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Abstract. We introduce a novel technique of uncertainty quantification using polynomial regression with 
derivative information and apply it to analyze the performance of a model of a sodium-cooled fast reactor. We 
construct a surrogate model as a goal-oriented projection onto an incomplete space of polynomials, find 
coordinates of projection by collocation, and use derivative information to reduce the number of sample points 
required by the collocation procedure. This surrogate model can be used to estimate range, sensitivities and the 
statistical distribution of the output. Numerical experiments show that the suggested approach is significantly 
more computationally efficient than random sampling, or approaches that do not use derivative information, and 
that it has greater precision than linear models. 

1. Introduction. 

Uncertainty quantification (i.e., the task of relating the available information on the uncertainties in the 
input parameters to the resulting variation in the arbitrary chosen outputs of the model) plays an 
important role in the currently expanding field of nuclear engineering, where sophisticated simulation 
codes are used to implement mechanisms of observation and control, increase the efficiency in the use 
of resources, and ensure safety[1][2][3].  

In any complex simulation code, the inputs and the intermediate parameters include experimental 
errors and design simplifications, resulting in uncertainties in the outputs. The usual difficulties in 
modeling the work of the nuclear reactor models include the large size of the solved systems of 
equations, the nonlinearity, and the implicit dependence of the equations on input parameters. As a 
result, one can normally afford to run the computational model only for a small number of scenarios 
involving the values of the physical parameters. In addition, although the information on the behavior 
of parameters is available in formats convenient for experimental physics and engineering purposes, 
such formats are not necessarily appropriate for uncertainty analysis. 

Traditionally, the influence of the uncertainties in the inputs on the outputs is described either by 
linear approximations (linear sensitivity) using first-order derivative information and disregarding the 
non-linear effects[4], or by random sampling methods (pure Monte-Carlo, or using other sampling 
strategies[5]) requiring many runs of the model[6]. We introduce a novel technique of uncertainty 
quantification (UQ) using polynomial regression with derivative information (PRD) and use it to 
predict the effect of uncertainties in multiple physical parameters on the performance of a model of 
sodium-cooled fast reactor.  

The experiments show that the suggested method is significantly more computationally efficient than 
random sampling, and it performs with greater precision than linear approximations. The constructed 
polynomial approximation correctly reproduces the range of the output values, and the most 
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significant sensitivites of the output with respect to parameters. This indicates the possibility of using 
the polynomial approximation for such tasks as estimating the statistical distribution of the output, 
determining the confidence and tolerance levels for the quantities of interest, making design decisions, 
performing verification, validation and safety analysis for reactor models. 

We also note that the method is very flexible, and can be applied to a wide class of reactor models, and 
for arbitrary inputs and outputs. The associated development cost consists only of introducing a 
convenient uncertainty structure, and obtaining first-order derivative information. 

2. Uncertainty quantification by surrogate models 

2.1 Definition of the problem  

We first present the mathematical model in the most general form, as a system of algebraic-differential 
equations: 

            (1) 

Here, the variables  characterize the model state (for example, the temperature field 
of the reactor core). The expressions for the dependence of intermediate physical parameters 

 (such as heat capacity, thermal conductivity, density) on the state of the model 
include experimental errors . An observation of interest on the state of the 
model is expressed by the merit function .  The dependency of the experimental errors on the 
state of the model is described by a set of stochastic uncertainty quantifiers . For a 
given merit function, we redefine the output as a function of uncertainty quantifiers, , 

and use a polynomial approximation  as a computationally cheap alternative to 
evaluation of the full model. 

