
Lecture 2
Feb 9, 2012.

PLAN

•  2.1 Newton’s method and implications.
•  2.2 Computing Derivatives.
•  2.3 Optimization Code Encapsulation.
•  2.4 Linear Algebra.
•  2.5 Sparse Linear Algebra

2.1 Intro to Methods for Continuous Optimization:
Newton’ Method

•  Focus on continuous numerical optimization
methods
•  Virtually ALL of them use the Newton

Method idea

Newton’s Method

•  Idea in 1D:
–  Fit parabola through 3 points, find minimum
–  Compute derivatives as well as positions, fit cubic
–  Use second derivatives: Newton by means of Taylor expansion at the

current point.

Newton’s Method

•  At each step:

•  Requires 1st and 2nd derivatives

minx
1
2
x ! xk()2 ""f (xk)+ "f (xk) x ! xk() + f (xk)

#
$%

&
'(

) xk+1 = xk !
"f (xk)
""f (xk)

Interpolating Poly (Taylor)

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method

Newton’s Method in
Multiple Dimensions

•  Replace 1st derivative with gradient,
2nd derivative with Hessian

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∇

∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂
∂
∂
∂

2

22

2

2

2

),(

y
f

yx
f

yx
f

x
f

y
f
x
f

H

f

yxf

Newton’s Method in
Multiple Dimensions

•  Replace 1st derivative with gradient,
2nd derivative with Hessian

•  So,

!xk+1 =
!xk ! H

!1(!xk)"f (
!xk)

71

RECAP: Taylor Series

() () () () () () () ()

() () () () () () () ()

()
() () 1

0

1

0
02

0
01

0
00

0
0

0
02

0
01

0
00

0
0

1
 Where

210
)(

sderivative its of sum wt.by the function any function, arbitrary an for seriesTaylor
210

)(

sderivative its of sum wt. thefunction, lpolynomina afor seriesTaylor

+
+

−
+

=

+−+…+−+−=−−

≈

−+…+−+−+−=

n
)(n

n
(n)///

n
(n)///

xx
!n
pfR

Rxx
n!

xf xx
!
x f xx

!
xf xx

!
xfxf

xx
n!

xf xx
!
x f xx

!
xf xx

!
xf xf

•  The Taylor series is a representation of a
function as an infinite sum of terms
calculated from the values of its derivatives
at a single point. It may be regarded as the
limit of the Taylor polynomials

Recap: Multi-dimensional Taylor expansion

A function may be approximated locally by its Taylor series expansion
about a point x*

where the gradient is the vector

and the Hessian H(x*) is the symmetric matrix

Q: What is a residual bound? How would you prove it from 1D?

Recap: Orders of convergence

•  R-convergence and Q-convergence.
•  EXPAND

•  Q: Which order of convergence is desirable?
Why?

Newton’s Method in
Multiple Dimensions

•  EXPAND: Justify by Quadratic Approximation, and sketch
quadratic convergence.

•  Tends to be extremely fragile unless function very smooth and
starting close to minimum.

•  Nevertheless, this iteration is the basis of most modern
numerical optimization.

Newton Method: Abstraction and Extension

•  “Minimizing a quadratic model iteratively”
•  EXPAND
•  We need:

–  1. Derivatives
–  2. Linear Algebra (to solve for direction).

NM Implementations

•  Descent Methods, Secant Methods may be seen as “Newton-
Like”

•  All “Newton-like” methods need to solve a linear system of
equations.

•  All “Newton-like” methods need the implementation of
derivative information (unless a modeling language provides it
for free, such as AMPL). .

2.2 Computing Derivatives

•  Three important ways.
•  1. Hand Coding (rarely done and error prone). Typical failure: do

the physics, ignore the design till it is too late.
•  2. Divided differences.
•  3. Automatic Differentiation.

The formulas developed next can be used to estimate the value of a derivative at a
particular value in the domain of a function, they are primarily used in the solution of
differential equations in what called finite difference methods.

Note: There a several ways to generate the following formulas that approximate f '(x).
The text uses interpolation. Here we use Taylor expansions.

