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2.4 SOLVING SYSTEMS OF
LINEAR EQUATIONS
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1. and U Matrices

e Lower Triangular Matrix -
s 0 0

[L]=

* Upper Triangular Matrix " 41 l 42 l 34

[U]= 0 u,, u,
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LU Decomposition for Ax=0b

* [.U decomposition / factorization

[A]itx}=[LI[Ultx} =10}

e Forward substitution

[L11d} =10}
e Back substitution
[Ul{x} =14}

* Q:Why might I do this instead of Gaussian
elimination?
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Complexity ot LU Decomposition

to solve Ax=b:
— decompose A into LU -- cost 2/°/3 flops
— solve Iy=/ for y by forw. substitution -- cost 7* flops
— solve Ux=y for x by back substitution -- cost #* flops

slower alternative:
— compute A -~ cost 27 flops
— multiply x=A1) -- cost 27 flops

this costs about 3 times as much as .U

26 Sept. 2000 15-859B - Introduction to Scientific 4
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Cholesky 1.U Factorization

o If [A] is symmetric and positive definite, it is convenient to
use Cholesky decomposition.

[A] = [LI[L]'= [U]'[U]
* No pivoting or scaling needed if [4] is symmetric and
positive definite (all eigenvalues are positive)

e If [A] is not positive definite, the procedure may encounter
the square root of a negative number

* Complexity is /2 that of LU (due to symmetry exploitation)
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Cholesky 1.U Factorization

* A =[U1'[Y

e Recurrence relations

i—1

_ _ 2

U, = .| U,
Py

—1
ay = X ity
—_ k=1

Uu..

11

Uu..

i for j=i+1,...,n




mqumwz‘z'ﬂg i L.U Decomposition

¢ Still need pivoting in LU decomposition
(why?)

* Messes up order of [I ]
* What to do?

* Need to pivot both [I.] and a permutation
matrix [P]

* Initialize [P] as identity matrix and pivot
when [A] is pivoted. Also pivot [] ]
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L.U Decomposition with Prvoting

Permutation matrix [ P |
- permutation of identity matrix [ /]

 Permutation matrix performs “bookkeeping  associated with
the row exchanges

* Permuted matrix [ P] [ A]

* LU factorization of the permuted matrix
[PI[A]=[L]1[U]

* Solution

[LI[U] & =[P]ib;



m- acltorization for real symmetric Indefinite matrix A

(constrained optimization has saddle points)

L E ‘cT )i E o
LU - factorization A= =|— -
C ‘B cE™ | 1 B-cE ¢
! i E 1T
LDII —factorization 4= E‘ € |- 1 - (I E ¢
c‘ B| (cE" |1 cE'c L ]

I I E‘T d I| E7'CT
where  L=|"_ and L' = = ==
cE™ T I

Question: 1) If Ais not singular, can | be guaranteed to find a nonsingular principal block E
after pivoting? Of what size?

2) Why not LU-decomposition?
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History of LDL” decomposition: 1x1, 2x2 pivoting

diagonal pivoting method with complete pivoting:
Bunch-Parlett, “Direct methods fro solving symmetric indefinite
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971,
pp. 639-655

diagonal pivoting method with partial pivoting:
Bunch-Kanfman, “Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems,” Mathematics of

Computation, volume 31, number 137, January 1977, page
163-179

DEMOS
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2.4 COMPLEXITY OF LINEAR
ALGEBRA; SPARSITY
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Complexity ot LU Decomposition

to solve Ax=b:
— decompose A into LU -- cost 2/°/3 flops
— solve Iy=/ for y by forw. substitution -- cost 7* flops
— solve Ux=y for x by back substitution -- cost #* flops

slower alternative:
— compute A -~ cost 27 flops
— multiply x=A1) -- cost 27 flops

this costs about 3 times as much as .U
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Complexity of linear algebra

lesson:

. . . 1 144 k6.
— if you see Alin a formula, read it as “solve a system ", not " invert a
.
matrix

Cholesky factorization - cost n°/3 flops
DL factorization -- cost 72/3 flops

Q: What is the cost of Cramer’ s rule (roughly)?

26 Sept. 2000 15-859B - Introduction to Scientific 13
Computing
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Sparse Linear Algebra

* Suppose you are applying matrix-vector multiply and the matrix
has lots of zero elements

— Computation cost? Space requirements?

