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Feb 9, 2012. 



PLAN 

•  2.1 Newton’s method and implications.  
•  2.2 Computing Derivatives.  
•  2.3 Optimization Code Encapsulation.  
•  2.4 Linear Algebra.  
•  2.5 Sparse Linear Algebra 



2.1 Intro to Methods for Continuous Optimization: 
Newton’ Method  

 

•  Focus on continuous numerical optimization 
methods 
•  Virtually ALL of them use the Newton 

Method idea 



Newton’s Method 

•  Idea in 1D:  
–  Fit parabola through 3 points, find minimum 
–  Compute derivatives as well as positions, fit cubic 
–  Use second derivatives: Newton by means of Taylor expansion at the 

current point.  



Newton’s Method 

•  At each step: 

•  Requires 1st and 2nd derivatives 
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Newton’s Method in 
Multiple Dimensions 

•  Replace 1st derivative with gradient, 
2nd derivative with Hessian 
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Newton’s Method in 
Multiple Dimensions 

•  Replace 1st derivative with gradient, 
2nd derivative with Hessian 

•  So, 
   

!xk+1 =
!xk ! H

!1(!xk )"f (
!xk )
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RECAP: Taylor Series 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) 1

0

1

0
02

0
01

0
00

0
0

0
02

0
01

0
00

0
0

1
 Where

210
)(

sderivative its of sum   wt.by the function any  function, arbitrary an for  seriesTaylor  
210

)(

sderivative its of sum  wt. thefunction, lpolynomina afor  seriesTaylor  

+
+

−
+

=

+−+…+−+−=−−

≈

−+…+−+−+−=

n
)(n

n
(n)///

n
(n)///

xx
!n
pfR

Rxx
n!

xf  xx
!
x f xx

!
xf  xx

!
xfxf

xx
n!

xf  xx
!
x f xx

!
xf  xx

!
xf xf

•  The Taylor series is a representation of a 
function as an infinite sum of terms 
calculated from the values of its derivatives 
at a single point. It may be regarded as the 
limit of the Taylor polynomials 



Recap: Multi-dimensional Taylor expansion  

A function may be approximated locally by its Taylor series expansion 
about a point x* 

 
 
where the gradient         is the vector 
 
 
and the Hessian H(x*) is the symmetric matrix 
 
 
 
 
Q: What is a residual bound? How would you prove it from 1D?  
 
 



Recap: Orders of convergence 

•  R-convergence and Q-convergence.  
•  EXPAND 
 

•  Q: Which order of convergence is desirable? 
Why?  

  



Newton’s Method in 
Multiple Dimensions 

•  EXPAND: Justify by Quadratic Approximation, and sketch 
quadratic convergence. 

•  Tends to be extremely fragile unless function very smooth and 
starting close to minimum.  

•  Nevertheless, this iteration is the basis of most modern 
numerical optimization.  



Newton Method: Abstraction and Extension 

•  “Minimizing a quadratic model iteratively” 
•  EXPAND 
•  We need:  

–  1. Derivatives 
–  2. Linear Algebra (to solve for direction).  



NM Implementations 

•  Descent Methods,  Secant Methods may be seen as “Newton-
Like” 

•  All “Newton-like” methods need to solve a linear system of 
equations. 

•  All “Newton-like” methods need the implementation of 
derivative information (unless a modeling language provides it 
for free, such as AMPL). .   



2.2  Computing Derivatives 

•  Three important ways.  
•  1. Hand Coding (rarely done and error prone). Typical failure: do 

the physics, ignore the design till it is too late.  
•  2. Divided differences.  
•  3. Automatic Differentiation.  



The formulas developed next can be used to estimate the value of a derivative at a 
particular value in the domain of a function, they are primarily used in the solution of 
differential equations in what called finite difference methods. 

Note: There a several ways to generate the following formulas that approximate f '(x). 
The text uses interpolation. Here we use Taylor expansions. 

2.2.1. Divided Differences 

Note that the last formula also applies in multiple dimensions, if I perturb one  
coordinate at the time. EXPAND 
 



Forward Difference Approximation  

Subtract f(x0) 
from both sides 
& divide by h. 