2.2.1. Divided Differences

Note that the last formula also applies in multiple dimensions, if I perturb one
coordinate at the time. EXPAND

Forward Difference Approximation

Subtract f(x0)
from both sides
& divide by h.

Finite Differences

•  Nevertheless, we use forward differences, particularly in multiple
dimensions. (Q: How many function evaluations do I need for
gradient?)

•  Q: How do we choose the parameter h? EXPAND
•  DEMO.
•  EXPAND Multiple Dimension Procedure.

2.2.2 Automatic Differentiation

•  There exists another way, based upon the chain rule,
implemented automatically by a “compiler-like” approach.

•  Automatic (or Algorithmic) Differentiation (AD) is a technology
for automatically augmenting computer programs, including
arbitrarily complex simulations, with statements for the
computation of derivatives

•  In MATLAB, done through package “intval”.

Automatic Differentiation (AD) in a Nutshell

•  Technique for computing analytic derivatives of programs
(millions of loc)

•  Derivatives used in optimization, nonlinear PDEs, sensitivity
analysis, inverse problems, etc.

Automatic Differentiation (AD) in a Nutshell

•  AD = analytic differentiation of elementary functions +
propagation by chain rule
–  Every programming language provides a limited number of elementary

mathematical functions
–  Thus, every function computed by a program may be viewed as the

composition of these so-called intrinsic functions
–  Derivatives for the intrinsic functions are known and can be combined

using the chain rule of differential calculus

Automatic Differentiation (AD) in a Nutshell

•  Associativity of the chain rule leads to many ways of
combining partial derivatives, including two main modes:
forward and reverse

•  Can be implemented using source transformation or operator
overloading

Accumulating Derivatives

•  Represent function using a directed acyclic graph (DAG)
•  Computational graph

–  Vertices are intermediate variables, annotated with function/operator
–  Edges are unweighted

•  Linearized computational graph
–  Edge weights are partial derivatives
–  Vertex labels are not needed

•  EXPAND: Example 1D case, + reverse.

A Small Example

... lots of code...
a = cos(x)
b = sin(y)*y*y

f = exp(a*b)
... lots of code...
 Forward mode: 9 + 12p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
 g_1(1:p) = d1dy*g_y(1:p)
tmp2 = tmp1*y
 g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p)
b = tmp2*y
 g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p)
tmp1 = a*b
 g_1(1:p) = b*g_a(1:p)+a*g_b(1:p)
f = exp(tmp1)
 g_f(1:p) = f*g_1(1:p)

New algorithm: 17 + 3p

a = cos(x)
 dadx = -sin(x)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1 * y
b = tmp2*y
f = exp(a*b)
 adjx = f*a*dadx
 adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y))
 g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)

ADIC mode: 11 + 5p

a = cos(x)
 dadx = -sin(x)
 g_a(1:p) = dadx*g_x(1:p)
tmp1 = sin(y)
 d1dy = cos(y)
tmp2 = tmp1*y
b = tmp2*y
 adjy = y*y*d1dy + y*tmp1 + tmp2
 g_b(1:p) = adjy*g_y(1:p)
f = exp(a*b)
 adja = f*b
 adjb = f*a
 g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) p independents

Preaccumulation:
• Reduces flops (factor 2 or more)
• Reduces memory requirements (adjoint mode)
• Optimal strategy can reduce flops by another
factor of 2

y x

*

sin

cos

*
*

exp

...

...

q dependents

a

b

f

a

cos(y)

f

t2

-sin(x)

y

y t1

b

y x

...

...

q dependents

f

adjy adjx

y x

...

...

q dependents

a

b

f

adjy

-sin(x)

adja

adjb

A simple example

b = sin(y)*y
a = exp(x)
c = a*b
f = a*c

y x

sin exp

*
*

a

b

f *

c

A simple example

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

y x

f

a

c

t0

y

d0

b

a

a

y x

sin exp

*
*

a

b

f *

c

Vertex elimination

•  Multiply each in edge by each out edge,
add the product to the edge from the
predecessor to the successor

•  Conserves path weights
•  This procedure always terminates
•  The terminal form is a bipartite graph

f

a

c

b

a

Vertex elimination

•  Multiply each in edge by each out edge,
add the product to the edge from the
predecessor to the successor

