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8.1 INTRODUCTION IN
CONSTRAINED OPTIMIZATION
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Notations

e Problem Formulation
( c,(x)=0 ief

min x) subject to <
f(x) subj c,(x)=0 ieZ

xeR”

* Feasible set
Q:{xlci(x)zO,ieé’; cl.(x)zO,ieI}

¢ Compact formulation

miner f (.X)
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ILocal and Global Solutions

e (Constraints make make the problem simpler since the search
space 1s smaller.

* But it can also make things more complicated.
. 2 .
mm(x2 + 100) +0.01x; subject to x, —cos x, =0
* Unconstrained problem has one minimum, constrained problem
has MANY minima.
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Types of Solutions

* Similar as the unconstrained case, except that we now restrict it to a
neighborhood of the solution.

* Recall, we aim only for local solutions.

A vector x* is a local solution of the problem (12.3) if x* € € and there is a
neighborhood N of x* such that f(x) > f(x*) forx € N N L.

A point x* is an isolated local solution if x* € Q and there is a neighborhood N of x*
such that x* is the only local solution in " N Q.

Avector x* is a strict local solution (also called a strong local solution) if x* € 2 and there
is a neighborhood AV of x* such that f(x) > f(x*) forallx € N N Q with x # x*.
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Smoothness

e Itis ESSENTIAL that the problem be formulated with smooth
constraints and objective function (since we will take derivatives).

* Sometimes, the problem i1s just badly phrased. For example, when it 1s
done in terms of max function. Sometimes the problem can be
rephrased as a constrained problem with SMOOTH constrained

functions.

max{f1 (x).f, (x)}Sa =2

- f(x)

IN

a

fi(x)

I

a
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Examples of max nonsmoothness removal

e |n Constraints:

Ix]|, = |x |+ |x,| <1 © max{—x,,x } + max{-x,,x,} <1 &

-x,—x, <1, x-x<I, —x+x,<1, x+x,<1
* In Optimization:

min 4

min f(x); f(x)= max{xz,x}; = {

subject to max{x2 ,x} <t

min t
= . )
subjectto x“ <t,x<t
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8.2 EXAMPLES
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Examples

* Single equality constraint (put in KKT form)

. 2 2
min x, + X, subjectto X, + Xy — 2=0
* Single inequality constraint (put in KKT form, point out
complementarity relationship)

. 2 2

* Two inequality constraints (KK'T, complementarity relationship,
sign of the multiplier)

MIN X, + X, subjectto —(xl2 + X5 —2)2(),x1 >0
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Multiplier Sign Example

* 'There are two solutions for the Lagrangian equation, but only
one 1s the right.
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8.3 IMPLICIT FUNCTION
THEOREM REVIEW
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Refresher (Marsden and Tromba)

3.5 The Implicit Function Theorem

Key Points in this Section.

1. One-Variable Version. If f : (a,b) — R is C! and if f/(z¢) # 0,
then locally near zo, f has a C! inverse function x = f~1(y). If
f'(x) > 0 on all of (a,b) and is continuous on [a,b], then f has
an inverse defined on [f(a), f(b)]. This result is used in one-variable
calculus to define, for example, the log function as the inverse of
f(x) = e® and sin™! as the inverse of f(z) = sinz.

2. Special n-variable Version. If F' : R*"*! — R is C! and at a
point (xg,2) € R, F(xq,z) = 0 and %(XO,ZO) # 0, then locally
near (Xo,zp) there is a unique solution z = g(x) of the equation
F(x,z) = 0. We say that F(x,z) = 0 tmplicitly defines 2 as a
function of x = (x1,...,2,).
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3. The partial derivatives are computed by tmplicit differentiation:

OF . oF 0z 0
dx; Oz Ox;
SO
0z  OF/0x;
oxr;  OF /0z

4. The special implicit function theorem guarantees that if Vg(xg) # 0,
then the level set g = ¢ is a smooth surface near xq, a fact needed in
the proof of the Lagrange multiplier theorem.
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5. The general implicit function theorem deals with solving m equations

Fl(iL‘l,...?1?71,21?...?2771) = 0
En(xlw”,sxnazla"wzm) = 0
for m unknowns z = (21,..., 2,,). If
OF, OF,
021 'y
; n 150
OFp, OFp,
021 0%,
at (Xg,Zg), then these equations define (z1,...,2,) as functions of

(Cl?lg 5 5
by using implicit differentiation.

x, ). The partial derivatives 0z; /0x,; may again be computed
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8.4 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR NONLINEAR
PROGRAMMING
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Inequality Constraints: Active Set

-

¢,(x)=0 ie&

min subject to <
f(x) subs c,(x)20 ieZ

xeR"

.

