
2.4 SOLVING SYSTEMS OF
LINEAR EQUATIONS

L and U Matrices
•  Lower Triangular Matrix

•  Upper Triangular Matrix

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44

3433

242322

13131211

u000
uu00
uuu0
uuuu

 U

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44344241

333231

2221

11

llll
0lll
00ll
000l

 L

LU Decomposition for Ax=b

•  LU decomposition / factorization
 [A] { x } = [L] [U] { x } = { b }
•  Forward substitution
 [L] { d } = { b }
•  Back substitution
 [U] { x } = { d }
•  Q:Why might I do this instead of Gaussian

elimination?

Complexity of LU Decomposition

to solve Ax=b:
–  decompose A into LU -- cost 2n3/3 flops
–  solve Ly=b for y by forw. substitution -- cost n2 flops
–  solve Ux=y for x by back substitution -- cost n2 flops

slower alternative:
–  compute A-1 -- cost 2n3 flops
–  multiply x=A-1b -- cost 2n2 flops
this costs about 3 times as much as LU

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

4

Cholesky LU Factorization
•  If [A] is symmetric and positive definite, it is convenient to

use Cholesky decomposition.

[A] = [L][L]T= [U]T[U]

•  No pivoting or scaling needed if [A] is symmetric and
positive definite (all eigenvalues are positive)

•  If [A] is not positive definite, the procedure may encounter
the square root of a negative number

•  Complexity is ½ that of LU (due to symmetry exploitation)

Cholesky LU Factorization

•  [A] = [U]T[U]
•  Recurrence relations

n,1,i j for
u

uua
u

uau

ii

1i

1k
kjkiij

ij

1i

1k

2
kiiiii

…+=
−

=

−=

∑

∑

−

=

−

=

Pivoting in LU Decomposition

•  Still need pivoting in LU decomposition
(why?)

•  Messes up order of [L]

•  What to do?

•  Need to pivot both [L] and a permutation
matrix [P]

•  Initialize [P] as identity matrix and pivot
when [A] is pivoted. Also pivot [L]

LU Decomposition with Pivoting

•  Permutation matrix [P]
 - permutation of identity matrix [I]
•  Permutation matrix performs “bookkeeping” associated with

the row exchanges
•  Permuted matrix [P] [A]
•  LU factorization of the permuted matrix
 [P] [A] = [L] [U]
•  Solution
 [L] [U] {x} = [P] {b}

LU-factorization for real symmetric Indefinite matrix A
(constrained optimization has saddle points)

1 1

T T

T

IE c E c
A

cE Ic B B cE c− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠ ⎝ ⎠

LU −

TLDL −
1

1 1

T T

T

I EE c I E c
A

cE I B cE cc B I

−

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

factorization

factorization

where 1

I
L

cE I−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

1T T T
T I E c I E c
L

I I

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

and

Question: 1) If A is not singular, can I be guaranteed to find a nonsingular principal block E
after pivoting? Of what size?

2) Why not LU-decomposition?

History of LDL’ decomposition: 1x1, 2x2 pivoting

•  diagonal pivoting method with complete pivoting:
Bunch-Parlett, “Direct methods fro solving symmetric indefinite
systems of linear equations,” SIAM J. Numer. Anal., v. 8, 1971,
pp. 639-655

•  diagonal pivoting method with partial pivoting:
Bunch-Kaufman, “Some Stable Methods for Calculating Inertia and
Solving Symmetric Linear Systems,” Mathematics of
Computation, volume 31, number 137, January 1977, page
163-179

•  DEMOS

2.4 COMPLEXITY OF LINEAR
ALGEBRA; SPARSITY

Complexity of LU Decomposition

to solve Ax=b:
–  decompose A into LU -- cost 2n3/3 flops
–  solve Ly=b for y by forw. substitution -- cost n2 flops
–  solve Ux=y for x by back substitution -- cost n2 flops

slower alternative:
–  compute A-1 -- cost 2n3 flops
–  multiply x=A-1b -- cost 2n2 flops
this costs about 3 times as much as LU

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

12

Complexity of linear algebra

lesson:
–  if you see A-1 in a formula, read it as “solve a system”, not “invert a

matrix”

Cholesky factorization -- cost n3/3 flops

LDL’ factorization -- cost n3/3 flops

Q: What is the cost of Cramer’s rule (roughly)?

