
Stat 310: Numerical Optimization

Mihai Anitescu

Today

•  1.1 Logistics for the class
•  1.2 Example of Optimization Problems and the Optimization

Landscape
•  1.3 Modeling Optimization Problems
•  1.4 The object of continuous Optimization and course

objectives.
•  1.5 Newton’s Method.
•  1.6 The role of linear algebra; recap of direct methods.

1.1.Course Logistics

•  Instructors: Mihai Anitescu (anitescu@galton.uchicago.edu)
and Lek-Heng Lim

•  Course Assistant: Yunda Zhong (ydzhong@uchicago.edu)
•  The course is divided in 2 parts (tentative);

–  MA: Nonlinear Programming ~ 10 lectures
–  LHL: Convex Optimization ~ 10 lectures

•  Textbook (when needed): Nocedal and Wright:

1.1 Course Logistics

•  Assignments
–  Combination of theoretical problems and (computer projects using

Matlab)?
–  4-5 assignments ~ 1 per week = your grade for this part.

•  Office Hours: TTh, 4:30-5:20, Eck 104 (or by appointment).
•  Web site and contact: (remember my name ).
•  Is email OK for me to communicate with you?
•  Please answer the survey so that I can get an idea of the

background and interest so that I can steer assignments.

1.2 Context of Optimization

•  What is nonlinear optimization optimization?
•  Why? Example of optimization based on a subjective

criterion.
•  Why? Example of optimization problems derived

from variational principles in physics.
•  Thanks – Sven Leyffer, etc …

Nonlinear Optimization-Nonlinear
Programming

min () min () min ()
s.t. () 0, () 0 (or) s.t. () 0, () 0 (or) s.t. () 0

0

f x f x f x
c x h x c x h x y c x

y x K
= ≤ = + = =

≥ ∈

• The variables y are called slacks.

• In the latter case, the “data” functions f,c, are not identical with the 2 preceding
cases.

• The problem is called nonlinear when either f or (c,h) or both are nonlinear.

• The set K may include integrality constraints, MINLP.

• The above is a powerful modeling paradigm, in which many problems may
be rephrased or approximated, though it is important to exploit the
particularities of the problem – the “structure”.

ES: “Subjective” criteria of
optimization.

•  Trying to optimize an user defined criterion: time to
accomplish a task, or cost, or matching criterion ….

•  Generally a specialist makes a judgment and defines
the criterion based on domain-specific knowledge.

•  Optimal behavior and design of Engineering,
Financial, Management applications

•  Examples: structural design and phase problems in
crystallography.

ES1: The Airbus wing

(From Sven Leyffer): Optimizing the inboard inner leading edge ribs.

ES1: Design considerations (Kocvara et
al.)

Minimize weight of the structure subject to load and design restrictions

ES1: Final Design—”Truss topology”

STRUCTURE: linear objective function, nonlinear
inequality and equality constraints, continuous variables.

ES2: Xray crystallography

• How do we obtain a 3D structure (right) from its diffraction pattern (left)?

• It is essentially the unique high resolution approach to detect protein
structure irrespective of size.

• Problem: Find the atomic distributions that minimizes “discrepancy”.

ES2: Phase problem-centrosymmetric
(Sahinidis et al.)

STRUCTURE: nonlinear objective, linear equality constraints,
Mixed continuous and integer variables

ES3: Maximum Likelihood for Large
Data Sets:

•  STRUCTURE: Continuous Optimization, No
Constraints.

•  Difficulty, how do you compute the derivative of the
determinant term when you have 10^6-10^12 data
sites?

•  See Anitescu, Chen, Stein: The ScalaGauss project at
my web page.

ESO: Other applications.

•  ES4: Stochastic Unit Commitment and Dispatch
•  Data assimilation in weather forecasting  PDE constraint
•  Image reconstruction from acoustic wave data  PDE

constraint
•  Crew scheduling, vehicle routing  integer variables
•  Reactor core reloading nonlinear  integer variables
•  Radio therapy treatment planning  nonlinear integer
•  Oil field infrastructure design  PDE c/s & integer var
•  Simulation of competition in electricity markets equilibrium

c/s.

EV: Variational Description of
Phenomena in Physical Sciences

•  In these problems, the “state” variable is the solution of an
optimization problem, which is formulated based on a law of
physics, rather than a subjective criterion.

