
Stat 310:   Numerical Optimization 

Mihai Anitescu 



Today 

•  1.1  Logistics for the class 
•  1.2 Example of Optimization Problems and the Optimization 

Landscape 
•  1.3 Modeling Optimization Problems 
•  1.4 The object of continuous Optimization and course 

objectives. 
•  1.5 Newton’s Method.  
•  1.6 The role of linear algebra; recap of direct methods. 
 

 



1.1.Course Logistics 

•  Instructors: Mihai Anitescu (anitescu@galton.uchicago.edu) 
and Lek-Heng Lim 

•  Course Assistant: Yunda Zhong (ydzhong@uchicago.edu) 
•  The course is divided in 2 parts (tentative); 

–  MA: Nonlinear Programming ~ 10 lectures 
–  LHL: Convex Optimization  ~ 10 lectures 

•  Textbook (when needed): Nocedal and Wright:  

 



1.1 Course Logistics 

•  Assignments 
–  Combination of theoretical problems and (computer projects using 

Matlab)? 
–  4-5 assignments ~ 1 per week = your grade for this part. 

•  Office Hours: TTh, 4:30-5:20, Eck 104 (or by appointment). 
•  Web site and contact: (remember my name  ). 
•  Is email OK for me to communicate with you?  
•  Please answer the survey so that I can get an idea of the 

background and interest so that I can steer assignments.  



1.2 Context of Optimization 

•  What is nonlinear optimization optimization? 
•  Why? Example of optimization based on a subjective 

criterion. 
•  Why? Example of optimization problems derived 

from variational principles in physics.  
•  Thanks – Sven Leyffer, etc … 



Nonlinear Optimization-Nonlinear 
Programming 

min ( ) min ( ) min ( )
s.t. ( ) 0,  ( ) 0 (or) s.t. ( ) 0,  ( ) 0  (or) s.t. ( ) 0

0

f x f x f x
c x h x c x h x y c x

y x K
= ≤ = + = =

≥ ∈

• The variables y are called slacks. 

• In the latter case, the “data” functions f,c, are not identical with the 2 preceding 
cases. 

• The problem is called nonlinear when either f or (c,h) or both are nonlinear. 

• The set K may include integrality constraints, MINLP. 

• The above is a powerful modeling paradigm, in which many problems may 
be rephrased or approximated, though it is important to exploit the 
particularities of the problem – the “structure”. 



ES: “Subjective” criteria of 
optimization. 

•  Trying to optimize an user defined criterion: time to 
accomplish a task, or cost, or matching criterion ….  

•  Generally  a specialist makes a judgment and defines 
the criterion based on domain-specific knowledge. 

•  Optimal behavior and design of Engineering, 
Financial, Management applications 

•  Examples: structural design and phase problems in 
crystallography.  



ES1: The Airbus wing  

(From Sven Leyffer): Optimizing the inboard inner leading edge ribs.  



ES1: Design considerations (Kocvara et 
al.) 

Minimize weight of the structure subject to load and design restrictions 



ES1: Final Design—”Truss topology” 

STRUCTURE: linear objective function, nonlinear 
inequality and equality constraints, continuous variables.  



ES2: Xray crystallography 

• How do we obtain a 3D structure (right) from its diffraction pattern  (left)? 

• It is essentially the unique high resolution approach to detect protein 
structure irrespective of size. 

• Problem: Find the atomic distributions that minimizes “discrepancy”.  



ES2: Phase problem-centrosymmetric 
(Sahinidis et al.) 

STRUCTURE: nonlinear objective, linear equality constraints, 
Mixed continuous and  integer variables 



ES3: Maximum Likelihood for Large 
Data Sets:  

•  STRUCTURE: Continuous Optimization, No 
Constraints.  

•  Difficulty, how do you compute the derivative of the 
determinant term when you have 10^6-10^12 data 
sites?  

•  See Anitescu, Chen, Stein: The ScalaGauss project at 
my web page.  



ESO: Other applications. 

•  ES4: Stochastic Unit Commitment and Dispatch 
•  Data assimilation in weather forecasting  PDE constraint  
•   Image reconstruction from acoustic wave data  PDE 

constraint  
•  Crew scheduling, vehicle routing  integer variables  
•  Reactor core reloading nonlinear  integer variables  
•  Radio therapy treatment planning  nonlinear integer 
•  Oil field infrastructure design  PDE c/s & integer var 
•  Simulation of competition in electricity markets  equilibrium 

c/s. 



