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10.1 TYPES OF CONSTRAINED
OPTIMIZATION
ALGORITHMS
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(Quadratic Programming Problems

* Algorithms for such problems are interested to explore because
— 1. Their structure can be efficiently exploited.

— 2. They form the basis for other algorithms, such as augmented
Lagrangian and Sequential quadratic programming problems.

min ¢g(x) = %xTGx +xTc
X =

T
{
T

[

subjectto a; x = b;, 1 € €&,

a: x > b;, 1T,
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Penalty Methods

Solve with unconstrained

) optimization
* Idea: Replace the constraints by a penalty term. ;

* Inexact penalties: parameter driven to infinity to recover
solution. Example:

x =argmin f(x) subject to ¢(x)=0 <

= argmin f (x +H zc );x =lim,__x"=x
165
* Exact but nonsmooth penalty — the penalty parameter can stay

finite.

x =argmin f(x) subject to c(x)=0 < x =argmin f(x)+ ‘MZ‘C

e
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Augmented Lagrangian Methods

* Mix the Lagrangian point of view with a penalty point of view.

x = argmin f(x) subject to c(x)=0 <

“* = argmin f(x) Z ‘ch

ief zeé’

X

>l<_ . ‘LL,A«
x =lim, ..x"" forsome u=p,>0
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Sequential Quadratic Programming Algorithms

* Solve successively Quadratic Programs. 1
y Q 3 min EpTka+Vf(xk)

p

subjectto Ve, (x,)d+¢,(x,)=0 ie€f
Ve, (x,)d+¢,(x,)=0 ieZ

* Itis the analogous of Newton s method for the case of constraints if

B, = Vix[,(xk,ﬂ,k)

* But how do you solve the subproblem? It 1s possible with extensions of
simplex which I do not cover.

* An option is BFGS which makes it convex.
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Interior Point Methods

* Reduce the inequality constraints with a barrier

minx,s f(‘x)_tuzlog Si
i=1

subject to ¢,(x)=0 ief

c,(x)-s5,=0 iel

* An alternative, 1s use to use a penalty as well:

min, f(x)- X logs, + = 3 (6, (x) = s) +5= 3 (e, ()

iel nu i€l 2:u ie€

* And I can solve it as a sequence of unconstrained problems!
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10.2 MERIT FUNCTIONS AND
FILTERS
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Feasible algorithms

e If I can afford to maintain feasibility at all steps, then I just
monitor decrease in objective function.

* I accepta point if I have enough descent.

* But this works only for very particular constraints, such as linear
constraints or bound constraints (and we will use it).

* Algorithms that do that are called feasible algorithms.
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Infeasible aloorithms

* But, sometimes it s VERY HARD to enforce feasibility at all steps (e.g.
nonlinear equality constraints).

* And I need feasibility only in the limit; so there is benefit to allow
algorithms to move on the outside of the feasible set.

* But then, how do I measure progress since I have two, apparently
contradictory requirements:
— Reduce infeasibility (e.g. >

ie€

cl.(x)‘+2max{—cl.(x),0} )
iel
— Reduce objective function.

— It has a multiobjective optimization nature!
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10.2.1 MERIT FUNCTIONS
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Merit function

* One 1dea also from multiobjective optimization: minimize a
weighted combination of the 2 criteria.

¢(x) = wlf(x) +Ww, |:Z‘Ci (x)‘ + Zmax{—cl. (x) ,O}} w,w, >0

= iel

* But I can scale it so that the weight of the objective 1s 1.

* In that case, the weight of the infeasibility measure is called
“penalty parameter .

* I can monitor progress by ensuring that ¢(x)decreases, as in
unconstrained optimization.
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Nonsmooth Penalty Merit Functions

$r(xip) = f&x)+p )l +p) [c(x)]™,  [z]” = max{o, —z).

lec (€L

~ | Penalty parameter

e It 1s called the 11 merit function.

* Sometimes, they can be even EXACT.

Definition 15.1 (Exact Merit Function).

A merit function ¢(x; ) isexact if there is a positive scalar u* such that forany u > p*,
any local solution of the nonlinear programming problem (15.1) is a local minimizer of ¢ (x; ).