26 Sept. 2000 15-859B - Introduction to Scientific
Computing

13

Sparse Linear Algebra

•  Suppose you are applying matrix-vector multiply and the matrix
has lots of zero elements
–  Computation cost? Space requirements?

•  General sparse matrix representation concepts
–  Primarily only represent the nonzero data values (nnz)
–  Auxiliary data structures describe placement of nonzeros in “dense

matrix”

•  And *MAYBE* LU or Cholesky can be done in O(nnz), so not
as bad as (O(n^3)); since very oftentimes nnz=O(n)

Sparse Linear Algebra

•  Because of its phenomenal computational and storage savings
potential, sparse linear algebra is a huge research topic.

•  VERY difficult to develop.
•  Matlab implements sparse linear algebra based on i,j,s format.
•  DEMO
•  Conclusion: Maybe I can SCALE well … Solve O(10^12)

problems in O(10^12).

15"
L12:	
 Sparse	
 Linear	
 Algebra	
 CS6963	

SUMMARY SECTION 2

•  The heaviest components of numerical software are Numerical
differentiation (AD/DIVDIFF) and linear algebra.

•  Factorization is always preferable to direct (Gaussian)
elimination.

•  Keeping track of sparsity in linear algebra can enormously
improve performance.

3.1 FAILURE OF NEWTON
METHODS

Problem definition

 min f (x)

 f : Rn ! R -  continuously differentiable
-  gradient is available
- Hessian is unavailable

Necessary optimality conditions: !f (x*) = 0

Sufficient optimality conditions:
 !

2 f (x*) ! 0

DEMO

•  Algorithm: Newton.
•  Note: not only does the algorithm not converge, the function

values go to infinity.
•  So we should have known ahead of time we should have done

something else earlier.

Ways of enforcing that thinks do not blow up or
wander

•  1. Line-search methods.
–  Make a “guess” of a good direction.
–  Make good progress along that direction. At least know you will decrease

f.

•  2. Trust region model.
–  Create a quadratic model of the function.
–  Define a region where we “believe”—”trust” the model and find a
“good” point in that “region”.

–  If at that point the model is far from f, less trust—smaller region, if not,
more –larger region.

3.2 LINE SEARCH METHODS

3.2.1 LINE SEARCH METHODS:
ESSENTIALS

Line Search Methods Idea:

•  At the current point find a “Newton-like” direction
•  Along that direction do 1-dimensional minimization (simpler

than over whole space)

•  Because the line search always decreases f, we will have an
accumulation point (cannot diverge if bounded below) – unlike
Newton proper

xk
dk

dk

xk+1 ! argmin" f (xk +"dk)

g (α) = f (x k + α p k) for ∇ f (x k) ' p k < 0

Descent Principle
•  Descent Principle: Carry Out a one-Dimensional Search Along a

Line where I will decrease the function.

•  If this happens, there exists an alpha (why?) such that.

•  So I will keep making progress.
•  Typical choice (why)?
•  Newton may need to be modified (why?)

f xk +! pk() < f xk()

 Bk pk = !"f (xk); Bk ! 0

Line Search-Armijo

 f (xk) ! f (xk + "
m# k dk) $!%"m# k&f (xk)T dk

 ! "(0,1) ! "(0,1/ 2)

g(0)+ α g’(α)

g(0)+ c1αg’(α)

• I cannot accept just about ANY decrease, for I may NEVER
converge (why , example of spurious convergence).
•  IDEA: Accept only decreases PROPORTIONAL TO THE
SQUARE OF GRADIENT. Then I have to converge (since process
stops only when gradient is 0).
•  Example: Armijo Rule. It uses the concept of BACKTRACKING.

Some Theory

Newton is accepted by LS

Global Convergence:

Fast Convergence:

Extensions

•  Line Search Refinements:
–  Use interpolation
–  Wolfe and Goldshtein rule

•  Other optimization approaches
–  Steepest descent,
–  CG ….