The first task is to construct a convenient parametric representation of uncertainty. A typical example 
is based on reviewing the literature on material properties. In the available sources[7][8][9], the 
dependencies of thermodynamical properties on temperature are estimated from the experimental data, 
and provided in the Laurent series form 

            (2) 

Here,  is the reference value, and  is the relative error uncertainty term, the value of 

which also depends on temperature, and is recorded only for a few values of , in the form 

              (3) 

There is no information about the correlations between the values of uncertainty at different 
temperatures. To represent the relative error term, we choose a well-conditioned set of basis functions 

 (for example, a set of Chebyshev polynomials), and expand: 

             (4) 
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This expansion can be stopped at any term, depending on how much nonlinearity in (2) we would like 
to preserve in the representation. In the end, a few uncertainty quantifiers  are assigned to each 
physical parameter.  

The region of admissible values of the uncertainty quantifiers, , is estimated by large-scale 
sampling inside of a sufficiently large (multidimensional, cubic) region, and rejecting the value 
combinations that contradict (3), with pessimistic extrapolations of (3) used for the values of for 
which the relative error has not been observed. 

The introduced uncertainty structure is consistent with the geometry and physics of the model: a 
determenistic, smooth dependence of the error on the model state (4) prevents unrealistic differences 
in the values of parameters used in the description of the neighboring geometric elements, or of the 
interdependent physical processes. The structure is very flexible: the algebraic structure of the 
expansion (3), or the shape of the validity region can be adjusted to fit additional experimental data.  

Given that specific statistical information on the distribution of parameters is unavailable, we assume 
uniform distribution of uncertainty quantifiers inside the validity region. This assumption is 
conservative, but not as pessimistic as the worst-case assumption, according to which only the values 
of uncertainty quantifiers leading to largest relative error values are realized.  

 2.2 Polynomial regression with derivative information 

Polynomial regression, or a polynomial chaos expansion[10] is a standard approach for constructing 
flexible, nonlinear approximations with convenient algebraic structure. To approximate a model 
output by polynomial regression, we choose a set  of multivariate polynomials and set  

            (5) 

We use Hermite multivariable polynomial basis given by 

      (6) 

By default, all polynomials up to a fixed total degree are used. The size of the basis grows with an 

increase of this maximal degree ,  asymptotically. For example, there are  

polynomials of degree up to 3 on  variables.  

In a setup without derivative information, the coefficients  are found by enforcing the polynomial 

fitting conditions at the nodes , resulting in a system of linear equations 

           (7) 

where  is an uncertainty state of the system, i.e. a point in the validity region,  
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and  is the corresponding exact value of the output. The rows of the linear 
system (7) are constructed by evaluating all the basis functions at different uncertainty states: 

     (8) 

The computational cost of the collocation consists essentially of the evaluation of the right side, 
requiring  runs of the full model; the other operations have comparatively negligible computational 
costs. We show that it is possible to use each full model evaluation more efficiently, by also using 
first-order sensitivities of the output function to find the collocation coefficients. We call this novel 
approach Polynomial Regression with Derivative information (PRD). 

We compute derivatives of the output function, and add derivative information to this polynomial 

fitting matrix. Then, each right-side entry  will generate a subcolumn of  entries , 

, providing right-side information for several rows at once; resulting in an augmented 
system of  equations: 

         (9) 

The system (9) is then solved using a generalized pseudo-inverse approach[11] to account for either 
type of ill-posedness (overdetermined or underdetermined).  

In comparison with an approach without derivative information, the minimal required number of 
sample points drops by a factor of . An additional computation advantage of the augmented 
system is its sparse structure (many partial derivatives of basis polynomials are identically equal to 
zero). In practice, it turns out that finding all first-order partial derivatives for a sample point is 
computationally more expensive by only a small factor compared to adding another point. This bound 
on computational overhead is also theoretically confirmed[12]. With an increase in the number of 
sources of uncertainty, the computational advantage achieved by using the derivative information 
overtakes the computational cost of obtaining the derivatives.  

