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Economic Impacts of Advanced Weather Forecasting
in Energy System Operations
Victor M. Zavala, Emil M. Constantinescu, and Mihai Anitescu

Abstract—We analyze the impacts of adopting advanced weather
forecasting systems at different levels of the decision-making
hierarchy of the power grid. Using case studies, we show that
state-of-the-art numerical weather prediction (NWP) models can
provide high-precision forecasts and uncertainty information that
can significantly enhance the performance of planning, scheduling,
energy management, and feedback control systems. In addition,
we assess the forecasting capabilities of the Weather Research and
Forecast (WRF) model in several application domains.

Index Terms—weather forecasting, operations, economics, pho-
tovoltaics, wind, storage, unit commitment, energy dispatch.

I. INTRODUCTION

Weather conditions strongly influence the energy consump-
tion and performance of industrial and residential facilities. One
of the reasons is that energy is used mostly for conditioning
large and exposed spaces (e.g., buildings and warehouses)
and for generating industrial-scale utilities (e.g., steam and
cooling water) that rely on combustion and natural convection
phenomena in the presence of atmospheric air. In addition, the
next-generation energy portfolio relies on the exploitation of
intermittent resources such as solar radiation and wind power.

The operational hierarchy of energy systems involves several
layers, including planning and scheduling (or commitment),
set-point optimization (or energy management), and feedback
control. The weather acts as a dynamic disturbance to all these
operational layers. Major questions arise in this context: What
is the economic value of forecasting the weather conditions?
How can this information be exploited efficiently?How long and
precise should the forecast be? Intuitively, one would expect that
anticipating weather trends allows the operational layers to react
more proactively and thus enhances responsiveness and robust-
ness. Forecast trends can be exploited systematically through
optimization formulations of the different operational layers.
In certain domains where the economic impact of the forecast
accuracy is strong, the formulation might also need to incorpo-
rate uncertainty information in order to guarantee appropriate
performance and robustness. An important industrial example
is unit commitment/energy dispatch, where ambient temperature
forecasts are used to infer the load. In this operational layer, it
is desirable that the spread of the forecast error distribution be
as narrow as possible in order to minimize reserves, since these
translate into extra costs. In some other domains, however, the
economic value of using weather forecasting is entirely system
and task dependent and is difficult to assess.

Weather forecasting can be performed by using empirical
models (e.g., autoregressive, neural networks, persistence) or
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advanced numerical weather prediction models (e.g., physics-
based). A common problem with empirical models is that
their predictive capabilities rely strongly on the presence of
persistent trends. In addition, they neglect the presence of
coupled, spatiotemporal physical phenomena. Thus, they can
lead to inaccurate medium and long-term forecasts and over- or
underestimated uncertainty levels [9], [5]. The use of physics-
based numerical weather prediction (NWP) models is thus de-
sirable because longer-term forecasts and narrower uncertainty
bounds can be obtained. On the other hand, from an operational
point of view, the practical capabilities of NWP models are
limited. One of the major limiting factors is their computational
complexity. For instance, performing data assimilation every
hour at a high spatial resolution is currently not practical. In
addition, extracting uncertainty information from NWP models
quickly becomes intractable from the point of view of both
simulation time and memory requirements. This is an important
issue because NWP models are expected to be used to make
low- and high-frequency operational decisions (time scales from
days to minutes).

In this work, we present an integrative study of weather
forecasting, uncertainty quantification, and optimization-based
operations. We first analyze the impact of increasing the forecast
horizon on energy management operations for a multi storage
hybrid system and on the temperature control of a building
system. With this information, we seek to understand under
which conditions weather forecasts are beneficial. We then
compare the forecasting capabilities of an empirical modeling
approach with those of the Weather Research and Forecast
(WRF) model. Here, we seek to demonstrate that WRF can
provide accurate and consistent uncertainty bounds for different
weather variables in reasonable computational time. However,
limitations do exist in some domains. Therefore, we discuss
implementation bottlenecks and sources of error excursions, and
we propose potential enhancements.