EV: Variational Description of 
Phenomena in Physical Sciences 

•  In these problems, the “state” variable is the solution of an 
optimization problem, which is formulated based on a law of 
physics, rather than a subjective criterion.  

•  In electronic structure computation: the electronic density. 
•  In complex fluids the (density and species) distributions at 

thermodynamic equilibrium.  
•  In Hamiltonian systems, the trajectory is the solution of an 

optimization problem 
•  Fermat's variational principle states that a signal in anisotropic 

media propagates between two points along a curve which 
renders Fermat's functional I(l) stationary  

•  …. 



EV1: (Thomas-Fermi) Density 
Functional Theory 

 Problem: For a given atomic configuration, determine electronic density from 
using the variational principle. STRUCTURE: nonlinear objective, linear 
constraints, continuous variables.     
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EV1: Surface structure of the TiO2 
nanoparticle 

Computations carried out by Peter Zapol et al. from MSD-Argonne, using Kohn-
Sham DFT. 



EV1: Nano-indentation 

•  One of the “hot pursuits” in mechanical engineering: Simulating complex phenomena 
starting from first principles, as opposed to empirical potentials.  

•  Density Functional Theory based defect nucleation (Carter, Ortiz, et al.) 



EV2: Multi-rigid-body dynamics with contact and 
friction 

•  A subject pursued by Mihai for some time.  

•  Essential in the study of robotics, granular materials, pharmaceutical drug processing 
(powders). 

•  The velocity of the system at the next step is the solution of the minimum energy 
problem subject to nonpenetration and frictional constraints.  

•  Example: the study of size-based segregation in granular materials. STRUCTURE: 
quadratic objective, quadratic constraints.   



Multi-body dynamics simulation: the pebble-bed 
reactor 



1.3 Modeling Optimization Problems 
•  Here comes the big decision.  
•  Do we save the same problem over and over 

–  Then performance is what matters.  
–  Use C++, Fortran, MPI, PERL.  

•  Do we solve the problem once or only a few times? (e.g. 
algorithmics class like this) 
–  Productivity matters; use higher-level language.  
–  Matlab for general scientific computing 
–  AMPL or GAMS for optimization 

•  Domain-specific languages may blur the line …  



Modeling: Ingredients 

•  Objective function 
•  Variables 
•  Constraints 

Find values of the variables 
that minimize or maximize the objective function 
while satisfying the constraints 



MODELING: Structure (see NEOS) 

Isn’t any problem reducible to NLP? Sure, but it is very efficient to 
recognize and exploit structure.  



Modeling (Nonlinear) Optimization 
Problems 

AMPL & GAMS 
•  high level languages for nonlinear optimization 
•  interpret problem description, interface to solvers & 

returns results 
•  details of solver, derivatives & pre-solve are hidden 

from user 
•  modeling language (e.g. var, minimize, subject to, ...) 
•  programming language (e.g. while, if, ...) 



AMPL 

•  Has an exquisitely simple syntax, reminiscent of C (Kernighan 
is one of the authors), but adapted to optimization.  

•  Versions of it can be used even in parallel computation if done 
wisely. 

•  AMPL can be run:  
–  Student version is free and easy to use.  
–  Or you can run it using one of the online servers.   



AE1: AMPL Example 1 



AE1:”Model” 

var	
  x1;	
  
var	
  x2;	
  
var	
  x3;	
  
minimize	
  objective:	
  x3;	
  
subject	
  to	
  constraint_1:	
  x2**2-­‐2*x1**2+3*x1**4-­‐x3	
  <=	
  0;	
  
subject	
  to	
  constraint_2:	
  -­‐2*x2**2+x1**2+x2**4-­‐x3	
  <=	
  0;	
  
subject	
  to	
  constraint_3:	
  -­‐0.5*x2**2-­‐0.5*x1**2+3*x1*x2-­‐x3<=0;	
  
subject	
  to	
  constraint_4:	
  -­‐0.5*x2**2-­‐0.5*x1**2-­‐3*x1*x2+x1**2*x2**2-­‐
x3<=0;	
  
let	
  x1:=1;	
  
let	
  x2:=1;	
  
let	
  x3:=1;	
  	
  



AE2: “Commands” 

solve;	
  
display	
  x1,x2,x3;	
  
display	
  constraint_1.dual,	
  constraint_2.dual,	
  
constraint_3.dual,	
  constraint_4.dual;	
  



AMPL: standalone 

•  EXPAND AND DEMO 



AMPL ONLINE:  

•  EXPAND. Discuss taxonomy. How do different solvers 
behave?  