We note that the use of computationally cheap derivative information to construct surrogate models 
was previously described in [13], but without relating the idea to high-order polynomial interpolation, 
and for a very different application. Polynomial regression for parametric analysis and uncertainty 
quantification was also used previously[14][15], but without the use of our uncertainty structure, or 
derivative information. 
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2.3 Basis truncation 

Determination of the size of the basis set is a tradeoff decision: the nonlinear dependence of the output 
on parameters implies the use of high-degree polynomials, but this also results in an unrealistically 
large size of the required training set. The use of derivative information only partially resolves the 
contradiction. To further decrease the size of the required training set, we also use a smaller basis, 
which includes high-order polynomials only in some important variables (and excludes high-order 
polynomials that depend on variables of low importance only).  

We use the following simple, first-order test of importance: if we observe 

              (10) 

at a few representative uncertainty states , we conlcude that the uncertainty quantifier  is 
relatively more important for correct representation of the output. Here,  is the variance of the 
parameter, if available; otherwise estimated assuming uniform distribution in the validity region. 

There is a number of possible ways to compute the derivative information, either directly, or through 
the use of the adjoint variable[12]. The factors taken into account when choosing the approach are the 
computational efficiency and flexibility, i.e. the ease at which the procedure can be adapted for a class 
of examples. Given that the subject model is likely to be a complex numerical code, designed without 
the goal to make differentiation convenient, the development cost may be high. In the test cases, where 
every part of the model was well-documented, we used a simple chain-rule approach based on 
augmentation of the code with partial derivatives of every mathematical procedure. In effect, together 
with evaluation of the mathematical model (1), we also resolved the equations  

          (11) 

For the cases where the underlying model equations (1) are very complex, or not available explicitly, 
we are developing an approach based on the existing automatic (or algorithmic) differentiation (AD) 
tools [16][17]. AD tools augment the model code by adding derivatives to each elementary function 
that involves the variables of interest; as the processed code runs, the derivative is assembled by chain 
rule. In an ideal situation, human involvement is limited to identification of variables of interest, and 
debugging the code at the complilation stage of the augmented model. In practice, applying the 
existing AD tools to nuclear reactor models still takes considerable development effort, and has not 
been fully validated[18]. More details will be made available in additional publications. 

2.4 Global measure of sensitivity 

A computationally cheap, local estimate of importance (10) is insufficient to address a question of 
whether an advanced uncertainty quantificaiton method can correctly assess which variables are the 
most important globally, i.e. over the entire validity region. Instead, we introduce a more relevant 
index of sensitivity[19]: 

           (12) 

based on a marginal expected value defined as 
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       (13) 

where  is the validity region, as described in Section 2.1. The expression is normalized, . 

Due to high dimension of uncertainty space, numerical evaluation of (13) requires many runs of the 
model: very computationally expensive for the full model, not so for the surrogate.  

3. Subject model 

3.1 Model setup 

We apply our approach to a test model, developed with the goal to exhibit the typical behavior of more 
complex systems, but at the same time to be as basic as possible, so as to avoid model-specific 
complexities of nuclear reactor analysis.  

We use a simplified steady-state, 3-dimensional finite-volume model of a reactor core, with uniform 
fuel elements and no control mechanisms. In Figure 1, we visualize a single horizonal layer of the 
model, a representative point for each volume element is shown as a dot in its center. A basic unit of 
the core is a cylindrical fuel pin, surrounded by flowing coolant. We used a setup with 7 fuel pins. 

There are two sources of heat: nuclear fisssion inside the fuel pin, and thermal energy carried by the 
coolant. The model takes into account heat transport (including uniform convection, and diffusion), 
and fission, described by multi-group neutronic diffusion equations. Once the distribution of 
temperature over the core is obtained by solving a coupled system of heat balance and neutronic 
diffusion equations, the temperatures in the central fuel element are resolved to a finer mesh. The 
operational parameters of the model were chosen to correspond to sodium-cooled fast reactor with 
realistic temperature excursions. 