•  In electronic structure computation: the electronic density.
•  In complex fluids the (density and species) distributions at

thermodynamic equilibrium.
•  In Hamiltonian systems, the trajectory is the solution of an

optimization problem
•  Fermat's variational principle states that a signal in anisotropic

media propagates between two points along a curve which
renders Fermat's functional I(l) stationary

•  ….

EV1: (Thomas-Fermi) Density
Functional Theory

 Problem: For a given atomic configuration, determine electronic density from
using the variational principle. STRUCTURE: nonlinear objective, linear
constraints, continuous variables.

{ }min

s.t.

A

e

E

N

ρ ρ

ρ

⎡ ⎤
⎢ ⎥⎣ ⎦
,

=∫
R

[] []5 4
3 3() (),F xT C d K C dρ ρ ρ ρ= = −∫ ∫r rr r

{ } { } [] [] [] { }A ne A nn AE E J K T Vρ ρ ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠

, = , + + + +R R R

{ } []
1

() 1 () (),
2

M
A

ne A
A A

ZE d J d dρ ρ ρρ ρ⎡ ⎤
⎢ ⎥⎣ ⎦

=

′ ′, = =
′− −

∫ ∫ ∫∑ r r rR r r r
R r r r

EV1: Surface structure of the TiO2
nanoparticle

Computations carried out by Peter Zapol et al. from MSD-Argonne, using Kohn-
Sham DFT.

EV1: Nano-indentation

•  One of the “hot pursuits” in mechanical engineering: Simulating complex phenomena
starting from first principles, as opposed to empirical potentials.

•  Density Functional Theory based defect nucleation (Carter, Ortiz, et al.)

EV2: Multi-rigid-body dynamics with contact and
friction

•  A subject pursued by Mihai for some time.

•  Essential in the study of robotics, granular materials, pharmaceutical drug processing
(powders).

•  The velocity of the system at the next step is the solution of the minimum energy
problem subject to nonpenetration and frictional constraints.

•  Example: the study of size-based segregation in granular materials. STRUCTURE:
quadratic objective, quadratic constraints.

Multi-body dynamics simulation: the pebble-bed
reactor

1.3 Modeling Optimization Problems
•  Here comes the big decision.
•  Do we save the same problem over and over

–  Then performance is what matters.
–  Use C++, Fortran, MPI, PERL.

•  Do we solve the problem once or only a few times? (e.g.
algorithmics class like this)
–  Productivity matters; use higher-level language.
–  Matlab for general scientific computing
–  AMPL or GAMS for optimization

•  Domain-specific languages may blur the line …

Modeling: Ingredients

•  Objective function
•  Variables
•  Constraints

Find values of the variables
that minimize or maximize the objective function
while satisfying the constraints

MODELING: Structure (see NEOS)

Isn’t any problem reducible to NLP? Sure, but it is very efficient to
recognize and exploit structure.

Modeling (Nonlinear) Optimization
Problems

AMPL & GAMS
•  high level languages for nonlinear optimization
•  interpret problem description, interface to solvers &

returns results
•  details of solver, derivatives & pre-solve are hidden

from user
•  modeling language (e.g. var, minimize, subject to, ...)
•  programming language (e.g. while, if, ...)

AMPL

•  Has an exquisitely simple syntax, reminiscent of C (Kernighan
is one of the authors), but adapted to optimization.

•  Versions of it can be used even in parallel computation if done
wisely.

•  AMPL can be run:
–  Student version is free and easy to use.
–  Or you can run it using one of the online servers.

AE1: AMPL Example 1

AE1:”Model”

var	
 x1;	

var	
 x2;	

var	
 x3;	

minimize	
 objective:	
 x3;	

subject	
 to	
 constraint_1:	
 x2**2-­‐2*x1**2+3*x1**4-­‐x3	
 <=	
 0;	

subject	
 to	
 constraint_2:	
 -­‐2*x2**2+x1**2+x2**4-­‐x3	
 <=	
 0;	

subject	
 to	
 constraint_3:	
 -­‐0.5*x2**2-­‐0.5*x1**2+3*x1*x2-­‐x3<=0;	

subject	
 to	
 constraint_4:	
 -­‐0.5*x2**2-­‐0.5*x1**2-­‐3*x1*x2+x1**2*x2**2-­‐
x3<=0;	

let	
 x1:=1;	

let	
 x2:=1;	

let	
 x3:=1;	
 	

AE2: “Commands”

solve;	

display	
 x1,x2,x3;	

display	
 constraint_1.dual,	
 constraint_2.dual,	

constraint_3.dual,	
 constraint_4.dual;	

AMPL: standalone

•  EXPAND AND DEMO

AMPL ONLINE:

•  EXPAND. Discuss taxonomy. How do different solvers
behave?

