
2.4 SOLVING SYSTEMS OF 
LINEAR EQUATIONS 



L and U Matrices 
•  Lower Triangular Matrix 

•  Upper Triangular Matrix 
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LU Decomposition for Ax=b 

•  LU decomposition / factorization 
     [ A ] { x } = [ L ] [ U ] { x } = { b } 
•  Forward substitution  
         [ L ] { d } = { b } 
•  Back substitution 
         [ U ] { x } = { d } 
•  Q:Why might I do this instead of Gaussian 

elimination?  



Complexity of LU Decomposition 

to solve Ax=b: 
–  decompose A into LU    -- cost 2n3/3 flops 
–  solve Ly=b for y by forw. substitution  -- cost n2 flops 
–  solve Ux=y for x by back substitution  -- cost n2 flops 

slower alternative: 
–  compute A-1     -- cost 2n3 flops 
–  multiply x=A-1b     -- cost 2n2 flops 
this costs about 3 times as much as LU 

26 Sept. 2000 15-859B - Introduction to Scientific 
Computing 

4 



Cholesky LU Factorization 
•  If [A] is symmetric and positive definite, it is convenient to 

use Cholesky decomposition. 

[A] = [L][L]T= [U]T[U] 

•  No pivoting or scaling needed if [A] is symmetric and 
positive definite (all eigenvalues are positive) 

•  If [A] is not positive definite, the procedure may encounter 
the square root of a negative number 

•  Complexity is ½ that of LU (due to symmetry exploitation) 



Cholesky LU Factorization 

•  [A] = [U]T[U]  
•  Recurrence relations 
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Pivoting in LU Decomposition 

•  Still need pivoting in LU decomposition 
(why?) 

•  Messes up order of [L] 

•  What to do? 

•  Need to pivot both [L] and a permutation 
matrix [P] 

•  Initialize [P] as identity matrix and pivot 
when [A] is pivoted.  Also pivot [L] 



LU Decomposition with Pivoting 

•  Permutation matrix [ P ] 
    - permutation of identity matrix [ I ] 
•  Permutation matrix performs “bookkeeping” associated with 

the row exchanges 
•  Permuted matrix [ P ] [ A ] 
•  LU factorization of the permuted matrix 
              [ P ] [ A ] = [ L ] [ U ] 
•  Solution  
              [ L ] [ U ] {x} = [ P ] {b} 



LU-factorization for real symmetric Indefinite matrix A 
(constrained optimization has saddle points)   
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Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E 
after pivoting? Of what size?  

2) Why not LU-decomposition?  



History of LDL’ decomposition: 1x1, 2x2 pivoting 

•  diagonal pivoting method with complete pivoting:  
Bunch-Parlett, “Direct methods fro solving symmetric indefinite 
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971, 
pp. 639-655 
 

•  diagonal pivoting method with partial pivoting:  
Bunch-Kaufman, “Some Stable Methods for Calculating Inertia and 
Solving Symmetric Linear Systems,” Mathematics of 
Computation, volume 31, number 137, January 1977, page 
163-179 

•  DEMOS  



2.4 COMPLEXITY OF LINEAR 
ALGEBRA; SPARSITY 



Complexity of LU Decomposition 

to solve Ax=b: 
–  decompose A into LU    -- cost 2n3/3 flops 
–  solve Ly=b for y by forw. substitution  -- cost n2 flops 
–  solve Ux=y for x by back substitution  -- cost n2 flops 

slower alternative: 
–  compute A-1     -- cost 2n3 flops 
–  multiply x=A-1b     -- cost 2n2 flops 
this costs about 3 times as much as LU 
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Complexity of linear algebra 

lesson: 
–  if you see A-1 in a formula, read it as “solve a system”, not “invert a 

matrix” 

 
Cholesky factorization  -- cost n3/3 flops 
 
LDL’  factorization  -- cost n3/3 flops 
 
Q: What is the cost of Cramer’s rule (roughly)? 

