
9: The gradient projection method
for nonlinear constrained
optimization

9.1 GRADIENT PROJECTIONS
FOR QPS WITH BOUND
CONSTRAINTS

Projection

•  The problem:
•  Like in the trust-region case, we look for a Cauchy point, based on a

projection on the feasible set.
•  G does not have to be psd (essential for AugLag)
•  The projection operator:

The search path

•  Create a piecewise linear path which
is feasible (as opposed to the linear
one in the unconstrained case) by
projection of gradient.

Computation of breakpoints

•  Can be done on each component individually

•  Then the search path becomes on each component:

Line Search along piecewise linear path

•  Reorder the breakpoints eliminating duplicates and zero values
to get

•  The path:

•  Whose direction is:

 0 < t1 < t2 <…

Line Search (2)

•  Along each piece, find the minimum of the quadratic

•  This reduces to analyzing a one dimensional quadratic form of t
on an interval.

•  If the minimum is on the right end of interval, we continue.
•  If not, we found the local minimum and the Cauchy point.

t j!1,t j"# $%
1
2
xTGx + cT x

Subspace Minimization
•  Active set of Cauchy Point

•  Solve subspace minimization problem

•  No need to solve exactly. For example truncated CG with
termination if one inactive variable reaches bound.

Gradient Projection for QP

Or, equivalently, if projection does not advance from 0.

Observations – Gradient Projection

•  Note that the Projection – Active set solve loop must be iterated
to optimality.

•  What is the proper stopping criteria? How do we verify the
KKT?

•  Idea: When projection does not progress ! That is, on each
component, either the gradient is 0, or the breakpoint is 0.

KKT conditions for Quadratic Programming with
BC

9.2 AUGMENTED
LAGRANGIAN

AUGLAG: Equality Constraints

•  The augmented Lagrangian:

•  Observation: if

! = !*; µ " µ0 #$xLA x*,!*,µ() = 0;
$xx
2 LA x*,!*,µ() = $xx

2 L x*,!*,µ() + µ $c x*()()T $c x*()()

AUGLAG: SOC

•  So x* is a stationary point for Auglag for exact multipliers … but is it
a minimum?

•  Yes, for mu sufficiently large.

•  So it is *almost* as solving unconstrained problem … but how do I
find multiplier estimates?

!xx
2 LA x*,"*,µ() ! Y Z#$ %&

T
!xx

2 LA x*,"*,µ() Y Z#$ %& + µ !c x*()Y()T !c x*()Y() =
ZT!xx

2 LA x*,"*,µ()Z *

* *+ µ !c x*()Y()T !c x*()Y()
#

$

'
'
'

%

&

(
(
(
" 0 for µ suff large.

Multiplier Estimates Auglag

•  At the current estimate, solve problem

•  The obvious choice:

•  What do I do if I converge lambda but x* is not feasible?
Increase the penalty mu (it will have to end increasing
eventually).

– 

The general case

•  The bound constrained formulation. Slacks.

•  The problem:

The augmented Lagrangian

•  The new AugLag

•  The bound constrained optimization problem:

•  Same property: if Lagrange multiplier is the optimal one for eq cons
and mu is large enough then x* is a solution !

– 

Practical AugLag alg: LANCELOT

Main
computation:
Use bound
constrained
projection.

Forcing sequences

Solving the bound constrained subproblem

•  It is an iterative bound constrained optimization algorithm with
trust-region:

•  Each step solves a bound constrained QP (not necessarily PD),
same as in your homework 4.

•  The difference: after a subspace solve: compute the new derivative
and update TR.