II. ECONOMIC IMPACT OF FORECASTING

In this section, we analyze two systems to illustrate the
economic impact of folding weather forecasts in operations.

A. Multi-Storage Hybrid System

We first consider a photovoltaic system coupled to two storage
options described in [14], [16] and sketched in Fig. 3. The first
storage option has a large capacity but low round-trip efficiency
(hydrogen with 70% efficiency), while the second has a small
capacity but high efficiency (battery with 90% efficiency). The
operating principle of this system is similar to that of other multi
storage systems, such as photovoltaic-compressed air-battery ,or
wind-hydrogen-hydrothermal systems [10]. In these systems, it
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is necessary to decide the best strategy to store the intermittent
power input in order to minimize power losses and satisfy a
given load. To compute the optimal policies, we formulate an
optimal control problem with forecast horizons ranging from
1 hour to 14 days [17]. In Fig. 2, we present the effect of
increasing the horizon on the relative operating costs (using a
one-year forecast policy as reference). Several conclusions can
be drawn from this study: (1) the relative operating costs decay
quickly to zero as the horizon is increased; (2) for a purely
reactive strategy (1 hr), the relative costs can go as high as
300%; and (3) the close-to-optimal costs can be obtained with
a relatively short forecasts (1-14 days). The economic penalty
of using a forecast of 1 day is just an increase of 10% in relative
costs, whereas the penalty for a forecast of 12 hr goes up to 31%.
This implies that a practical forecast horizon should capture the
periodicity of the daily radiation. For this system, as the horizon
is increased, it is possible to exploit the more efficient battery
system to reduce the power losses of the hydrogen storage loop.
The magnitude of the cost reductions is problem dependent,
but the behavior is expected to be consistent in other storage
systems. The major factors affecting the impact of the forecast
are the relative efficiency and size of the storage devices.
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Fig. 1. Schematic representation of multi storage hybrid system.
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Fig. 2. Effect of forecast horizon on operational costs of multi storage hybrid
system.

B. Building System

Commercial buildings are energy-intensive facilities where
considerable cost savings can be realized through optimal
temperature control strategies. Researchers have found that the
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Fig. 3. Schematic representation of building system.
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Fig. 4. Effect of forecast horizon on operational costs of building system.

thermal mass of a building can be used for temporal energy
storage [2]. With this, it is possible to optimize the temperature
set-points trajectories during the day to shift the heating and
cooling electricity demands to off-peak hours and thus reduce
costs [3]. Since the thermal response of the building can be slow
(order of hours), this can be exploited to reduce the on-peak
electricity demand the next day. However, the optimal timing
at which to start the cooling at night directly depends on the
ambient temperature expected the next day. In addition, special
care needs to be taken to stay within the thermal comfort zone
at all times. To analyze the effect of increasing the forecast
horizon of the ambient temperature, we formulate an optimal
control problem of the general form presented in Section IV.
The problem involves considering the dynamic response of
the building internal temperature and of the building wall and
trying to find the optimal temperature set-point that minimizes
the heating and cooling costs under a given electricity price
structure. The ambient temperature enters the model through a
boundary condition at the external face of the wall [15].

The relative costs are presented in Fig. 4. As can be seen,
for a purely reactive strategy, the relative costs can go as high
as 24%. In addition, we observe that a horizon of 1 day is
sufficient to achieve the minimum potential costs. The reason
is that the thermal mass of the building cannot be used for a
long time because there exist losses through the wall. In fact, we
found that if the building insulation is enhanced, the costs for the
purely reactive strategy increase significantly. On the other hand,
when the building is poorly insulated, increasing the forecast
horizon does not reduce the costs. In other words, the economic
potential of adding forecast information is tightly related to the
ability to store energy in the system and to use it during off-peak
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times. Another potential benefit of using forecast information is
to minimize the number of start ups and shut downs of water
chillers and gas furnaces, thereby reducing electricity and fuel
costs and enhancing the responsiveness of the HVAC system.