The intermediate parameters  are divided into two groups: thermodynamical and neutronic. 
Thermodynamical parameters are: heat conductivity  in fuel and coolant, specific coolant heat  
and the heat transfer coefficient . Neutronic parameters are (per energy group , or per group pair 

): fission, scattering and absorbtion-removal cross-sections (  correspondingly), 

energy spectrum parameter , yield of electrons per fission  and neutron diffusion coefficient . 
We used 4 energy groups. 

The underlying mathematical model consists of a coupled system: 

    (14) 

where  is the neutronic flux corresponding to energy group ,  is the total nuclear heat source; 
 is a finite volume element with boundary ,  is an outward normal vector depending on the 

shape of the cell;  is approximated by a linear expression for heat exchange rate between two 
volume elements (depends on  if the exchange is between fuel and coolant); density  is assumed to 
be constant.  
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FIG. 1. Finite-volume model of the reactor core 

The information on the model’s uncertainties was taken from the available material properties 
reports[7][8], and then interpreted as shown in (4). Due to relatively smaller observed experimental 
error, neutronic parameters were characterzied by only 1 uncertainty quantifier each (constant error), 
thermodynamical parameters received a second-order characterization by 3 uncertainty quantifiers. 
The total is 38 uncertainty quantifiers, some tests were performed with just the uncertainty in 
thermodynamical properties, with 12 uncertainty quantifiers. 

The coupled system (14) is solved using a fixed-point iteration procedure starting from a uniform 
distribution of  and a prescribed spatial distribution  along the pin length 

, : 

         (15) 

After convergence of (15), we obtain the distribution of heat inside the central pin by solving an 
additional heat equation in cylindrical coordinates  (with boundary conditions taken from the 
computed heat distribution over the core): 

            (16) 

We use the maximal fuel centerline temperature as a merit function; non-differentiability is resolved 
by using a differentiable approximation by a vector norm:  

          (17) 

We compute the complete gradient of the output by applying the augmented equations (11) to the last 
step of the iteration (15), and to the solution of (16). Note that for the chosen differentiation approach, 
this represents the minimal intrusion into the model code: all computed partial derivatives of 
elementary functions are required to evaluate the answer. 

3.2 Performance of the model 

The developed model demonstrates the temperature excursion of approximately 200 K in the coolant 
(770 K at the inflow); the centerline maximal temperature is in the 2200 – 2500 K range. According to 
trial runs of the model with different unceratinty states, the most important source of uncertainty for 
the chosen output is the fuel heat conductivity. On the other side of the scale, the effect of 
uncertainties in neutronic parameters is almost negligible (due to very small maximal uncertainty 
values, and absense of fuel depletion effects that would result in non-uniform heat generation).  
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One full run of the model takes 1 to 2 minutes of computational time (higher estimate corresponds to 
an average desktop computer). The calculation of the full gradient takes between 150% and 200% of 
the time of the function evaluation (compare with theoretical bound of 500%[12]).  

4. Surrogate model 

4.1 Surrogate model construction 

The surrogate model was created and validated using the following sequence of actions: 

⎯ Define a training set: choose a list of uncertainty quantifiers,  as explained in 
comments to (4); generate a set  of admissible values according to conditions on maximal 
uncertainty (3). 

⎯ Initialize and run the physics model: for each value , evaluate  by solving (14), (15), 

(16). Store the required intermediate components, and compute the derivatives . 

⎯ Evaluate the importance of indvidiual variables according to (10), at a neutral state of the 
system with no uncertainty: . 

⎯ Basis construction: assemble a polynomial basis (6) of degree up to 3 (2 in the tests that use all 
38 parameters). The next step, basis truncation, is optional. 

⎯ Basis truncation: using the magnitude of the parametric sensitivity, rank components of 
uncertainty state  by importance. We used three groups: high importance (top 3 values), 
intermediate importance (the following 3 values), low importance (the rest of the variables). Our 
truncated basis has maximal degree 3: each polynomial of third degree must include variables of 
high importance, each polynomial of second degree must include variables of high or 
intermediate importance, the rest of the polynomials are linear. The specifics of the approach are 
arbitrary: the groups of importance, and the degrees used can be adjusted to fit an available 
computational budget. In the setup used in our experiments, a PRD model on 12 parameters 
required 12 full runs of the model; a PRD model on 38 parameters required 8 full runs. 