AE2: AMPL example 2.

• One-dimensional Thomas-Fermi problem.

• Once you have created the model, you can even run it over the internet with
the NEOS server.

AE2: (Thomas-Fermi) Density
Functional Theory

 Problem: For a given atomic configuration, determine electronic density from
using the variational principle.

{ }min

s.t.

A

e

E

N

ρ ρ

ρ

⎡ ⎤
⎢ ⎥⎣ ⎦
,

=∫
R

[] []5 4
3 3() (),F xT C d K C dρ ρ ρ ρ= = −∫ ∫r rr r

{ } { } [] [] [] { }A ne A nn AE E J K T Vρ ρ ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎝ ⎠

, = , + + + +R R R

{ } []
1

() 1 () (),
2

M
A

ne A
A A

ZE d J d dρ ρ ρρ ρ⎡ ⎤
⎢ ⎥⎣ ⎦

=

′ ′, = =
′− −

∫ ∫ ∫∑ r r rR r r r
R r r r

AE2: AMPL for Thomas Fermi DFT

#user-defined parameters
param n integer;
param ma integer;
param mg integer;
param dist;
param ratioGap;
param delta;
param cutoff integer;
param pi;
param Z;

#parameters of Thomas Fermi model
param CF:=0.3*(3*pi*pi)^(2/3);
param CX:=0.75*(3/pi)^(1/3);
param indexCutoff=2*(ma+mg)*cutoff;
#total number of nodes
param N:=(n+2)*(2*ma+2*mg);
param ZA{i in 1..n}=Z;

param Nelec:=sum{i in 1..n} ZA[i];

param atomicPosition{i in 1..n}:=dist*i; #atomic positions
param xloc{i in 1..(ma+mg)}:= if i <= ma then (i-0.5)/ma*ratioGap*dist*0.5 else (ma-0.5)/ma*ratioGap*dist*0.5 + 0.5*(1-ratioGap)*dist *(i-ma)/mg;
param xi{i in 1..N}:= if (i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-0.5) < 0

 then floor((i-1)/(2*(ma+mg)))*dist-xloc[abs(i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-1)]
 else floor((i-1)/(2*(ma+mg)))*dist+xloc[i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg];

var x;
var rho{i in 1..N} >=0;

Objective function

minimize obj: sum{i in 1..(N-1)} 0.5*(CF*(rho[i]+delta)^(5/3)-CX*(rho[i]
+delta)^(4/3) + CF*(rho[i+1]+delta)^(5/3)-CX*(rho[i+1]+delta)^(4/3))*(xi
[i+1]-xi[i])

#Kinetic and Exchange
-  sum{i in 1..(N-1), j in 1..n} ZA[j]*(rho[i+1]/sqrt((xi[i+1]-atomicPosition

[j])^2+delta)+rho[i]/sqrt((xi[i]-atomicPosition[j])^2+delta))*0.5*(xi[i+1]-xi
[i])

Electron-Nucleus
 + 0.5 * 0.25*sum{i in 1..(N-1), j in max(1,i-indexCutoff)..min(i

+indexCutoff,N-1)} (xi[i+1]-xi[i])*(xi[j+1]-xi[j])* (rho[i]*rho[j]/sqrt((xi
[i]-xi[j])^2+delta) +
 rho[i]*rho[j+1]/sqrt((xi[i]-xi[j+1])^2+delta) +rho[i+1]*rho[j]/sqrt((xi[i+1]-
xi[j])^2+delta) + rho[i+1]*rho[j+1]/sqrt((xi[i+1]-xi[j+1])^2+delta));

Electron-electron
subject to
constr: sum{i in 1..(N-1)} 0.5*(xi[i+1]-xi[i])*(rho[i]+rho[i+1])=Nelec;

Then why study the algorithms at all if modeling is
so advanced ?

