= Comparison of ScaLapack (LU), Elemental(LU), and 22>2." (2048 cores)

Units  1st Stage Size
(Q+A)

Factor (Sec.)
LU(S) LU(E) LDLT

Reduce (Sec.)

300 23436+1224
640 4995642584
1000  78030+4024

16.59 20.04 6.71
60.67 83.24 36.77
173.67 263.53 90.82

= Strong scaling

= 90.1% from 64 to 1024 cores;

= 75.4% from 64 to 2048 cores.

= >4,000 scenarios.

=  New DENSE PARALLEL LDLT
( implemented by Miles)

Programming

LU LDLT
54.32 26.35 =
256.95 128.59 AA problem:
56536 248.22¢<— | 189 million
variables
Total Walltime
2048 , . —
Linear Scaling
----- - | DLAT
...... o LU
""" .
S N G )
e N ot L Ly
- L G
Q 1024 + ‘__,‘._._-_-_'_ ..............
@ ,':.’.‘-'.‘3:""
«1{3"\‘-’: :::
c"’
256
64 ' !
64 256 1024 2048
Mihai Anitescu -- Stochastic Processors 42
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< °

Argonne Leaders nip Computing

Facility (ALCF) — BG/P system

Leap to Petascale Workshop BG/P Surveyor System
: 13.6 TF/s 1 rack BG/P

1024 compute nodes
(4096 CPUs)

BG/P Intrepid System
557.1 TF/s 40 rack BG/P
40960 compute nodes
(163840 CPUs)




Results on BG/P- Miles LLubin

* Now include transmission. * 3B variables, 100K primal
variables, 32K scenarios --
one problem solved in

5 about 10 hours — we are

2 Load working on “real-time” — 1

- - de
4 hour. Strong Scaling

Gener
ator

32k
|

° Latitude N
D
o

. - - - Linear 2 Ay
_‘~: —— PIPS /
39 g & s’
'—Z —
381 -i
37t i /
. L ° v
92 -90 88 2 o
° Longitude W l I T |

1k 8k 16k 32k

BG/P Nodes

44
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1.3 What 1s state of art in optimization?

 We can solve problems with 1079-10"12 variables
LOCALLY.

* We have designed algorithms that make excellent use of
massive parallelism (see unit commitment example).
« We can take advantage “smartly” of the latest architectures.

e Commercial or Free Software SOA: ~ 1076-10"7 variables

and constraints, one processor, rarely multi-threaded. Very few
parallel implementations exist (and above this you may not be
able to fit in memory due to Hessian size)
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1.4 COURSE OBJECTIVES



nima

weak isolated
local local
f(X) minimum isolated minimum
global
minimum

feasible region X

* which of the minima 1s found depends on the starting point

* such minima often occur in real applications
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Summary LOCAL optimality conditions

* Conditions for /ca/ minimum of unconstrained problem:

min_ f(x); feC’

— First Order Necessary Condition (WHY?): Vf = ()

— Second Order Sufficient Condition: Vixf = ()

* BEXPAND: Geometry.
. o 2
— Second Order Sufficient Condition: Vxxf >0




CHICAGO |

How about global optimality?

* 'There 1s no simple criterion; extremely hard question (most such

problems are NP hard).

* One exception f is convex:

V:f=0 BEVERYWHERE

* But we will consider the general case.
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Course obijectives

* Derive efficient iterative algorithms to ~solve  the problem(and
its constrained form) “fast .

min, f(x); fe C*

* Solve= guarantee convergence to a point that satisties the

NECESSARY conditions.

* Fast.1=Typically, if point also SUFFICIENT, then local
convergence should be Netwton-like (e.g. quadratic or
superlinear),

* Fast.2=Make sure the linear algebra 1s efficent and fits with the
optimization (e.g. solving for the Newton direction results in

DESCENTT).
+ NOTE: WE WILL DO NO SIMULATION.