* One of the key differences with equality constraints.

* Definition at a feasible point x.

xeQ(x) A(x)=€U{ieT;c(x)=0}
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“Constraint Qualifications  for inequality

constratts

* We need the equivalent of the “Jacobian has full rank”~ condition
for the case with equality-only.

e 'This is called “the constraint qualification .

e Intuition: “geometry of feasible set” = algebra of feasible set”



CHICAGO |

Tangent and linearized cone

* Tangent Cone at x (can prove it is a cone)

T,(x)= {d

* Linearized feasible direction set (EXPAND)

Hz teQz, > x,3{r, teR, 1, >0,lim, Zkt_ A d}
k
F(x)= {d‘dTVcl. (x)=0,ie&d Ve, (x)=20,ie A(x)N I} =T, (x)c F(x)

* EHssence of constraint qualification at a point x
(“geometry=algebra”):
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What are sufficient conditions for constraint

qualification?

* The most common (and only one we will discuss in the class):
the linear independence constraint qualification (LICQ).

* We say that LICQ holds at a point Xx € Q if VCA(X)

has full row rank.

* How do we prove equality of the cones ? If LICQ holds, then,
from IFT

d e ]—"() C a0 (X(1))=1Ve, d=3T1>0,V0 <t <7;
100 (E(0)) > 0517 (2(2)) 2056, (%(2)) = 0= %(1) e Q= d € T, (x)
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8.4.1 OPTIMALITY
CONDITIONS FOR EQUALITY
CONSTRAINTS
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IFT for optimality conditions in the equality-only

e Problem:

* Assumptions:
*

CascC

(NLP) min f(x) subject to ¢(x)=0; c:R" — R”

1. X 1isa solution

2. LICQ: VC(X) has full row rank.

* From LICQ:

e From IFT:

—Z 2
dx = (x;) ,x;); Ve, (x*) e R™"; Ve, (x*) invertible.

EIN(x*),‘P(xD) ,J\/'(x;)such thatxeN(x*)ﬂﬂﬁxH :‘P(xp)

*o . . E3 .
e Asaresult X isasolution of NLP iff x, solves unconstrained

problem:

min_ (xD 'V (xD ))
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Properties of Mapping

e From IFT:

C(JCD,‘I’()CD )) =0= prc(xp,‘l’(xp))+ Vch(xD,‘P(xD ))VXD‘P(xD) =0

* Two important consequences

OV ¥xp) = V., cleo¥(50)) | Vel ()

2)Z = y = Ve(x)Z=0=Im[Z] =ker[ Ve(x)]
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First-order optimality conditions

* Optimality of unconstrained optimization problem

prf(x*p,‘l’(x; )) =0= prf(x*p,‘l’(x; ))+ Vfo(x*D,‘P(x;))VxD‘P(x;) =0=

prf(x; ,‘P(x; )) — Yfo(x; ,‘I’(x*p))[Vch(xD ,‘P(xp))}ljvxpc(xp ,‘P(xp)) =0

e The definition of the Lagrange’ll(/[ultiplier Result in the first-order
(Lagrange, KKT) conditions:

{ V. () V. f(xn(x)) }_ y[ V. el ¥ () Y, el (x) }zo

Vf(x*)— ),TVc(x*) =0
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A more abstract and general proof

* Optimality of unconstrained optimization problem
Dfo(x*D ,‘P(x;)) =0= Vfo(x*D ,‘P(x*p)) + Vfo(x; ,‘P(x; ))VXD‘P(x;) =0= fo(x*)Z =0

« Using kerM LImM";dim(ker M)+ dim(ImMT ) =nr cols M
e We obtain: fo(x*)Z =0= fo(x* )T € ker(ZT) = Im[Vc(x* )T}
* We thus obtain the optimality conditions:

dAeR" st. fo(x*)T = ch(x*)T A= fo(x*)— AV c(x*)=0
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The Laorangian