Finite Differences 

•  Nevertheless, we use forward differences, particularly in multiple 
dimensions. (Q: How many function evaluations do I need for 
gradient? ) 

•  Q: How do we choose the parameter h? EXPAND 
•  DEMO. 
•  EXPAND Multiple Dimension Procedure.  



2.2.2 Automatic  Differentiation 

•  There exists another way, based upon the chain rule, 
implemented automatically by a “compiler-like” approach.  

•  Automatic (or Algorithmic) Differentiation (AD) is a technology 
for automatically augmenting computer programs, including 
arbitrarily complex simulations, with statements for the 
computation of derivatives 

•  In MATLAB, done through package “intval”. 



Automatic Differentiation (AD) in a Nutshell 

•  Technique for computing analytic derivatives of programs 
(millions of loc) 

•  Derivatives used in optimization, nonlinear PDEs, sensitivity 
analysis, inverse problems, etc. 



Automatic Differentiation (AD) in a Nutshell 

•  AD = analytic differentiation of elementary functions + 
propagation by chain rule 
–  Every programming language provides a limited number of elementary 

mathematical functions 
–  Thus, every function computed by a program may be viewed as the 

composition of these so-called intrinsic functions 
–  Derivatives for the intrinsic functions are known and can be combined 

using the chain rule of differential calculus 



Automatic Differentiation (AD) in a Nutshell 

•  Associativity of the chain rule leads to many ways of 
combining partial derivatives, including two main modes: 
forward and reverse 

•  Can be implemented using source transformation or operator 
overloading 



Accumulating Derivatives 

•  Represent function using a directed acyclic graph (DAG) 
•  Computational graph 

–  Vertices are intermediate variables, annotated with function/operator 
–  Edges are unweighted 

•  Linearized computational graph 
–  Edge weights are partial derivatives 
–  Vertex labels are not needed 

•  EXPAND: Example 1D case, + reverse. 
 



A Small Example 

... lots of code... 
a = cos(x) 
b = sin(y)*y*y 

f = exp(a*b) 
... lots of code... 
 Forward mode: 9 + 12p 

 

a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
  g_1(1:p) = d1dy*g_y(1:p) 
tmp2 = tmp1*y 
  g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p) 
b = tmp2*y 
  g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p) 
tmp1 = a*b 
  g_1(1:p) = b*g_a(1:p)+a*g_b(1:p) 
f = exp(tmp1) 
  g_f(1:p) = f*g_1(1:p) 

New algorithm: 17 + 3p 
 
a = cos(x) 
  dadx = -sin(x) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1 * y 
b = tmp2*y 
f = exp(a*b) 
  adjx = f*a*dadx 
  adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y)) 
  g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)  

ADIC mode: 11 + 5p 
 
a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1*y 
b = tmp2*y 
  adjy = y*y*d1dy + y*tmp1 + tmp2 
  g_b(1:p) = adjy*g_y(1:p) 
f = exp(a*b) 
  adja = f*b 
  adjb = f*a 
  g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) p independents 

Preaccumulation: 
• Reduces flops (factor 2 or more) 
• Reduces memory requirements (adjoint mode) 
• Optimal strategy can reduce flops by another 
factor of 2 
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A simple example 

b = sin(y)*y 
a = exp(x) 
c = a*b 
f = a*c 
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A simple example 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
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Vertex elimination 

•  Multiply each in edge by each out edge, 
add the product to the edge from the 
predecessor to the successor 

•  Conserves path weights 
•  This procedure always terminates 
•  The terminal form is a bipartite graph 
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Vertex elimination 

•  Multiply each in edge by each out edge, 
add the product to the edge from the 
predecessor to the successor 

•  Conserves path weights  
•  This procedure always terminates 
•  The terminal form is a bipartite graph 
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Forward mode: eliminate vertices in topological 
order 
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Forward mode: eliminate vertices in topological 
order 
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Forward mode: eliminate vertices in topological 
order 
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Forward mode: eliminate vertices in topological 
order 

x y 
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b = t0*y 
a = exp(x) 
c = a*b 
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Forward mode: eliminate vertices in topological 
order 

x y 

f 

dfdx dfdy 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = t0 + d0*y 
d2 = d1*a 
d3 = a*b 
d4 = a*c 
dfdy = d2*a 
dfdx = d4 + d3*a 
 

