CHICAGO |

4.1 TRUST REGION
FUNDAMENTALS
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Trust Regtion Idea

e Notations
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* (Quadratic Model
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Trust Region Subproblem

minpeRn m,(p)

subjectto | p|| < A

1

Called Trust Region
Constraint

e If B“-0andp™=(B) ¢; where Hp*" HSAk then p* is
the solution of the TR subproblem.

* But the interesting case lies in the opposite situation
(since not, why would you need the TR in first
place )?
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Trust Reoton Geometric Intuition

A ... Trust region

Line search direction

contours of m X

Trust region step
contours of f
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min (x2 — 1)2

* Line search started at 0 cannot progtress.

* How about the trust-region?

min,—2d*; |d|<A

 FHither solution will escape the saddle point --
that 1s the principle of trust-region.
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General approach

* How do we solve the TR subproblem?

e It B*»0 (orif we are not obsessed with
stopping at saddle points) we use ~ dogleg”

method. (LS, NLE). Most linear algebra 1s in
computing
Btd Y = _gt
* If fear saddle points, we have to mess around

with eigenvalues and eigenvectors — much

harder problem.
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Trust Region Management: Parameters

* 'The quality of the reduction.

S F 4 pY)

/ Actual Reduction
p =

k
* Define the acceptanc’g’rg%)o M (p ) — Predicted Reduction

* Define the maximum TRqséz%O,l)
4
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TR management

ATV "Te 1 1TUDL RTXIVIT ).
Given A > 0, Ag € (0, A),and n € [0, §):
fork =0,1,2,...
Obtain py by (approximately) solving (4.3);
Evaluate p; from (4.4);

lf,Ok < %
1
| will ask you to Akt1 = 70k
code It with else
dogleg if pr > 7 and || pell = Ay
Agy1 = min(2Ag, A)
else
Apy1 = Aps
if pr > 1

Xk+1 = Xk + Pk
else

Xk+1 = Xk
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What if I cannot solve the TR exactly ?

* Since it is a hard problem.

* Will this destroy the “Global~ convergence behavior?

e Idea: Accepta " sufficient” reduction.

* But, I have no Armijo (or Wolfe, Goldshtein criterion) ...

e Whatdo I do?

* Idea? Solve a simple TR problem that creates the yardstick for
acceptance — the Cauchy point.
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4.2 THE CAUCHY POINT
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The Cauchy Point

* What is an easy model to solve? Linear model
k | kT
L(p)=rf"+g""p

k

* Solve TR linear model } .
pri=argmin s b (p)

* The Cauchy point.

" =arg minTeR ot eat m, (r pk,s)

k

k k__k,s. , k k,
pr=Tpr, x‘=x+p°

* The reduction m©)-m(p"*‘)becomes my yardstick; if trust region has at
least this decrease, I can guarantee " global~ convergence (reduction

1s O(Hngz))
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Cauchy Point Solution

* First, solution of the linear

problem 1s
s Ak k Trust region
Pc="71 8 ;
"]

: _. contours of my

* Then, it immediately follows | ! \,,——&V;;'"‘:.-:;j::_'f.'._ffff_'_’_‘_‘::; ————————
~- e SN e ____- - -

that

1 gZBkgk <0

3
min| — s 1| otherwise
(gk B.g, ) Ay
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Dogleg Methods: Improve CP

* If Cauchy point is on the boundary I have a lot of decrease and 1
. .~ kT k .
accept it (e.gifg ~ B, g <0;)

 If Cauchy point is interior,

gk,TBkgk > 0: pk,c __

 Take now "Newton  step p®=-B;'g" (note, B need not be pd,
all I need is nonsingular).



CHICAGO |

Dogleg Method Continued

| will ask you to

de it with TR
* Define dogleg path coae it wi

* The dogleg point:
ﬁ(fD); T, =arg minr;"ﬁ(r)"ﬂk m, (13(1'))
It is obtained by solving 2 quadratics.

* Sufficiently close to the solution it allows me to choose the
Newton step, 7=2 and thus quadratic convergence.
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Dogleoc Method: Theory

“~.. Trust region

Optimal trajectory p(A)

: ; : < pB (full step)
pY( uncdh‘st_r_ained min along —&) TN

....... \\\_g
dogleg path >

Lemma 4.2.
Let B be positive definite. Then

(i) ||p(T)|l is an increasing function of T, and

(ii) m(p(t)) is a decreasing function of T.



Global Convergence of CP Methods

Lemma 4.3.
The Cauchy point p; satisfies (4.20) with ¢, = %, that is,

me(0) — mi(pS) > Lgel min (Ak, 8] ) .

I Bl
| pkll < y Ay, for some constant y > 1. (4.25)
, : 18|
Mmp(0) — mg(pr) = ¢l |l min | Ag, 1Bl ) (4.20)

Theorem 4.5.