•  Conserves path weights
•  This procedure always terminates
•  The terminal form is a bipartite graph

f

a*a
c + a*b

Forward mode: eliminate vertices in topological
order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Forward mode: eliminate vertices in topological
order

x y

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
 v2

v3

v4

Forward mode: eliminate vertices in topological
order

x y

f

c

d2

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a

v3

v4

Forward mode: eliminate vertices in topological
order

x y

f

d4

d2 d3

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c

v4

Forward mode: eliminate vertices in topological
order

x y

f

dfdx dfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c
dfdy = d2*a
dfdx = d4 + d3*a

6 mults 2 adds

Reverse mode: eliminate in reverse topological
order

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

Reverse mode: eliminate in reverse topological
order

y x

f

d1
d2

t0

y

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
 v1

v2

v3

Reverse mode: eliminate in reverse topological
order

y x

f

d4 d2

d3

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1

v1 v3

Reverse mode: eliminate in reverse topological
order

y x

f

d2

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4

v3

Reverse mode: eliminate in reverse topological
order

x y

f

dfdx dfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4
dfdx = a*d2

6 mults 2 adds

Forward gradient Calculation

•  Forward mode computes
–  At a cost proportional to the number of components of f.
–  Ideal when number of independent variables is small
–  Follows control flow of function computation
–  Cost is comparable to finite differences (can be much less, rarely much

more)

!f ; f :Rn " Rm

Forward versus Reverse

•  Reverse mode computes
–  At a cost proportional to m
–  Ideal for JTv, or J when number of dependent variables is small
–  Cost can be substantially less than finite differences

•  COST IF m=1 IS NO MORE THAN 5* COST OF FEVAL.
EXPAND.

J = !f ; f :Rn " Rm

AD versus divided differences

•  AD is preferable whenever implementable.
•  C, Fortran versions exist.
•  In Matlab, free package INTVAL (one of the main reasons not

doing C). DEMO
•  Nevertheless, sometimes, the source code DOES not exist. (e.g

max likelihood).
•  Then, divided differences.

Outline

•  Homework Questions? Structure of an optimization code
(EXPAND)

•  Survey
•  2.3 Direct Linear Algebra – Factorization
•  2.4 Sparsity
•  3.1 Failure of vanilla Newton
•  3.2 Line Search Methods
•  3.3 Dealing with Indefinite Matrices
•  3.4 Quasi-Newton Methods

2.3 OPTIMIZATION CODE
ENCAPSULATION

Some thoughts about coding

1.  Think ahead of time what functionality your code will have, and
define the interface properly

2.  If portions of code are similar, try to define a function and
“refactorize” (e.g the 3 different iterations).

3.  Document your code.
4.  Do not write long function files; they are impossible to debug

(unless very experienced).

Example Encapsulation

[xout,iteratesGradNorms]=newtonLikeMethod(@fenton_wrap,[3 4]',1,1e-12,200)

2.4 SOLVING SYSTEMS OF
LINEAR EQUATIONS

2.3.1 DIRECT METHODS: THE
ESSENTIALS

L and U Matrices
•  Lower Triangular Matrix

•  Upper Triangular Matrix

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44

3433

242322

13131211

u000
uu00
uuu0
uuuu

 U

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44344241

333231

2221

11

llll
0lll
00ll
000l

 L

LU Decomposition for Ax=b

•  LU decomposition / factorization
 [A] { x } = [L] [U] { x } = { b }
•  Forward substitution
 [L] { d } = { b }
•  Back substitution
 [U] { x } = { d }
•  Q:Why might I do this instead of Gaussian

elimination?

Complexity of LU Decomposition

to solve Ax=b:
–  decompose A into LU -- cost 2n3/3 flops
–  solve Ly=b for y by forw. substitution -- cost n2 flops
–  solve Ux=y for x by back substitution -- cost n2 flops

slower alternative:
–  compute A-1 -- cost 2n3 flops
–  multiply x=A-1b -- cost 2n2 flops
this costs about 3 times as much as LU

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

112

Cholesky LU Factorization
•  If [A] is symmetric and positive definite, it is convenient to

use Cholesky decomposition.