26 Sept. 2000 15-859B - Introduction to Scientific 
Computing 

13 



Sparse Linear Algebra 

•  Suppose you are applying matrix-vector multiply and the matrix 
has lots of zero elements 
–  Computation cost?  Space requirements? 

•  General sparse matrix representation concepts 
–  Primarily only represent the nonzero data values (nnz) 
–  Auxiliary data structures describe placement of nonzeros in “dense 

matrix”  

•  And *MAYBE* LU or Cholesky can be done in O(nnz), so not 
as bad as (O(n^3)); since very oftentimes nnz=O(n)  

 



Sparse Linear Algebra 

•  Because of its phenomenal computational and storage savings 
potential, sparse linear algebra is a huge research topic.  

•  VERY difficult to develop.  
•  Matlab implements sparse linear algebra based on i,j,s format.  
•  DEMO 
•  Conclusion: Maybe I can SCALE well … Solve O(10^12) 

problems in O(10^12).  
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SUMMARY SECTION 2 

•  The heaviest components of numerical software are Numerical 
differentiation (AD/DIVDIFF) and linear algebra.  

•   Factorization is always preferable to direct (Gaussian) 
elimination.  

•  Keeping track of sparsity in linear algebra can enormously 
improve performance. 

  



3.1 FAILURE OF NEWTON 
METHODS 



Problem definition 

  min f (x)

  f : Rn ! R -  continuously differentiable  
-  gradient is available 
- Hessian is unavailable  

Necessary optimality conditions:   !f (x*) = 0

Sufficient optimality conditions: 
   !

2 f (x*) ! 0



DEMO 

  
•  Algorithm: Newton.  
•  Note: not only does the algorithm not converge, the function 

values go to infinity.  
•  So we should have known ahead of time we should have done 

something else earlier.  



Ways of enforcing that thinks do not blow up or 
wander 

•  1. Line-search methods.  
–  Make a “guess” of a good direction.  
–  Make good progress along that direction. At least know you will decrease 

f. 

•  2. Trust region model.  
–  Create a quadratic model of the function.  
–  Define a region where we “believe”—”trust” the model and find a 
“good” point in that “region”.  

–   If at that point the model is far from f, less trust—smaller region, if not, 
more –larger region.   



3.2 LINE SEARCH METHODS 



3.2.1 LINE SEARCH METHODS: 
ESSENTIALS 



Line Search Methods Idea: 

•  At the current point     find a “Newton-like” direction  
•  Along that direction       do 1-dimensional minimization (simpler 

than over whole space)  

•  Because the line search always decreases f, we will have an 
accumulation point (cannot diverge if bounded below) – unlike 
Newton proper 

xk
dk

dk

xk+1 ! argmin" f (xk +"dk )



g (α )  =   f  ( x  k  + α  p k ) for   ∇ f  ( x  k ) ' p k   <  0 

Descent Principle 
•  Descent Principle: Carry Out a one-Dimensional Search Along a 

Line where I will decrease the function. 
 
•  If this happens, there exists an alpha (why? ) such that.  

•  So I will keep making progress.  
•  Typical choice (why)? 
•  Newton may need to be modified (why?)  
  

f xk +! pk( ) < f xk( )

 Bk pk = !"f (xk ); Bk ! 0



Line Search-Armijo 
 

  f (xk ) ! f (xk + "
m# k dk ) $ !%"m# k&f (xk )T dk

 ! "(0,1)  ! "(0,1/ 2)
   

   
g(0)+ α g’(α) 

g(0)+ c1αg’(α) 

• I cannot accept just about ANY decrease, for I may NEVER 
converge (why , example of spurious convergence).  
•  IDEA: Accept only decreases PROPORTIONAL TO THE 
SQUARE OF GRADIENT. Then I have to converge (since process 
stops only when gradient is 0). 
•  Example: Armijo Rule. It uses the concept of BACKTRACKING. 



Some Theory 

Newton is accepted by LS 

Global Convergence:  

Fast Convergence:  



Extensions 

•  Line Search Refinements:  
–  Use interpolation  
–  Wolfe and Goldshtein rule 

•  Other optimization approaches 
–  Steepest descent,  
–  CG …. 