⎯ Create polynomial fitting equations (9). The minimal number of matrix rows is equal to the size 
of the basis: we use a taller matrix (slight over-sampling). 

⎯ Additional analysis: use derivative information to also create a linear approximation: 

           (18) 

⎯ Validation: create a validating set  by the same rules as the training set, and evaluate the 
full model at every point, to compare with the results of PRD (trained on ), and of the linear 
approximation.  

⎯ Global sensitivity analysis: evaluate the sensitivity (12) of the full model, and of the surrogate 
model with respect to individual variables. For the full model, the estimation was performed 
using 8550 runs of the full model (at the computational cost of several days). To achieve the 
same precision, we used 15200 evaluations of the surrogate model (less than 1 minute of 
computational time).  

4.2 Performance of the PRD model 

In our numerical experiments, we seek to compare the performance of the introduced PRD method in 
reproducing the output (17) with two basic approaches to uncertainty quantificaiton: random sampling, 
and linear approximation. To simulate a sampling approach, we observe the outputs of the model on a 
validating set of 100 points. The linear approximation is constructed as shown in (18). We present the 
results for PRD constructed using the full and the truncated basis. We record the observed range and 
variability of the output, the average magnitude and variability of the error. We also record the number 
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of full model evaluations required for each approach. For random sampling, the corresponding 
computational cost of each run is slightly lower, because derivative information does not need to be 
computed. 

The results of one such test, for a model with 12 uncertainty quantifiers (i.e. only thermodynamical 
uncertainties enabled) are presented in Table 1. The temperatures are measured in degrees Kelvin. The 
tests for a model with 38 uncertainty quantifiers produced virtually the same performance, due to low 
magnitude of uncertainty in neutronic parameters, and overall low effect of this uncertainty. A 
visualization of the performance of surrogate models is also given in Figure 2: we show the 
magnitudes of error for the linear approximation, and for the PRD approaches, for 40 randomly 
selected points from the validation set. 

In another experiment, we measured how well the PRD model preserves the global sensitivities (12) of 
the full model. We used a full model on 38 uncertainty quantifiers, and a PRD model with full basis of 
order 2. See Table 2 and Figure 3 for the numerical data, and a visualization (logarithmic plot). 

In the measurement of global sensitivites, the uncertainty parameters corresponding to fuel heat 
conductivity are responsible for 99.99% of the variation in the PRD model, and for 98% in the full 
model. While we would also like to reproduce the small effects well, the large effects have greater 
practical significance. 

Table 1. Performance of the 12-parameter PRD model. 

 Random 
sampling 

Linear 
approximation 

PRD, full basis PRD, truncated basis 

Sample size 100 1 72 12 
Output range 2237.82 – 

2460.54 
2227.43 – 
2450.09 

2237.82 – 
2460.55 

2237.51 – 
2459.63 

Model standard deviation 59.05 59.12 59.05 58.96 
Error range  -0.01 –  

+10.38 
-0.02 – 
+ 0.02 

- 0.43 – 
+ 0.90 

Error standard deviation  2.99 0.01 0.29 
 

Table 2. Global sensitivities of the model 

Material property (first 3 uncertainty 
quantifiers, 1 in case of macroscopic 
cross-sections) 

Sensitivity of full model Sensitivity predicted by PRD 

Coolant heat capacity 0.2187·10-3  
0.1239·10-5  
0.1203·10-3 

0.0001·10-3  
0.0017·10-5  
0.0001·10-3 

Fuel heat conductivity 0.3876 
0.0005 
0.6097 

0.4090 
0.0017 
0.5893 

Coolant heat capacity 0.4963·10-4  
0.8723·10-6  
0.1416·10-4 

0.1232·10-4  
0.0207·10-6  
0.1349·10-4 

Heat transfer coefficient 0.3635·10-4  
0.2890·10-5  
0.2941·10-6 

0.5180·10-9  
0.2593·10-12  
0.6660·10-9 

Macroscopic cross-sections On the order of:  
10-6 to 10-3 

On the order of:  
10-10 to 10-7 
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FIG. 2. Performance of the 12-parameter PRD model. 