III. WEATHER FORECASTING

In this section, we contrast the forecasting capabilities of
empirical and physics-based weather models.

A. Gaussian Process Model

A straightforward forecasting alternative is to use historical
measurement data to construct regression models. Several em-
pirical modeling techniques can be used to generate weather
forecast trends. An approach that has recently received attention
is Gaussian process (GP) modeling [11], [12], [7], [8]. The
idea is to construct an autoregressive model by specifying the
structure of the covariance matrix rather than the structure of
the dynamic model itself, as in traditional system identification
techniques such as the Box-Jenkins approach [1]. To illustrate
the use of this technique, we construct a forecast model by
regressing the future weather variable value (output) χk+1 to the
current and previous values (inputs) χk, ..., χk−N that can be
obtained from weather information data bases. In this case, N is
selected long enough to capture the trends of the variable of in-
terest. We define the model inputs as X[j] = [χk−N−j , ..., χk−j ]
and the outputs as Y[j] = χk+1−j , and we collect a number of
training sets j = 0, ..., Ntrain. We assume that the inputs are
correlated through an exponential covariance function of the
form

V(X[j],X[i], η) := η0 + η1 · exp
(
− 1

η2
∥X[j] −X[i]∥2

)
,

i = 0, ..., Ntrain, j = 0, ..., Ntrain,

where η1, η2, and η3 are hyperparameters estimated by maxi-
mizing the log likelihood function

log p(Y|η) = −1

2
YTV−1(X,X, η)Y − 1

2
log det(V(X,X, η)).

Once the optimal hyperparameters η∗ are obtained, we can
compute mean predictions YP with associated covariance VP

at a set of test points XP . In our context, these are the evolving
weather trends. The resulting GP posterior distribution is

YP = V(XP ,X, η∗)V−1(X,X, η∗)Y

VP = V(XP ,XP , η∗)

−V(XP ,X, η∗)V−1(X,X, η∗)V(X,XP , η∗).

The inverse of the input covariance VX := V−1(X,X, η∗)
(e.g., its factorization) needs to be computed only during the
training phase. With this, we can define a conceptual GP model
of the form

YP = GP(XP , η∗,VX).

Note that at current time tk, we have measurements to compute
only the single-step forecast χ̄k+1. To obtain multi step fore-
casts, we must propagate the GP predictions recursively. We use
the following algorithm,

1) Forecast mean computation: For j = 1, ..., NF do,
a) Set XP

[j] ← [χk−N , χk−N+1..., χk]

b) Compute YP
[j] = GP(XP

[j], η
∗,VX)

c) Drop last measurement, set χk+1 ← YP
[j], and

update k ← k + 1

2) Forecast covariance computation: Compute self-
covariance V(XP ,XP , η∗) and cross-covariance
V(XP ,X, η∗). Compute forecast covariance VP from
(1a).

This recursion generates the forecast mean YP =
[χ̄k+1, ...., χ̄k+NF ] and associated covariance matrix VP .
The resulting distribution N (YP ,VP ) can be sampled to
generate realizations of the future weather trends. Note that the
forecasted trends are local (single point in space) and thus do
not capture effects at neighboring locations.

B. WRF Model

We now describe the procedures used to compute forecasts
using WRF. The WRF model [13] is a state-of-the-art NWP
system designed to serve both operational forecasting and
atmospheric research needs. WRF is the result of a multi-
agency and university effort to build a highly parallelizable
code that can run across scales ranging from large-eddy to
global simulations. WRF has a comprehensive description of the
atmospheric physics that includes cloud parameterization, land-
surface models, atmosphere-ocean coupling, and broad radiation
models. The terrain resolution can go up to 30 seconds of a
degree (less than 1 km2). To initialize the NWP simulations,
we use reanalyzed fields. In particular, we use the North
American Regional Reanalysis (NARR) data set that covers
the North American continent (160W-20W; 10N-80N) with a
resolution of 10 minutes of a degree, 29 pressure levels (1000-
100 hPa, excluding the surface) every three hours from 1979 to
the present. We use an ensemble of realizations to represent
uncertainty in the initial (random) wind field and propagate
it through the WRF nonlinear model. The initial ensemble is
obtained by sampling from an empirical distribution. A similar
approach is presented in [15].