We show in Theorem 17.3 that, under certain assumptions, the £; merit function
¢, (x; ) is exact and that the threshold value p* is given by

p* =max{|r7|, i € EUT},
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Smooth and Exact Penalty Functions

* Excellent convergence properties, but very expensive to
compute.

e Fletcher s augmented Lagrangian:

de(x; 1) = f(x) =) elx) +1p Y alx)?,

Ax) = [AX)AX) AKXV f(x).

* Itis both smooth and exact, but perhaps impractical due to the
linear solve.
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Augmented Lagrangian

* Smooth, but inexact. ¢(x) _ f(x) _ Z/ll_cl_ (x) + %2012 (x) =

ie& ie&

* An update of the Lagrange Multiplier 1s needed.

* We will not use it, except with Augmented Lagrangian methods

themselves.



CHICAGO |

Line-search (Armijo) for Nonsmooth Merit

Functions
pr(xip) = fF)+ 1) le()+p ) [clx)],

ic€ ieT
11 7
* How do we carry out the progress search ?

* 'That is the line search or the sufficient reduction in trust region?

* In the unconstrained case, we had

* But we cannot use this anymore, since the function is not
differentiable.

f(x)=f(x +B"d)2-pp"Vf(x,) d; 0<B<10<p<05
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Directional Derivatives of Nonsmooth Merit

Function
pr(xip) = fF)+p ) le)+p ) [cx)],

ief i€l

* Nevertheless, the function has a directional derivative (follows
from properties of max function). EXPAND

D(q)(x,u),p) = hmmo,»o (p(x_*_tp,‘ut)_gb(x,‘u); D(max{ﬁ ’fz}’p) = maX{Vflp,Vfip}

e J.ine Search: ¢(xk ,,u) - ¢(xk + " p, ,,U) 2 _pﬁmD((P(xk ,,LL) s Dk );

* Trust Region ‘P(xknu)—‘l)(xk+,3mpk,,u)2—n1(m(0)—m(pk));
0<n <05
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And .... How do I choose the penalty parameter?

* VERY tricky issue, highly dependent on the penalty function
used.

* For the 11 function, guideline is:
p* = max{|A7|, i € EUT},

* But almost always adaptive. Criterion: If optimality gets ahead of
feasibility, make penalty parameter more stringent.

* E.gl1 function: the max of current value of multipliers plus

safety factor (EXPAND)
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10.2.2 FILTER APPROACHES
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Principles of filters

* Originates in the multiobjective optimization philosophy:
objective and infeasibility

h(x) =) lei()+ ) leix)],

* The problem i€ i€l

m‘_inf(x) and mxin h(x).
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The Filter approach

h(x)A

h(x) A N
A\l
\
\
‘\
\
\

(fi .hy ) \\‘ (ﬁc'hk)

isovalue of "\
. o \
(f: . hi) merit function (f; .h;)
b \

> fix) > fix)

Definition 15.2.
(a) A pair (fi, hi) is said to dominate another pair ( fi, h;) if both fy < f; and hy < hy.

(b) Aflter is a list of pairs ( fi, h;) such that no pair dominates any other.

(c) An iterate xi is said to be acceptable to the filter if ( fi, hy) is not dominated by any pair
in the filter.
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Some Refinements

* Like in the line search approach, I cannot accept EVERY
decrease since I may never converge.

e Modification:

A trial iterate x ™ is acceptable to the filter if, for all pairs (£, & ;) in the filter, we have that

f(x+) < fj — ﬂhj or h(x+) < hj — th, ﬁ~10—5 (15.33)
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10.3 MARATOS EFFECT AND
CURVILINEAR SEARCH
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Unfortunately, the Newton step may not be

compatible with penalty
e This is called the Maratos effect.

e Problem:

min f(x;, x2) = 2(x] +x; — 1) — x,

contours of f

x12+x22—1=0.

6
* Note: the closest point on search )

direction (Newton) will be rejected !

e So fast convergence does not occur
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Solutions?

e Use Fletcher s function that does not suffer from this problem.
* Following a step: Ak Pr .|_ c(xk-) — 0.
e Use a correction that satisfies
Agpr + c(xx + px) = 0.
pr = —A; (A Al ) elxe + pr),
* Followed by the update or line search:
’xk_+pk+ﬁk‘ X, +Tp, +T°P,

e Since Cutpith)= O(HXk _X*H3) compared to  c(x+p)= O(H’Ck _X*HZ)

corrected Newton step 1s likelier to be accepted.