Let n = 0 in Algorithm 4.1. Suppose that ||B|| < B for some constant 8, that [ is
bounded below on the level set S defined by (4.24) and Lipschitz continuously differentiable in
the neighborhood S(Ry) for some Ry > 0, and that all approximate solutions of (4.3) satisfy
the inequalities (4.20) and (4.25), for some positive constants ¢, and y. We then have

li;n inf || gx|| = 0. (4.26)
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Numerical comparison between methods

* What is a fair comparison between methods?

* Probably : starting from same point 1) number of function evaluations
and 2) number of linear systems (the rest depends too much on the
hardware and software platform). I will ask you to do this.

* 'Trust region tends to use fewer function evaluations (the modern
preferred metric; ) than line search .

* Also dogleg does not force positive definite matrix, so it has fewer
chances of stopping at a saddle point, (but it is not guaranteed either).
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4.3 GENERAL CASE: SOLVING
THE ACTUAL TR PROBLEM
(DOGLEG DOES NOT QUITE
DO IT)
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Trust Region Equation

Theorem 4.1.
The vector p* is a global solution of the trust-region problem

minm(p) = f + g p+ip"Bp, st pll <A, (4.7)

if and only if p* is feasible and there is a scalar .. > 0 such that the following conditions are
satisfied:

(B+AMI)p* = —g, (4.8a)
AA —=[Ip*Il) = 0, (4.8b)
(B + AI) 1s positive semidefinite. (4.8¢)
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Theory of Trust Region Problem

Global convergence Theorem 4.8.

away from saddle Suppose that the assumptions of Theorem 4.6 are satisfied and in addition that f is twice
point continuously differentiable in the level set S. Suppose that By = V* f (xy) for allk, and that the
approximate solution py of (4.3) at each iteration satisfies (4.52) for some fixed y > 0. Then

limy_ oo flg¢ll = 0.
If, in addition, the level set S of (4.24) is compact, then either the algorithm terminates
at a point Xy at which the second-order necessary conditions (Theorem 2.3) for a local solution
hold, or else {xy} has a limit point x* in S at which the second-order necessary conditions hold.

Theorem 4.9.
Fast Local Let [ be twice Lipschitz continuously differentiable in a neighborhhod of a point x* at
Convergence which second-order sufficient conditions (Theorem 2.4) are satisfied. Suppose the sequence {xi}
converges to X* and that for all k sufficiently large, the trust-region algorithm based on (4.3)
with By = V2 f(xy) chooses steps py that satisfy the Cauchy-point-based model reduction
criterion (4.20) and are asymptotically similar to Newton steps p; whenever || p|l < %Ak,
that is,

Il — pill = o(ll pil)- (4.53)

Then the trust-region bound Ay becomes inactive for all k sufficiently large and the sequence
{xx} converges superlinearly to x*.
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How do we solve the subproblem?

* Very sophisticated approach based on theorem on structure of
TR solution, eigenvalue analysis and/or an “inner  Newton
iteration.

 Foundation: Find Solution for

p(A) =—(B+Arl)"g

Ip(M)Il = A.
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How do I find such a solution?

B — QAQT A — dlag()\-], )\«2, ¢ o e a)\'n)’

n

pA)=—QA+AD7T"QTg==)"

J=1

q; 8
i+ A

qj,

, by orthonormality of g1, g2, ..., gn

2
L (4s)
Ip()I* = ; Ty
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TR problem has a solution

el

Figure4.5 | p(A)]| asa function of A.

lim |p(A)|=0. ¢fg#0 = lim [p()| =00

A— 00 A——Aj
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Practical INCOMPLETE) algorithm

1 | b (X(E))
()') —_ ’ )“(€+l) — A(f) - =
P =N T ool # (1)

Algorithm 4.3 (Trust Region Subproblem).
Given .9, A > 0:
for¢ =0,1,2,...
Factor B + A9 = RTR;
Solve RTRpg = —g, RTC]e = Pe¢;

Set

LD _ 50 (nmn)2 <||P£|| - A) ,
lgel A

end (for).

It generally gives a machine precision solution in 2-3 iterations
(Cholesky)
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The Hard Case

q,8=0

Il
T
q;8
JAi#EM TV 1
T
— J
--------------------------------------------------------------------- JiAi#EN TV 1
—7L3
k
Figure 4.7) The hard case: ||p(1)|| < A forall X € (=1, 00). ElT Hp(T)H =A

If double root, things continue to be complicated ...
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Summary and Comparisons

* Line search problems have easier subproblems (if we modity

Cholesky).

* But they cannot be guaranteed to converge to a point with
positive semidefinite Hessian.

* Trust-region problems can, at the cost of solving a complicated

subproblem.

* Dogleg methods leave “between’ these two situations.





