
9: The gradient projection method 
for nonlinear constrained 
optimization 
 



9.1 GRADIENT PROJECTIONS 
FOR QPS WITH BOUND 
CONSTRAINTS 



Projection 

•  The problem:  
•  Like in the trust-region case, we look for a Cauchy point, based on a 

projection on the feasible set.  
•  G does not have to be psd (essential for AugLag) 
•  The projection operator:  



The search path 

•  Create a piecewise linear path which 
is feasible (as opposed to the linear 
one in the unconstrained case) by 
projection of gradient.  



Computation  of breakpoints 

•  Can be done on each component individually 

 
•  Then the search path becomes on each component:  



Line Search along piecewise linear path  

•  Reorder the breakpoints eliminating duplicates and zero values 
to get 

•  The path:  

•  Whose direction is:  

 0 < t1 < t2 <…



Line Search (2) 

•  Along each piece,                find the minimum of the quadratic  

•  This reduces to analyzing a one dimensional quadratic form of t 
on an interval.  

•  If the minimum is on the right end of interval, we continue.  
•  If not, we found the local minimum and the Cauchy point.  
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Subspace Minimization 
•  Active set of Cauchy Point 
 
•  Solve subspace minimization problem 

•  No need to solve exactly. For example truncated CG with 
termination if one inactive variable reaches bound.   



Gradient Projection for QP 

Or, equivalently, if projection does not advance from 0.  



Observations – Gradient Projection 

•  Note that the Projection – Active set solve loop must be iterated 
to optimality.  

•  What is the proper stopping criteria? How do we verify the 
KKT?  

•  Idea: When projection does not progress ! That is, on each 
component, either the gradient is 0, or the breakpoint is 0.  



KKT conditions for Quadratic Programming with 
BC 



9.2 AUGMENTED 
LAGRANGIAN 



AUGLAG: Equality Constraints 

•  The augmented Lagrangian: 

•  Observation: if   
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AUGLAG: SOC 

•  So x* is a stationary point for Auglag for exact multipliers … but is it  
a minimum?  

•  Yes, for mu sufficiently large. 

•  So it is *almost* as solving unconstrained problem … but how do I 
find multiplier estimates?   
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Multiplier Estimates Auglag 

•  At the current estimate, solve problem 

•  The obvious choice: 

•  What do I do if I converge lambda but x* is not feasible? 
Increase the penalty mu (it will have to end increasing 
eventually).   

–    



The general case 

•  The bound constrained formulation. Slacks. 
 
 
•  The problem:  

 



The augmented Lagrangian 

•  The new AugLag 

•  The bound constrained optimization problem: 

•  Same property: if Lagrange multiplier is the optimal one for eq cons 
and mu is large  enough then x* is a solution !  

–    



Practical AugLag alg:  LANCELOT 

Main 
computation:  
Use bound 
constrained 
projection.  
 
 

Forcing sequences 



Solving the bound constrained subproblem 

•  It is an iterative bound constrained optimization algorithm with 
trust-region: 

•  Each step solves a bound constrained QP (not necessarily PD), 
same as in your  homework 4.  

•  The difference: after a subspace solve: compute the new derivative 
and update TR.   