•  Some problems CANNOT be solved well by current high-
level languages.
–  Problems that have non smooth data (and need to understand

limitations of algorithms if approximating them).
–  Problems that use non-intrinsics (e.g. max likelihood).
–  The solvers for the problems we want to solve do not exist (ES4)

•  One can take an enormous performance hit if the problem is
large or has to be solved many times (ES4).

ES4: Stochastic Unit Commitment with Wind
Power (SAA)

•  Wind Forecast – WRF(Weather Research and Forecasting) Model

–  Real-time grid-nested 24h simulation
–  30 samples require 1h on 500 CPUs (Jazz@Argonne)

Mihai Anitescu -- Stochastic
Programming

36

min COST = 1
Ns

csjk
p + cjk

u + cjk
d

k!T
"

j!N
"

#

$%
&

'(s!S
"

s.t. psjk + psjk
wind

j!Nwind

" = Dk ,s !S ,k !T
j!N
"

psjk + psjk
wind

j!Nwind

") Dk + Rk ,s !S ,k !T
j!N
"
ramping constr., min. up/down constr.

Zavala	
 &	
 al	
 2010.	

0 24 48 72
0

200

400

600

800

1000

1200

T
o
ta

l
P

o
w

e
r

[M
W

]

Time [hr]

 	
 Unit	
 commitment	
 &	
 energy	
 dispatch	
 with	
 uncertain	
 wind	

power	
 genera<on	
 for	
 the	
 State	
 of	
 Illinois,	
 assuming	
 20%	
 wind	

power	
 penetra<on,	
 using	
 the	
 same	
 windfarm	
 sites	
 as	
 the	
 one	

exis<ng	
 today.	
 	

 Full	
 integra<on	
 with	
 10	
 thermal	
 units	
 to	
 meet	
 demands.	

Consider	
 dynamics	
 of	
 start-­‐up,	
 shutdown,	
 set-­‐point	
 changes	

 	
 Does	
 uncertainty	
 maGer?	
 …	
 Yes.	
 The	
 solu<on	
 is	
 only	
 1%	

more	
 expensive	
 then	
 the	
 one	
 with	
 exact	
 informa<on.	
 Solu<on	

on	
 average	
 infeasible	
 at	
 10%.	

wind	

power	

Mihai Anitescu -- Stochastic
Programming

37

Demand
Samples Wind

Thermal

Wind	
 power	
 forecast	
 and	
 stochas1c	
 programming	
 	

Optimization under uncertainty : stochastic
programming. •  Two-stage stochastic programming with recourse (“here-and-

now”)

• 

Mihai Anitescu -- Stochastic
Programming

38

Min

x0

f0(x0)+E Min
x

f (x,!)"
#

$
%{ }

subj.	
 to.	

A0x0 = b0

A(!)x0 + B(!)x = b(!)

x0 " 0, x(!) " 0

Min

x0 ,x1,x2 ,…,xS

f0(x)+ 1
S

fi(xi)
i=1

S

!

A0x0 = b0

Ak x0 + Bk xk = bk ,

x0 ! 0, xk ! 0, k = 1,..., S

subj.	
 to.	
 !1,!2 ,…,!S

 !(") := (A("), B("),b("),Q("),c("))

con<nuous	
 discrete	

Sampling	

Inference	

Analysis	

M	
 samples	

Sample	
 average	
 approxima<on	
 (SAA)	
 	

Linear Algebra of Primal-Dual Interior-Point
Methods

Mihai Anitescu -- Stochastic
Programming

39

1
2

xTQx + cT x

subj. to.

Min

0
Ax b
x

=
≥

Convex quadratic problem

Q + ! AT

A 0

"

#
$
$

%

&
'
'

x
y

"

#
$
$

%

&
'
'
= rhs

IPM Linear System

H!1 B1
T 0 0

B1 0 A1 0
H!2 B2

T 0 0
B2 0 A2 0

" # #
H! S BS

T 0 0
BS 0 AS 0

0 A1
T 0 A2

T … 0 AS
T H!0 A0

T

0 0 0 0 … 0 0 A0 0

!

"

#
#
#
#

$

%

&
&
&
&

Two-stage SP

arrow-shaped linear system
(via a permutation)

Multi-stage SP

nested

Do we really need to do our own solver? Well….:

•  …. AMPL needs 1 week only to preprocess the problem.
•  Some instances of the problem have

–  3 billion variables
–  Needs to be solved in 1 hour

•  We need *x100 000 CPU-hours
•  So only BG/L – Argonne Intrepid – has that kind of power

around (100K CPUs), but software for Optimization problems
on it did not exist on this scale.