AE2: AMPL example 2. 

• One-dimensional Thomas-Fermi problem.  

• Once you have created the model, you can even run it over the internet with 
the NEOS server. 



AE2: (Thomas-Fermi) Density 
Functional Theory 

 Problem: For a given atomic configuration, determine electronic density from 
using the variational principle.     
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AE2: AMPL for Thomas Fermi DFT 

#user-defined parameters 
param n integer; 
param ma integer; 
param mg integer; 
param dist; 
param ratioGap; 
param delta; 
param cutoff integer; 
param pi; 
param Z; 
 
#parameters of Thomas Fermi model  
param CF:=0.3*(3*pi*pi)^(2/3); 
param CX:=0.75*(3/pi)^(1/3); 
param indexCutoff=2*(ma+mg)*cutoff; 
#total number of nodes  
param N:=(n+2)*(2*ma+2*mg); 
param ZA{i in 1..n}=Z; 
 
param Nelec:=sum{i in 1..n} ZA[i]; 
 
param atomicPosition{i in 1..n}:=dist*i; #atomic positions 
param xloc{i in 1..(ma+mg)}:= if i <= ma then (i-0.5)/ma*ratioGap*dist*0.5 else (ma-0.5)/ma*ratioGap*dist*0.5 + 0.5*(1-ratioGap)*dist *(i-ma)/mg; 
param xi{i in 1..N}:= if (i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-0.5) < 0  

       then floor((i-1)/(2*(ma+mg)))*dist-xloc[abs(i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg-1)] 
       else  floor((i-1)/(2*(ma+mg)))*dist+xloc[i-2*(ma+mg)*floor((i-1)/(2*(ma+mg)))-ma-mg]; 

var x; 
var rho{i in 1..N} >=0; 



Objective function 

minimize obj: sum{i in 1..(N-1)} 0.5*(CF*(rho[i]+delta)^(5/3)-CX*(rho[i]
+delta)^(4/3) + CF*(rho[i+1]+delta)^(5/3)-CX*(rho[i+1]+delta)^(4/3))*(xi
[i+1]-xi[i])   

#Kinetic and Exchange 
-  sum{i in 1..(N-1), j in 1..n} ZA[j]*(rho[i+1]/sqrt((xi[i+1]-atomicPosition

[j])^2+delta)+rho[i]/sqrt((xi[i]-atomicPosition[j])^2+delta))*0.5*(xi[i+1]-xi
[i])    

# Electron-Nucleus 
     + 0.5 * 0.25*sum{i in 1..(N-1), j in max(1,i-indexCutoff)..min(i

+indexCutoff,N-1)} (xi[i+1]-xi[i])*(xi[j+1]-xi[j])* (rho[i]*rho[j]/sqrt((xi
[i]-xi[j])^2+delta) +  
 rho[i]*rho[j+1]/sqrt((xi[i]-xi[j+1])^2+delta) +rho[i+1]*rho[j]/sqrt((xi[i+1]-
xi[j])^2+delta) + rho[i+1]*rho[j+1]/sqrt((xi[i+1]-xi[j+1])^2+delta)); 

# Electron-electron 
subject to  
constr: sum{i in 1..(N-1)} 0.5*(xi[i+1]-xi[i])*(rho[i]+rho[i+1])=Nelec; 



Then why study the algorithms at all if modeling is 
so advanced ? 

•  Some problems CANNOT be solved well by current high-
level languages.  
–  Problems that have non smooth data (and need to understand 

limitations of algorithms if approximating them). 
–   Problems that use non-intrinsics (e.g. max likelihood).  
–  The solvers for the problems we want to solve do not exist (ES4) 

•  One can take an enormous performance hit if the problem is 
large or has to be solved many times (ES4).  