1) Ensemble Initialization: The NWP system evolves a given
state from an initial time t0 to a final time tF . The initial state
is produced from past simulations and reanalysis fields, that is,
simulated atmospheric states reconciled with observations in the
data assimilation step. Because of observation sparseness in the
atmospheric field and the incomplete numerical representation
of its dynamics, the initial states are not known exactly and can
be represented only statistically. We use a normal distribution
of the initial conditions to describe the confidence in the
knowledge of the initial state of the atmosphere. The distribution
is centered on the NARR field at the initial time, the most
accurate information available. The covariance matrix V is
approximated by the sample variance or pointwise uncertainty
and its correlation, C. The initial NS-member ensemble field
xt0
s := xs(t0), i ∈ {1 . . . NS}, is sampled from N (xNARR,V):

xt0
s = xNARR +V

1
2 ξs , ξs ∼ N (0, I) , s ∈ {1 . . . NS} , (2)

where C = Vij/
√

ViiVjj and Vii is the variance of variable i.
This is equivalent to perturbing the NARR field with N (0,V).
That is, xs = xNARR +N (0,V). In what follows, we describe
the procedure used to estimate the correlation matrix.
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2) Estimation of the Correlation Matrix: In weather models,
the correlation structure is typically localized in space. There-
fore, in creating the initial ensemble, one needs to estimate the
spatial scales associated with each variable. To obtain these
scales, we build correlation matrices of the forecast errors
using the WRF model. These forecast errors are estimated
by using the NCEP method [6], which is based on starting
several simulations staggered in time in such a way that, at
any time, two forecasts are available. The differences between
two staggered simulations is denoted as dij ∈ RN×(2×30days),
that is, the difference at the ith point in space between the
jth pair of forecasts, where N is the number of points in space
multiplied by the number of variables of interest. The covariance
and correlation matrices can be approximated by V ≈ ddT.

3) Ensemble Propagation through the WRF Model: The
initial state distribution is evolved through the NWP model
dynamics. The resulting trajectories can then be assembled to
obtain an approximation of the forecast covariance matrix:

xtF
s =Mt0→tF

(
xt0
s

)
+ ηs(t) , s ∈ {1 . . . NS} , (3)

where xt0
s ∼ N (xNARR,V

t0), ηs ∼ N (0,Q), and Mt0→tF (•)
represents the evolution of the initial condition through the
WRF model from time t0 to time tF . The initial condition is
perturbed by the additive noise η that accounts for the various
error sources during the model evolution. An analysis of the
covariance propagation through the model is given in [15].
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Fig. 5. Ambient temperature observations and GP model realizations for a
five-day forecast horizon.
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Fig. 6. Ambient temperature observations and WRF model realizations for a
five-day forecast horizon.

C. Model Validation

We next validate the forecast information obtained from the
WRF and the GP models. An ambient temperature data set

at position 40 30’N/80 13’W in the Pittsburgh, PA, area for
year 2006 was used. The data were obtained from the National
Weather Service Office. To assess the forecasting capabilities of
the GP model, we used a total of 120 training sets and we set
N to 24. We consider a forecast horizon of 5 days. In Fig. 5,
we present the forecast mean and 100 realizations drawn from
the predictive distribution. We can see that the GP model is
able to capture the periodicity of the trends. However, the mean
drifts away from the true realizations and the uncertainty bounds
are not able to encapsulate the actual realizations. Since the
distribution is inconsistent, it is not useful from an operational
point of view. Note that the temperature follows variations as
a result of spatial interactions and long-term metereological
phenomena. This situation might explain the lack of stronger
periodic trends. This might also explain the poor quality of the
forecasts. Nevertheless, we emphasize that empirical models are
valuable for high-frequency operations (on the order of seconds
or minutes). We now validate the forecast and uncertainty
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Fig. 7. Wind speed realizations for 6 wind-farm locations in Illinois at 10 m and
observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day.