* General sparse matrix representation concepts
— Primarily only represent the nonzero data values (nnz)

ey . . 11
— Auxiliary data structures describe placement of nonzeros in ~ dense
.
matrix

* And *MAYBE* LU or Cholesky can be done in O(nnz), so not
as bad as (O(n"3)); since very oftentimes nnz=0(n)
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Sparse Linear Algebra

CS6963

Because of its phenomenal computational and storage savings
potential, sparse linear algebra 1s a huge research topic.

VERY ditficult to develop.
Matlab implements sparse linear algebra based on 1,j,s format.
DEMO

Conclusion: Maybe I can SCALE well ... Solve O(10712)
problems in O(10712).

15
L12: Sparse Linear Algebra
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SUMMARY SECTION 2

e The heaviest components of numerical software are Numerical

differentiation (AD/DIVDIFF) and linear algebra.

* Factorization is always preferable to direct (Gaussian)
elimination.

* Keeping track of sparsity in linear algebra can enormously
improve performance.
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3.1 FAILURE OF NEWTON
METHODS
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Problem definition

min f(x)

f:R"—> R

Necessary optimality conditions:

Sufficient optimality conditions:

- continuously differentiable
- gradient is available
-Hessian is unavailable

Vi(x")=0
VF(x) =0
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DEMO

* Algorithm: Newton.

* Note: not only does the algorithm not converge, the function
values go to infinity.

 So we should have known ahead of time we should have done
something else earlier.
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Ways of enforcing that thinks do not blow up or

wander

e 1. Line-search methods.
— Make a “guess" ot a good direction.
— Make good progress along that direction. At least know you will decrease
f.
e 2. Trust region model.
— Create a quadratic model of the function.
— Define a region where we “believe”’—"trust” the model and find a
“good” point in that “region.
— If at that point the model is far from f| less trust—smaller region, if not,
more —larger region.
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3.2 LINE SEARCH METHODS
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3.2.1 LINE SEARCH METHODS:
ESSENTIALS
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Line Search Methods Idea:

* At the current point X find a * Newton-like” direction d,

* Along that direction d; do 1-dimensional minimization (simpler
than over whole space)

x,.,=argmin, f(x, +ad,)

* Because the line search always decreases £, we will have an

accumulation point (cannot diverge if bounded below) — unlike
Newton proper
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Descent Principle

* Descent Principle: Carry Out a one-Dimensional Search Along a
ILine where I will decrease the function.

g(@)= f(xe+0o pr) for Vf(x:)'pr <0
It this happens, there exists an alpha (why? ) such that.

f(xk +05pk) < f(xk)
* So I will keep making progress
 Typical choice (why)? B.p,=-Vf(x,); B,>0

Newton may need to be modified (why?)
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Line Search-Armijo

| cannot accept just about ANY decrease, for | may NEVER
converge (why , example of spurious convergence).

 IDEA: Accept only decreases PROPORTIONAL TO THE
SQUARE OF GRADIENT. Then | have to converge (since process
stops only when gradient is 0).

« Example: Armijo Rule. It uses the concept of BACKTRACKING.

(0)+ crog’(o)

()= f(x + B )2 =pB"s Vi (x ) d, .
Be(©,)  pe(0,1/2)

g(0)+ o g’(o)
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Some Theory

Global Convergence:
Let | be twice continuously differentiable on an open set D, and assume that the starting
point xo of Algorithm 3.2 is such that the level set L = {x € D : f(x) < f(xo)} is compact.
Then if the bounded modified factorization property holds, we have that

k— 00

k(Bi) = |Bell 1B < C, someC > Oandallk =0,1,2,....

Fast Convergence:
Newton is accepted by LS

Suppose that f is twice differentiable and that the Hessian V? f (x) is Lipschitz continuous
(see (A.42)) in a neighborhood of a solution x* at which the sufficient conditions (Theorem 2.4)
are satisfied. Consider the iteration X1, = Xy + px, where py is given by (3.30). Then
(1) if the starting point x, is sufficiently close to x*, the sequence of iterates converges to x*;

(ii) the rate of convergence of {xy} is quadratic; and

(iii) the sequence of gradient norms {||V fi ||} converges quadratically to zero.
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Extensions

e J.ine Search Refinements:

— Use interpolation
— Wolfe and Goldshtein rule

* Other optimization approaches

— Steepest descent,
- CG ...