« Definition  L(xA)=f(x)=A ¢(x)
o Its gradient VL (x.4) = [V]_”(x)—JLTVC(x), C(X)T}

ViL(xA) Ve(x)!
Vc( ) 0
e Where Vixﬁ( Z;sz)zcx z

2
e Jts Hessian \% E(x,),) =

* Optimality conditions: VL ( X, /’L) —
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Second-order conditions

» TFirst, note that: VAAVE: L(XD,\P(XD))Z — D?
XX XDX
* Sketch of proof: total dertvatives in : X,
Dfo(xD,‘P(xD)) = Vfo(xD,‘P(xD))— ﬂ,(xp,‘{’(xp)) Vch(x;,‘P(x*D)) =
prﬁ((xp,‘{’(xp)),),(xp,‘l’(xp)));
Vfo(x*D,‘P(x*D)) = l(xp,‘P(xD))T

* Second derivatives:

Df(xD,‘P(xD)) =0

Vch(x*D,‘P(x*D ))

’;L(XD ,\{J(xp ))) * V’CD\P(xD )T Vxprﬁ((xD ’LP(xD )) ’)L(xD ’\P(XD)))

)
-D,, (/”L(xD ,‘P(xD ))T )VXDC(XD ,‘P(xp))

D, f(xD ,‘P(xD )) =V, f(xD ,‘P(xD )) — ),(xD ,‘P(xD ))T Vch(xD ,‘P(xp)) -
)
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Computing Second-Order Dertvatives

* Expressing the second dertvatives of Lagrangian

V, P ¥ (50)) = A0 ¥ () V. e W () =

Dy, | Ao (50)) Ve el ¥(0)) = D, | V. (00 (20) = 200 ¥ x0)) Vo o ¥ ()| =

H

'

inactive

DXDVXHE{(xD,‘P(xD)),\l(xD,‘{V‘(xD))TJ] = VXDVxHﬁ((xD,‘P(xD)),ﬂ,(xp,\P(xD))T)+

inactive

V. () V.,V L((00, (x5)) A0 P ()

* Solve for total derivative of multiplier and replace conclusion
follows.
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Summary: Necessary Optimality Conditions

* Summaty: Vﬁ(x* ,}L*) =0; ZTVixL(x; ,‘I’(x*D ))Z = ()

* Rephrase first order: o o
VXL(X ’;L ) =0

* Rephrase second order necessary conditions.

ch(x*)w =0= wTVixﬁ(x*,/’L*)w >0
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Sutticient Optimality Conditions

* 'The point is a local minimum if LICQ and the following holds:
(l)Vxﬁ(x*,QL*) =0; (2)ch(x*)w =0=d0>0 wTVix[,(x*,?L*)w > G||w||2
* Proof: By IFT, there 1s a change of variables such that
ue N(0)cR"™"u e x(u); Fe N(x'),c(%)=0 < Jii e N'(0); ¥ = x(if)
ch(x*)Vux(ﬁ)

=0 Z= V. x(i)

i

* 'The original problem can be phrased as

min,, f(x(u))
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Sutticient Optimality Conditions

* We can now piggy back on theory of unconstrained
optimization, noting that.

V. (x{u)),, =V.L(x 2=
Viuf(x(u)) = ZTVixﬁ(x*,l*)Z =0;Z=V x(u)

* Then from theory of unconstrained optimization

we have a local 1solated minimum at 0 and thus the original
problem at X (following the local 1somorphism above)
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Another Essential Consequence

e If LICQ+ second-otder conditions hold at the solution X , then
the following matrix must be nonsingular

 (EXPAND). i Vixﬁ(x*,l*) ch(x*) ]
Vzc(x*) 0

* The system of nonlinear equations has an invertible Jacobian,

v.L(x )

c(x)
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8.4.2 FIRST-ORDER
OPTIMALITY CONDITIONS
FOR MIXED EQ AND INEQ
CONSTRAINTS
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The Lagrangian

* Even in the general case, it has the same expression
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First-Order Optimality Condition Theorem

Suppose that x* is a local solution of (12.1), that the functions f and c; in (12.1) are
continuously differentiable, and that the LICQ holds at x*. Then there is a Lagrange multiplier
vector \*, with components A¥, i € £ UZ, such that the following conditions are satisfied at

(x*, 1%)