6 mults 2 adds 



Reverse mode: eliminate in reverse topological 
order 
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Reverse mode: eliminate in reverse topological 
order 
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b = t0*y 
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Reverse mode: eliminate in reverse topological 
order 

y x 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
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Reverse mode: eliminate in reverse topological 
order 

y x 

f 

d2 

dfdy 

a 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
dfdy = d3 + d0*d4 
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Reverse mode: eliminate in reverse topological 
order 

x y 

f 

dfdx dfdy 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
dfdy = d3 + d0*d4 
dfdx = a*d2 
 

6 mults 2 adds 



Forward gradient Calculation 

•  Forward mode computes  
–  At a cost proportional to the number of components of f. 
–  Ideal when number of independent variables is small 
–  Follows control flow of function computation 
–  Cost is comparable to finite differences (can be much less, rarely much 

more) 

!f ; f :Rn " Rm



Forward versus Reverse 

•  Reverse mode computes  
–  At a cost proportional to m 
–  Ideal for JTv, or J when number of dependent variables is small  
–  Cost can be substantially less than finite differences 

•  COST IF m=1 IS NO MORE THAN 5* COST OF FEVAL. 
EXPAND. 

J = !f ; f :Rn " Rm



AD  versus divided differences 

•  AD is preferable whenever implementable.  
•  C, Fortran versions exist.  
•  In Matlab, free package INTVAL (one of the main reasons not 

doing C). DEMO 
•  Nevertheless, sometimes, the source code DOES not exist. (e.g 

max likelihood).  
•  Then, divided differences.  



Outline 

•  Homework Questions? Structure of an optimization code 
(EXPAND) 

•  Survey 
•  2.3 Direct Linear Algebra – Factorization 
•  2.4 Sparsity 
•  3.1 Failure of vanilla Newton 
•  3.2 Line Search Methods 
•  3.3 Dealing with Indefinite Matrices 
•  3.4 Quasi-Newton Methods 



2.3 OPTIMIZATION CODE 
ENCAPSULATION 



Some thoughts about coding 

1.  Think ahead of time what functionality your code will have, and 
define the interface properly 

2.  If portions of code are similar, try to define a function and 
“refactorize” (e.g the 3 different iterations). 

3.  Document your code.  
4.  Do not write long function files; they are impossible to debug 

(unless very experienced).   



Example Encapsulation 

[xout,iteratesGradNorms]=newtonLikeMethod(@fenton_wrap,[3 4]',1,1e-12,200) 



2.4 SOLVING SYSTEMS OF 
LINEAR EQUATIONS 



2.3.1 DIRECT METHODS: THE 
ESSENTIALS 



L and U Matrices 
•  Lower Triangular Matrix 

•  Upper Triangular Matrix 
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LU Decomposition for Ax=b 

•  LU decomposition / factorization 
     [ A ] { x } = [ L ] [ U ] { x } = { b } 
•  Forward substitution  
         [ L ] { d } = { b } 
•  Back substitution 
         [ U ] { x } = { d } 
•  Q:Why might I do this instead of Gaussian 

elimination?  



Complexity of LU Decomposition 

to solve Ax=b: 
–  decompose A into LU    -- cost 2n3/3 flops 
–  solve Ly=b for y by forw. substitution  -- cost n2 flops 
–  solve Ux=y for x by back substitution  -- cost n2 flops 

slower alternative: 
–  compute A-1     -- cost 2n3 flops 
–  multiply x=A-1b     -- cost 2n2 flops 
this costs about 3 times as much as LU 

26 Sept. 2000 15-859B - Introduction to Scientific 
Computing 
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Cholesky LU Factorization 
•  If [A] is symmetric and positive definite, it is convenient to 

use Cholesky decomposition. 