•  Plus, the solution MUST SCALE; commercial solutions have not
been run on more than hundreds of processors ….

•  Conclusion: YES, WE NEED A NEW SOLVER.

The Direct Schur Complement Method (DSC)
•  Uses the arrow shape of H

•  Solving Hz=r

Mihai Anitescu -- Stochastic
Programming

41

H1 G1
T

H2 G2
T

! "
HS GS

T

G1 G2 … GS H0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

=

L1

L2

!
LS

L10 L20 … LS 0 Lc

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

D1

D2

!
DN

Dc

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

L1
T L10

T

LT
2 L20

T

! "
LT

S LS 0
T

LT
c

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Li Di Li
T = Hi , Li0 = Gi Li

!T Di
!1, i = 1,…S ,

C = H0 ! Gi Hi
!1Gi

T

i=1

S

" , Lc Dc Lc
T = C.

wi = Li
!1ri , i = 1,…S ,

w0 = Lc
!1 r0 ! Li0wi

i=1

S

"#
$%

&
'(

 vi = Di
!1wi , i = 0,...,S

z0 = Lc
!1v0

zi = Li
!T vi ! Li0

T z0(),
i = 1,…S.

Back substitution

Implicit factorization

Diagonal solve
Forward substitution

Large-scale performance (with Miles Lubin),

Mihai Anitescu -- Stochastic
Programming

42

  Comparison of ScaLapack (LU), Elemental(LU), and (2048 cores)

  Strong scaling
  90.1% from 64 to 1024 cores;
  75.4% from 64 to 2048 cores.
  > 4,000 scenarios.
  New DENSE PARALLEL LDLT

 (implemented by Miles)

 LDLT

SAA problem:
189 million
variables

Argonne Leadership Computing
Facility (ALCF) – BG/P system

BG/P Surveyor System
 13.6 TF/s 1 rack BG/P"

 "1024 compute nodes "
"(4096 CPUs)"

BG/P Intrepid System "
"557.1 TF/s 40 rack BG/P "
"40960 compute nodes"
"(163840 CPUs)

Results on BG/P- Miles Lubin
•  Now include transmission. •  3B variables, 100K primal

variables, 32K scenarios --
one problem solved in
about 10 hours – we are
working on “real-time” – 1
hour.

44

Gener
ator

Load
node

1.3 What is state of art in optimization?

•  We can solve problems with 10^9-10^12 variables
LOCALLY.

•  We have designed algorithms that make excellent use of
massive parallelism (see unit commitment example).

•  We can take advantage “smartly” of the latest architectures.
•  Commercial or Free Software SOA: ~ 10^6-10^7 variables

and constraints, one processor, rarely multi-threaded. Very few
parallel implementations exist (and above this you may not be
able to fit in memory due to Hessian size)

1.4 COURSE OBJECTIVES

Types of minima

•  which of the minima is found depends on the starting point
•  such minima often occur in real applications

x

f(x)
weak
local

minimum isolated
global

minimum

isolated
local

minimum

feasible region

Summary LOCAL optimality conditions

•  Conditions for local minimum of unconstrained problem:

•  EXPAND: Geometry.

–  First Order Necessary Condition (WHY?):

–  Second Order Sufficient Condition:
0=∇f

–  Second Order Sufficient Condition:

 !xx
2 f != 0

 !xx
2 f ! 0

minx f (x); f !C 2

How about global optimality?

•  There is no simple criterion; extremely hard question (most such
problems are NP hard).

•  One exception f is convex:

•  But we will consider the general case.

 !xx
2 f ! 0 EVERYWHERE

Course objectives

•  Derive efficient iterative algorithms to “solve” the problem(and
its constrained form) “fast “.

•  Solve= guarantee convergence to a point that satisfies the
NECESSARY conditions.

•  Fast.1=Typically, if point also SUFFICIENT, then local
convergence should be Netwton-like (e.g. quadratic or
superlinear),

•  Fast.2=Make sure the linear algebra is efficent and fits with the
optimization (e.g. solving for the Newton direction results in
DESCENT).

•  NOTE: WE WILL DO NO SIMULATION.

minx f (x); f !C 2