information of the WRF model. In Fig. 6, we show the predictive
distribution for the temperature constructed using 30 ensemble
members and a forecast horizon of 5 days. Note that the forecast
errors are small (±5oC) and the uncertainty bounds enclose the
true observations tightly. We also present validation results of
wind speed forecasts generated by WRF at 6 active wind-farms
in the state of Illinois to analyze their accuracy and correlation
structure. The wind speed fields at 10 meters above the ground
for three consecutive days are presented in Fig. 7. We note that
the WRF realizations are able to capture the general trends of the
actual observations and to encapsulate the observations with few
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exceptions. The largest differences are observed at the beginning
of the third day. The wind speed trends are clearly more difficult
to predict than temperature trends. In Fig. 8 we show the spatial
correlations of the wind speed for a particular wind farm as
inferred from the 30-member WRF ensemble simulation. The
wind speed is highly correlated over the studied region, and it
has a nontrivial spatial structure. This observation is confirmed
by comparing Figs. 7 and 8. Here, we can see that the wind
speed realizations for wind farms #2, 3, and 4 are strongly
correlated, as predicted by the correlation mapping.

In this study we used version 3.1 of WRF [13]. The ensemble
approach taken for estimating the uncertainty in the weather
system is highly parallelizable because each realization evolves
independently through WRF. The most expensive computational
element is the evolution of each sample through the WRF sys-
tem. We therefore consider a two-level parallel implementation
scheme. The first level is a coarse-grained task decomposition
represented by each sample. A secondary, finer-grain level
consists in the parallelization of each sample. Our running
times indicate that around 32 CPUs are sufficient to generate
updated forecasts with WRF for intra day operations (e.g.,
unit commitment). The times also suggest that, in order to
generate updated forecasts for hourly operations (e.g., energy
management), one would need about 500 CPUs.
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Fig. 9. Operating policies with different forecasts. Thermal comfort zone is
highlighted by thick solid lines, predicted temperatures are gray lines, and actual
realizations are dashed lines.

IV. INTEGRATION OF FORECASTING AND OPERATIONS

In this section we discuss how forecast accuracy and un-
certainty information affect the performance of different opera-
tional layers.

A. Building Temperature Control

As discussed in Section II, optimal set-points for internal
building temperatures can be obtained by solving an optimal
control problem. We can extend this formulation to consider
multiple future realizations of the ambient temperature. The

problem can be cast as a sample-average stochastic optimal
control problem:

min
u(τ)

1

Ns

Ns∑
s=1

[∫ tk+T

tk

φ(zs(τ), ys(τ), u(τ), χs(τ))dτ

]
(4a)

s.t.
dzs
dτ

= f (zs(τ), ys(τ), u(τ), χs(τ))

0 = g(zs(τ), ys(τ), u(τ), χs(τ))
0 ≥ h(zs(τ), ys(τ), u(τ), χs(τ))

 τ ∈ [tk, tk + T ]

(4b)
zs(tk) = xk, s ∈ S. (4c)