 

 

FIG. 3. Global sensitivities, log. scale 
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5. Discussion 

Our numerical experiments show (at least, for a simplified model) that the truncated PRD approach is 
an attractive choice for uncertainty quantification, both in absolute terms (low approximation error), 
and in relative terms (error per amount of effort). The truncated basis still captures a substantial 
portion of nonlinearity, without needing the large computational expense associated with the full basis. 
As the available computational resources increase, the PRD with full basis will eventually outperform 
both the PRD with truncated basis, and polynomial regression with no derivative information. We 
point out, however, that for complex multiphysics models, it is unlikely that we will be allowed a 
larger computational budget, i.e. the most likely allowed training set is on the order of 100 points.  

To characterize the performance of each method, we note the following. The range size is 
approximately 223 K: when predicting the range, the first-order sensitivity method produces an error 
of 4.5%, the PRD with truncated basis produces an error of 0.5%, and the PRD with full basis is 
almost error-free. If the goal is to predict correctly the range to within 10% of the error, the linear 
model is adequate. If the required threshhold if 1%, only PRD models perform well, at at no additional 
development cost (the derivative information needs to be computed in any case), though it may need 
about 10 times more computational time. We conclude that our hybrid (sampling-with-derivatives) 
approach is the most convenient way to extend the capabilities of multiphysics codes.  

Our conclusions are largely unaffected by the assumptions on the probability distribution of the 
uncertainty. As the number of parameters increases, and their relative importance becomes more 
balanced (for example, as in the model discussed in [18]) , we expect the performance specifications 
described above to change significantly, and in the favor of PRD approaches of the type presented 
here. 

6. Conclusions and research plans 

In our work, we found that effects of a moderate number of uncertain parameters on a complex nuclear 
reactor simulation model can be efficiently approximated using a hybrid method, combining 
polynomial regression with the use of derivative information and polynomial basis truncation. We 
have successfully applied this method for a coupled model of neutronics and thermohydraulics of a 
nuclear reactor, where the uncertainty originated in physical parameters (material properties) of the 
system. From the available information we have created a probabilistic model, consistent with the 
available experimental information. We observed the substantial advantage of PRD methods computed 
using derivative information over classifcal methods of uncertainty quantification, such as pure 
random sampling, linear approximation, and polynomial regression that does not use derivative 
information. In addition, we observed that our basis truncation heutristic efficiently produces a far 
better approximation of the output function than the linear model, while using far less computational 
resources than the PRD model with full basis. 

Overall, we have shown that PRD approaches have good potential for industrial applications. Further 
research is needed to determine whether the trends observed in this work hold for other applications, 
and for larger instances of unceratinty assessment in nuclear reactors. In our current efforts, we are 
extending the method to models of the nuclear reactor core that take into account additional 
uncertainty coming from the description of the non-uniform flow of the coolant, structural 
deformations of the reactor elements, and fuel depletion.  

The introduced approach to uncertainty quantification leads to multiple mathematical and engineering 
questions. The issues of interest include creation of optimal uncertainty models from available data 
about the physical properties of the reactor; optimal selection of collocations nodes (given limited 
computational budget for analysis of the model’s properties at each such point); efficient estimation of 
importance of individual variables leading to optimal basis truncation; choice of the best basis 
functions; correct processing of incomplete or unreliable derivative and state information. We also 
hope to provide additional theoretical justification for the suggested uncertainty quantification 
techniques, and derive error estimates for the performance of the surrogate model. 
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