[A] = [L][L]T= [U]T[U] 

•  No pivoting or scaling needed if [A] is symmetric and 
positive definite (all eigenvalues are positive) 

•  If [A] is not positive definite, the procedure may encounter 
the square root of a negative number 

•  Complexity is ½ that of LU (due to symmetry exploitation) 



Cholesky LU Factorization 

•  [A] = [U]T[U]  
•  Recurrence relations 
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Pivoting in LU Decomposition 

•  Still need pivoting in LU decomposition 
(why?) 

•  Messes up order of [L] 

•  What to do? 

•  Need to pivot both [L] and a permutation 
matrix [P] 

•  Initialize [P] as identity matrix and pivot 
when [A] is pivoted.  Also pivot [L] 



LU Decomposition with Pivoting 

•  Permutation matrix [ P ] 
    - permutation of identity matrix [ I ] 
•  Permutation matrix performs “bookkeeping” associated with 

the row exchanges 
•  Permuted matrix [ P ] [ A ] 
•  LU factorization of the permuted matrix 
              [ P ] [ A ] = [ L ] [ U ] 
•  Solution  
              [ L ] [ U ] {x} = [ P ] {b} 



LU-factorization for real symmetric Indefinite matrix A 
(constrained optimization has saddle points)   
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Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E 
after pivoting? Of what size?  

2) Why not LU-decomposition?  



History of LDL’ decomposition: 1x1, 2x2 pivoting 

•  diagonal pivoting method with complete pivoting:  
Bunch-Parlett, “Direct methods fro solving symmetric indefinite 
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971, 
pp. 639-655 
 

•  diagonal pivoting method with partial pivoting:  
Bunch-Kaufman, “Some Stable Methods for Calculating Inertia and 
Solving Symmetric Linear Systems,” Mathematics of 
Computation, volume 31, number 137, January 1977, page 
163-179 

•  DEMOS  



2.4 COMPLEXITY OF LINEAR 
ALGEBRA; SPARSITY 



Complexity of LU Decomposition 

to solve Ax=b: 
–  decompose A into LU    -- cost 2n3/3 flops 
–  solve Ly=b for y by forw. substitution  -- cost n2 flops 
–  solve Ux=y for x by back substitution  -- cost n2 flops 

slower alternative: 
–  compute A-1     -- cost 2n3 flops 
–  multiply x=A-1b     -- cost 2n2 flops 
this costs about 3 times as much as LU 

26 Sept. 2000 15-859B - Introduction to Scientific 
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Complexity of linear algebra 

lesson: 
–  if you see A-1 in a formula, read it as “solve a system”, not “invert a 

matrix” 

 
Cholesky factorization  -- cost n3/3 flops 
 
LDL’  factorization  -- cost n3/3 flops 
 
Q: What is the cost of Cramer’s rule (roughly)? 

26 Sept. 2000 15-859B - Introduction to Scientific 
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Sparse Linear Algebra 

•  Suppose you are applying matrix-vector multiply and the matrix 
has lots of zero elements 
–  Computation cost?  Space requirements? 

•  General sparse matrix representation concepts 
–  Primarily only represent the nonzero data values (nnz) 
–  Auxiliary data structures describe placement of nonzeros in “dense 

matrix”  

•  And *MAYBE* LU or Cholesky can be done in O(nnz), so not 
as bad as (O(n^3)); since very oftentimes nnz=O(n)  

 



Sparse Linear Algebra 

•  Because of its phenomenal computational and storage savings 
potential, sparse linear algebra is a huge research topic.  

•  VERY difficult to develop.  
•  Matlab implements sparse linear algebra based on i,j,s format.  
•  DEMO 
•  Conclusion: Maybe I can SCALE well … Solve O(10^12) 

problems in O(10^12).  

123"
L12:	
  Sparse	
  Linear	
  Algebra	
  CS6963	
  



SUMMARY SECTION 2 

•  The heaviest components of numerical software are Numerical 
differentiation (AD/DIVDIFF) and linear algebra.  

•   Factorization is always preferable to direct (Gaussian) 
elimination.  

•  Keeping track of sparsity in linear algebra can enormously 
improve performance. 

  