The objective function is the future average cost; the constraints
include a differential-algebraic equation system describing the
building dynamics and a set of operational constraints. The
dynamic model is defined over each possible realization of
the weather conditions, which are denoted by χs(τ), s ∈ S,
and presented in Figs. 5 and 6. We solve this problem using
realizations obtained from the GP and WRF model distributions.
The optimal temperature set-point profiles are presented in Fig.
9. In the top graph, we present the profile for the ideal strategy
where perfect forecast information is assumed. Since there is no
uncertainty, the predicted profile matches the actual realization.
Note that the optimal profile hits continuously the bounds of
the comfort zone, as it tries to take advantage of the on-peak
and off-peak electricity rates to minimize costs. In the middle
graph, we present the optimal profiles obtained using forecast
information from the GP model. The gray lines are the predicted
realizations of the dynamic model in the stochastic optimal
control formulation. Since the uncertainty structure provided by
GP is not able to capture the ambient temperature observations,
the actual realization of the internal building temperature goes
outside the comfort zone. In the bottom graph, we see that the
use of the WRF model realizations results in an temperature
trajectory that stays within the comfort zone at all times. Note
that, since the comfort zone is very narrow (≈5oC), high-
precision forecast information is needed to realize the economic
benefits.

B. Unit Commitment and Energy Dispatch

We now analyze the accuracy of wind speed forecasts ob-
tained with WRF in unit commitment/energy dispatch opera-
tions with large adoption levels of wind power. The system
specifications are provided in [4]. The sample-average stochastic
formulation is

min
ps,j,k,ps,j,k,νj,k

1

NS

∑
s∈S

∑
j∈N

∑
k∈T

cps,j,k + cuj,k + cdj,k

 (5a)

s.t.
∑
j∈N

ps,j,k +
∑

j∈Nwind

pwind
s,j,k = Dk, s ∈ S, k ∈ T (5b)∑

j∈N
ps,j,k +

∑
j∈Nwind

pwind
s,j,k ≥ Dk +Rk, s ∈ S, k ∈ T

(5c)
ps,j,k ∈ Πs,j,k, s ∈ S, j ∈ N , k ∈ T . (5d)

Here, ps,j,k are the power outputs of the thermal units, pwind
s,j,k

are the wind power outputs of a set of turbines, Dk is the
demand, Rk are the reserves, and Πs,j,k is a set of feasible
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outputs that implicitly takes into account ramp, start-up, and
shutdown constraints. In Fig. 10, we present the profiles of
total aggregated demand, thermal power, and wind power for
three days of operation. The wind power profiles were generated
by using the wind speed realizations presented in Fig. 7. Note
that the aggregated wind power profile does not follow a strong
periodic trend. Nevertheless, the WRF realizations are able to
encapsulate the actual profiles (solid lines) during the first two
days. As a result, the optimizer is always able to satisfy the load,
even for an adoption level of 20%. In the third day, however,
we see a significant mismatch between the forecasted wind
power and the realized one in the first 12 hours of operation.
In this case, the reserves are sufficient to satisfy the load.
However, this result suggests that a high frequency and adaptive
inflation/resampling procedure is needed in WRF. This clearly
points out the need for more application-oriented forecasting
capabilities. Moreover, we found that a deterministic strategy
(using only the WRF forecast mean) is not able to sustain
adoption levels of more than 10% even with the allocated
reserves.
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Fig. 10. Closed-loop total power profiles obtained with stochastic UC formu-
lation. Top thick line is demand profile, medium thick line is the implemented
thermal profile, gray lines are planned realizations at beginning of each day,
bottom thick line is actual total wind power, and the adjacent gray lines are
forecast profiles.

V. CONCLUSIONS

We have presented an integrative study of weather forecast-
ing, uncertainty quantification, and optimization-based opera-
tions to analyze the economic impacts of adopting advanced
weather forecasting systems at different operational levels of
the power grid. Our studies suggest that costs and power losses
can be reduced by incorporating accurate forecasts. In addi-
tion, our model validation studies indicate that WRF forecasts
significantly outperform those obtained with empirical models,
specially for medium- and long-term horizons. As future work,
we are interested in developing application-oriented forecasts to
minimize computational limitations. In addition, targeted data
assimilation and adaptive inflation resampling procedures are
necessary to correct forecasts at higher frequencies.
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