
10.1 TYPES OF CONSTRAINED 
OPTIMIZATION 
ALGORITHMS 



Quadratic Programming Problems 

•  Algorithms for such problems are interested to explore because 
–  1. Their structure can be efficiently exploited.  
–  2. They form the basis for other algorithms, such as augmented 

Lagrangian and Sequential quadratic programming problems.  



Penalty Methods 

•  Idea: Replace the constraints by a penalty term.  
•  Inexact penalties: parameter driven to infinity to recover 

solution. Example:  

•  Exact but nonsmooth penalty – the penalty parameter can stay 
finite.  
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Augmented Lagrangian Methods 

•  Mix the Lagrangian point of view with a penalty point of view.   
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Sequential Quadratic Programming Algorithms  

•  Solve successively Quadratic Programs. 

 
•  It is the analogous of Newton’s method for the case of constraints if  

•  But how do you solve the subproblem? It is possible with extensions of 
simplex which I do not cover. 

•  An option is  BFGS which makes it convex.  
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Interior Point Methods 
•  Reduce the inequality constraints with a barrier 

•  An alternative, is use to use a penalty as well:  

•  And I can solve it as a sequence of unconstrained problems! 
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10.2 MERIT FUNCTIONS AND 
FILTERS  



Feasible algorithms  

•  If I can afford to maintain feasibility at all steps, then I just 
monitor decrease in objective function.  

•  I accept a point if I have enough descent.  
•  But this works only for very particular constraints, such as linear 

constraints or bound constraints (and we will use it).  
•  Algorithms that do that are called feasible algorithms.  



Infeasible algorithms 
•  But, sometimes it is VERY HARD to enforce feasibility at all steps (e.g. 

nonlinear equality constraints).  
•  And I need feasibility only in the limit; so there is benefit to allow 

algorithms to move on the outside of the feasible set.  
•  But then, how do I measure progress since I have two, apparently 

contradictory requirements:  
–  Reduce infeasibility (e.g.                                                  ) 
–  Reduce objective function.  
–  It has a multiobjective optimization nature!  
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10.2.1 MERIT FUNCTIONS 



Merit function 

•  One idea also from multiobjective optimization: minimize a 
weighted combination of the 2 criteria.  

•  But I can scale it so that the weight of the objective is 1.  
•  In that case, the weight of the infeasibility measure is called 
“penalty parameter”. 

•  I can monitor progress by ensuring that         decreases, as in 
unconstrained optimization.  
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Nonsmooth Penalty Merit Functions 

•  It is called the l1 merit function.  
•  Sometimes, they can be even EXACT. 
•    

Penalty parameter 



Smooth and Exact Penalty Functions 

•  Excellent convergence properties, but very expensive to 
compute.  

•  Fletcher’s augmented Lagrangian: 

•  It is both smooth and exact, but perhaps impractical due to the 
linear solve.   



Augmented Lagrangian 

•  Smooth, but inexact.  

•  An update of the Lagrange Multiplier is needed.  
•  We will not use it, except with Augmented Lagrangian methods 

themselves.   
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Line-search (Armijo) for Nonsmooth Merit 
Functions 

•  How do we carry out the “progress search”? 
•  That is the line search or the sufficient reduction in trust region?  
•  In the unconstrained case, we had 

•  But we cannot use this anymore, since the function is not 
differentiable.  
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Directional Derivatives of Nonsmooth Merit 
Function 

•  Nevertheless, the function has a directional derivative (follows 
from properties of max function). EXPAND 

•  Line Search: 
•  Trust Region  
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And …. How do I choose the penalty parameter?  

•  VERY tricky issue, highly dependent on the penalty function 
used. 

•  For the l1 function, guideline is:  
 
•  But almost always adaptive. Criterion: If optimality gets ahead of 

feasibility, make penalty parameter more stringent.  
•  E.g l1 function: the max of current value of multipliers plus 

safety factor (EXPAND) 
–    



10.2.2 FILTER APPROACHES 



Principles of filters 

•  Originates in the multiobjective optimization philosophy: 
objective and infeasibility 

•  The problem becomes:  



The Filter approach 



Some Refinements 

•  Like in the line search approach, I cannot accept EVERY 
decrease since I may never converge.  

•  Modification:  
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10.3 MARATOS EFFECT AND 
CURVILINEAR SEARCH 



Unfortunately, the Newton step may not be  
compatible with penalty  

•  This is called the Maratos effect.  
•  Problem:  
 
 

•  Note: the closest point on search  
direction (Newton) will be rejected ! 
•  So fast convergence does not occur 

 



Solutions?   

•  Use Fletcher’s function that does not suffer from this problem.  
•  Following a step:  
•  Use a correction that satisfies 

•  Followed by the update or line search: 
 

•  Since          compared to                           
corrected Newton step is likelier to be accepted.         
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