ES4: Stochastic Unit Commitment with Wind 
Power (SAA) 

•  Wind Forecast – WRF(Weather Research and Forecasting) Model 

–  Real-time grid-nested 24h simulation  
–  30 samples require 1h on 500 CPUs (Jazz@Argonne) 

Mihai Anitescu -- Stochastic 
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Optimization under uncertainty : stochastic 
programming. •  Two-stage stochastic programming with recourse (“here-and-

now”) 

 

•    
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Linear Algebra of Primal-Dual Interior-Point 
Methods  
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Do  we really need to  do our own solver? Well….: 

•  …. AMPL needs 1 week only to preprocess the problem. 
•  Some instances of the problem have  

–  3 billion variables  
–  Needs to be solved in 1 hour  

•  We need *x100 000 CPU-hours 
•  So only BG/L – Argonne Intrepid – has that kind of power 

around (100K CPUs), but software for Optimization problems 
on it did not exist on this scale.  

•  Plus, the solution MUST SCALE; commercial solutions have not 
been run on more than hundreds of processors …. 

•  Conclusion: YES, WE NEED A NEW SOLVER.  



The Direct Schur Complement Method (DSC) 
•  Uses the arrow shape of H 

 
•  Solving Hz=r 
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Large-scale performance (with Miles Lubin), 
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  Comparison of ScaLapack (LU), Elemental(LU), and              (2048 cores) 

  Strong scaling  
  90.1% from 64 to 1024 cores; 
  75.4% from 64 to 2048 cores. 
  > 4,000 scenarios. 
  New DENSE PARALLEL LDLT  

               (  implemented by Miles) 

 LDLT

SAA problem:  
189 million 
variables 



Argonne Leadership Computing 
Facility (ALCF) – BG/P system   

BG/P Surveyor System 
 13.6 TF/s 1 rack BG/P"

 "1024 compute nodes "
"(4096 CPUs)"

 
BG/P Intrepid System "
"557.1 TF/s 40 rack BG/P "
"40960 compute nodes"
"(163840 CPUs) 



Results on BG/P- Miles Lubin 
•  Now include transmission.  •  3B variables, 100K primal 

variables, 32K scenarios -- 
one problem solved in 
about  10 hours – we are 
working on “real-time” – 1 
hour.  

44 
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1.3 What is state of art in optimization? 

•  We can solve problems with 10^9-10^12 variables 
LOCALLY.  

•  We have designed algorithms that make excellent use of 
massive parallelism (see unit commitment example).  

•  We can take advantage “smartly” of the latest architectures.  
•  Commercial or Free Software SOA: ~ 10^6-10^7 variables 

and constraints, one processor, rarely multi-threaded. Very few 
parallel implementations exist (and above this you may not be 
able to fit in memory due to Hessian size) 



1.4 COURSE OBJECTIVES 



Types of minima 

•  which of the minima is found depends on the starting point 
•  such minima often occur in real applications 

x 

f(x) 
weak 
local 

minimum isolated 
global 

minimum 

isolated 
local 

minimum 

feasible region 



Summary LOCAL optimality conditions 

•  Conditions for local minimum of unconstrained problem:  

•  EXPAND: Geometry. 

 

–  First Order Necessary Condition (WHY?): 

–  Second Order Sufficient Condition:   
0=∇f

–  Second Order Sufficient Condition:   

 !xx
2 f != 0

 !xx
2 f ! 0

minx f (x); f !C 2



How about global optimality?  

•  There is no simple criterion; extremely hard question (most such 
problems are NP hard). 

•  One exception f is convex: 

•  But we will consider the general case.    

 !xx
2 f ! 0 EVERYWHERE



Course objectives 

•  Derive efficient iterative algorithms to “solve” the problem(and 
its constrained form) “fast “.  

•  Solve= guarantee convergence to a point that satisfies the 
NECESSARY conditions.  

•  Fast.1=Typically, if point also SUFFICIENT, then local 
convergence should be Netwton-like (e.g. quadratic or 
superlinear),  

•  Fast.2=Make sure the linear algebra is efficent and fits with the 
optimization (e.g. solving for the Newton direction results in 
DESCENT).  

•  NOTE: WE WILL DO NO SIMULATION.  

minx f (x); f !C 2