Vi L(x*, A%) =0, (12.34a)
ci(x*)=0, foralli €&, (12.34b)
ci(x*) >0, foralli eZ, (12.34¢)

Af >0, foralli eZ, (12.34d)
Afci(x*) =0, foralli e EUT. (12.34¢)

Equivalent Form:

Vf (x* ) — li(x*)Vc Alx) (x*) = (0 = Multipliers are unique !!
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Sketch of the Proof

*
e If X isa solution of the original problem, it is also a solution of

the problem.
min f (x) subject to C () (x)=0

* From the optimality conditions of the problem with equality
constraints, we must have (since LICQ holds)

H{QLZ.}Z_EA(X*) such that Vf(x) Z /ch( )=

leA x
* ButI cannot yet tell by this argument

>0
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Sketch of the Proof: The sign of the multiplier

 Assume now one multiplier has the “wrong sign. That is
jeA(x*)ﬂI, A, <0
* Since LICQ holds, we can construct a feasible path that " takes

7) . . . .
off " from that constraint (inactive constraints do not matter

locally)

- d
CA(X*)(x(t)):tej = i(t) e Q Defmeb—z x(1) = Ve, b=e¢,

= f(7()_ =VF(x) b= A Veyub=2<0 =

3t,>0, f(%(1,))<f(%(0))=f(x"), CONTRADICTION!!
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Strict Complementarity

* Itis a notion that makes the problem look “almost’ like an

equality.

Definition 12.5 (Strict Complementarity).
Given a local solution x* of (12.1) and a vector A* satisfying (12.34), we say that the

strict complementarity condition holds if exactly one of A" and c;(x*) is zero for each index
i € 1. In other words, we have that A¥ > 0 for eachi € T N A(x*).
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8.5 SECOND-ORDER
CONDITIONS
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Critical Cone

* 'The subset of the tangent space, where the objective function
does not vary to first-order.

e The book definition.
C(x*, %) = {w e F(x*) | Ve (x*)Tw = 0,alli € A(x*) NZT with A7 > 0}.

* An even simpler equivalent definition.

C(x*,ﬂt*):{weTQ(x*)

Vf(x*)T W= 0}
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Rephrasing of the Critical Cone

* By investigating the definition

e

T

Vcl.(x* w=0 ief
weC(x*,A*)c>< Vcl.(x*Tsz ie.A(x*)ﬂI A >0

Vcl.(x* "w20 ieA(x*)ﬂI A =0

* In the case where strict complementarity holds, the cones has a
MUCH simplex expression.

weC(x*,)L*)QVCi(x*)wz() Vi eA(x*)
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Statement of the Second-Order Conditions

Theorem 12.5 (Second-Order Necessary Conditions).
Suppose that x* is a local solution of (12.1) and that the LICQ condition is satisfied. Let
L* be the Lagrange multiplier vector for which the KKT conditions (12.34) are satisfied. Then

wTfo,C(x*, A9)w >0, forallw e C(x*, A¥). (12.57)

* How to prove this? In the case of Strict
Complementarity the critical cone is the same as
the problem constrained with equalities on active
index.

* Result follows from equality-only case.
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Statement of second-order sufficient conditions

Theorem 12.6 (Second-Order Sufficient Conditions).
Suppose that for some feasible point x* € R" there is a Lagrange multiplier vector A*

such that the KKT conditions (12.34) are satisfied. Suppose also that
w!' V2 L(x*, 2%)w >0, forallw € C(x*, 1*), w # 0. (12.65)

Then x* is a strict local solution for (12.1).

* How do we prove this? In the case of strict complementarity again from
reduction to the equality case.

x =argmin_ f(x) subjecttoc ,(x)=0
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How to derive those conditions in the other case?

* Use the slacks to reduce the problem to one with equality
constraints.
minxe]R" ,zeR™M | f(X)
st. c; (x) =0
[c,(x)]j —ZJZ. =0 j=L2,..n

* 'Then, apply the conditions for equality constraints.

* I will assign it as homework.
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Summary: Why should I care about Lagrange

- v.L(x )

e (x)

=(0; det

Multipliers?

* Because it makes the optimization problem in principle
equivalent to a nonlinear equation.

VAL(xA) Ve (x)

Vie, (x*) 0

#0

. . ’
* I can use concepts from nonlinear equations such as Newton' s
for the algorithmics.