[A] = [L][L]T= [U]T[U]

•  No pivoting or scaling needed if [A] is symmetric and
positive definite (all eigenvalues are positive)

•  If [A] is not positive definite, the procedure may encounter
the square root of a negative number

•  Complexity is ½ that of LU (due to symmetry exploitation)

Cholesky LU Factorization

•  [A] = [U]T[U]
•  Recurrence relations

n,1,i j for
u

uua
u

uau

ii

1i

1k
kjkiij

ij

1i

1k

2
kiiiii

…+=
−

=

−=

∑

∑

−

=

−

=

Pivoting in LU Decomposition

•  Still need pivoting in LU decomposition
(why?)

•  Messes up order of [L]

•  What to do?

•  Need to pivot both [L] and a permutation
matrix [P]

•  Initialize [P] as identity matrix and pivot
when [A] is pivoted. Also pivot [L]

LU Decomposition with Pivoting

•  Permutation matrix [P]
 - permutation of identity matrix [I]
•  Permutation matrix performs “bookkeeping” associated with

the row exchanges
•  Permuted matrix [P] [A]
•  LU factorization of the permuted matrix
 [P] [A] = [L] [U]
•  Solution
 [L] [U] {x} = [P] {b}

LU-factorization for real symmetric Indefinite matrix A
(constrained optimization has saddle points)

1 1

T T

T

IE c E c
A

cE Ic B B cE c− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

LU −

TLDL −
1

1 1

T T

T

I EE c I E c
A

cE I B cE cc B I

−

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

factorization

factorization

where 1

I
L

cE I−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1T T T
T I E c I E c
L

I I

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and

Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E
after pivoting? Of what size?

2) Why not LU-decomposition?

History of LDL’ decomposition: 1x1, 2x2 pivoting

•  diagonal pivoting method with complete pivoting:
Bunch-Parlett, “Direct methods fro solving symmetric indefinite
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971,
pp. 639-655

•  diagonal pivoting method with partial pivoting:
Bunch-Kaufman, “Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems,” Mathematics of
Computation, volume 31, number 137, January 1977, page
163-179

•  DEMOS

2.4 COMPLEXITY OF LINEAR
ALGEBRA; SPARSITY

Complexity of LU Decomposition

to solve Ax=b:
–  decompose A into LU -- cost 2n3/3 flops
–  solve Ly=b for y by forw. substitution -- cost n2 flops
–  solve Ux=y for x by back substitution -- cost n2 flops

slower alternative:
–  compute A-1 -- cost 2n3 flops
–  multiply x=A-1b -- cost 2n2 flops
this costs about 3 times as much as LU

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

120

Complexity of linear algebra

lesson:
–  if you see A-1 in a formula, read it as “solve a system”, not “invert a

matrix”

Cholesky factorization -- cost n3/3 flops

LDL’ factorization -- cost n3/3 flops

Q: What is the cost of Cramer’s rule (roughly)?

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

121

Sparse Linear Algebra

•  Suppose you are applying matrix-vector multiply and the matrix
has lots of zero elements
–  Computation cost? Space requirements?

•  General sparse matrix representation concepts
–  Primarily only represent the nonzero data values (nnz)
–  Auxiliary data structures describe placement of nonzeros in “dense

matrix”

•  And *MAYBE* LU or Cholesky can be done in O(nnz), so not
as bad as (O(n^3)); since very oftentimes nnz=O(n)

Sparse Linear Algebra

•  Because of its phenomenal computational and storage savings
potential, sparse linear algebra is a huge research topic.

•  VERY difficult to develop.
•  Matlab implements sparse linear algebra based on i,j,s format.
•  DEMO
•  Conclusion: Maybe I can SCALE well … Solve O(10^12)

problems in O(10^12).

123"
L12:	
 Sparse	
 Linear	
 Algebra	
 CS6963	

SUMMARY SECTION 2

•  The heaviest components of numerical software are Numerical
differentiation (AD/DIVDIFF) and linear algebra.

•  Factorization is always preferable to direct (Gaussian)
elimination.

•  Keeping track of sparsity in linear algebra can enormously
improve performance.

