
10.1 TYPES OF CONSTRAINED
OPTIMIZATION
ALGORITHMS

Quadratic Programming Problems

•  Algorithms for such problems are interested to explore because
–  1. Their structure can be efficiently exploited.
–  2. They form the basis for other algorithms, such as augmented

Lagrangian and Sequential quadratic programming problems.

Penalty Methods

•  Idea: Replace the constraints by a penalty term.
•  Inexact penalties: parameter driven to infinity to recover

solution. Example:

•  Exact but nonsmooth penalty – the penalty parameter can stay
finite.

x* = argmin f (x) subject to c x() = 0 !

xµ = argmin f x() + µ
2

ci
2

i"E
x(); x* = limµ$% x

µ = x*

Solve with unconstrained
optimization

x* = argmin f (x) subject to c x() = 0 ! x* = argmin f x() + µ ci x()

i"E
; µ $ µ0

Augmented Lagrangian Methods

•  Mix the Lagrangian point of view with a penalty point of view.

x* = argmin f (x) subject to c x() = 0 !

xµ ," = argmin f x()# "ici
i$E
% x() + µ

2
ci

2

i$E
% x()&

x* = lim
"'"* xµ ," for some µ (µ0 > 0

Sequential Quadratic Programming Algorithms

•  Solve successively Quadratic Programs.

•  It is the analogous of Newton’s method for the case of constraints if

•  But how do you solve the subproblem? It is possible with extensions of
simplex which I do not cover.

•  An option is BFGS which makes it convex.

min p
1
2
pT Bk p +!f xk()

subject to !ci xk()d + ci xk() = 0 i "E

!ci xk()d + ci xk() # 0 i "I

Bk = !xx

2 L xk ,"k()

Interior Point Methods
•  Reduce the inequality constraints with a barrier

•  An alternative, is use to use a penalty as well:

•  And I can solve it as a sequence of unconstrained problems!

minx,s f x()! µ log si
i=1

m

"
subject to ci x() = 0 i #E

ci x()! si = 0 i #I

minx f x()! µ log si

i"I
+ 1

2µ
ci x()! s()2

i"I
+ 1

2µ
ci x()()2

i"E
#

10.2 MERIT FUNCTIONS AND
FILTERS

Feasible algorithms

•  If I can afford to maintain feasibility at all steps, then I just
monitor decrease in objective function.

•  I accept a point if I have enough descent.
•  But this works only for very particular constraints, such as linear

constraints or bound constraints (and we will use it).
•  Algorithms that do that are called feasible algorithms.

Infeasible algorithms
•  But, sometimes it is VERY HARD to enforce feasibility at all steps (e.g.

nonlinear equality constraints).
•  And I need feasibility only in the limit; so there is benefit to allow

algorithms to move on the outside of the feasible set.
•  But then, how do I measure progress since I have two, apparently

contradictory requirements:
–  Reduce infeasibility (e.g.)
–  Reduce objective function.
–  It has a multiobjective optimization nature!

ci x()

i!E
" + max #ci x(),0{ }

i!I
"

10.2.1 MERIT FUNCTIONS

Merit function

•  One idea also from multiobjective optimization: minimize a
weighted combination of the 2 criteria.

•  But I can scale it so that the weight of the objective is 1.
•  In that case, the weight of the infeasibility measure is called
“penalty parameter”.

•  I can monitor progress by ensuring that decreases, as in
unconstrained optimization.

! x() = w1 f x() + w2 ci x()

i"E
+ max $ci x(),0{ }

i"I
#%

&'
(
)*
; w1,w2 > 0

! x()

Nonsmooth Penalty Merit Functions

•  It is called the l1 merit function.
•  Sometimes, they can be even EXACT.
• 

Penalty parameter

Smooth and Exact Penalty Functions

•  Excellent convergence properties, but very expensive to
compute.

•  Fletcher’s augmented Lagrangian:

•  It is both smooth and exact, but perhaps impractical due to the
linear solve.

Augmented Lagrangian

•  Smooth, but inexact.

•  An update of the Lagrange Multiplier is needed.
•  We will not use it, except with Augmented Lagrangian methods

themselves.

! x() = f x()" #ici
i$E
% x() + µ

2
ci
2

i$E
% x()&

Line-search (Armijo) for Nonsmooth Merit
Functions

•  How do we carry out the “progress search”?
•  That is the line search or the sufficient reduction in trust region?
•  In the unconstrained case, we had

•  But we cannot use this anymore, since the function is not
differentiable.

f xk()! f xk + "mdk() # !$"m%f xk()T dk ; 0 < " <1, 0 < $ < 0.5

Directional Derivatives of Nonsmooth Merit
Function

•  Nevertheless, the function has a directional derivative (follows
from properties of max function). EXPAND

•  Line Search:
•  Trust Region

D ! x,µ(); p() = limt"0,t>0
! x + tp,µ()#! x,µ()

t
; D max f1, f2{ }, p() = max $f1p,$f1p{ }

! xk ,µ()"! xk + #
m pk ,µ() $ "%#mD ! xk ,µ(), pk();

! xk ,µ() "! xk + #
m pk ,µ() $ "%1 m 0() " m pk()();

0 <%1 < 0.5

And …. How do I choose the penalty parameter?

•  VERY tricky issue, highly dependent on the penalty function
used.

•  For the l1 function, guideline is:

•  But almost always adaptive. Criterion: If optimality gets ahead of

feasibility, make penalty parameter more stringent.
•  E.g l1 function: the max of current value of multipliers plus

safety factor (EXPAND)
– 

10.2.2 FILTER APPROACHES

Principles of filters

•  Originates in the multiobjective optimization philosophy:
objective and infeasibility

•  The problem becomes:

The Filter approach

Some Refinements

•  Like in the line search approach, I cannot accept EVERY
decrease since I may never converge.

•  Modification:

 ! !10
"5

10.3 MARATOS EFFECT AND
CURVILINEAR SEARCH

Unfortunately, the Newton step may not be
compatible with penalty

•  This is called the Maratos effect.
•  Problem:

•  Note: the closest point on search
direction (Newton) will be rejected !
•  So fast convergence does not occur

Solutions?

•  Use Fletcher’s function that does not suffer from this problem.
•  Following a step:
•  Use a correction that satisfies

•  Followed by the update or line search:

•  Since compared to
corrected Newton step is likelier to be accepted.

xk +! pk +!
2 p̂k

c xk + pk + p̂k() =O xk ! x
* 3() c xk + pk() =O xk ! x

* 2()

