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Gaussian process analysis of processes with multiple outputs is limited by the fact that far fewer good classes of covari-
ance functions exist compared with the scalar (single-output) case. To address this difficulty, we turn to covariance
function models that take a form consistent in some sense with physical laws that govern the underlying simulated pro-
cess. Models that incorporate such information are suitable when performing uncertainty quantification or inferences
on multidimensional processes with partially known relationships among different variables, also known as co-kriging.
One example is in atmospheric dynamics where pressure and wind speed are driven by geostrophic assumptions (wind
∝ ∂/∂x pressure). In this study we develop both analytical and numerical auto-covariance and cross-covariance models
that are consistent with physical constraints or can incorporate automatically sensible assumptions about the process
that generated the data. We also determine high-order closures, which are required for nonlinear dependencies among
the observables. We use these models to study Gaussian process regression for processes with multiple outputs and
latent processes (i.e., processes that are not directly observed and predicted but interrelate the output quantities). Our
results demonstrate the effectiveness of the approach on both synthetic and realistic data sets.
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1. INTRODUCTION

In this work, we explore Gaussian process (GP) regression [1–4] for models driven by physical principles in general
and for regression and state estimations, in particular. Predictions and spatial interpolation (kriging) using GPs is a
well-established technique [1, 5, 6]. Inferences on processes with multiple outputs, the topic of particular interest in
this work, is known as co-kriging [5, 7] or multi-kriging [8]. Here, we focus on spatial processes, nonetheless, GPs
can also be used in a time-dependent context processes [9–13], or in a spatio-temporal context [14].

One of the important operational decisions in uncertainty quantification, and in particular in carrying out Gaussian
process analysis is the choice of covariance functions. For the case of kriging for scalar (single-output) fields several
well-understood practical and theoretical guidelines exist [3, 5]. However, with multiple outputs it is difficult to
describe the process in order to correctly structure the outputs and ensure positive definitiveness [3]. One approach is
introduced by [8, 15] in which smoothing kernels are used to train how the outputs covary.

The difficulty of finding “good” covariance models for multiple outputs can have important practical conse-
quences. An incorrect structure of the covariance matrix can significantly reduce the uncertainty quantification and
forecast efficiency in kriging inferences [16]. Therefore, we argue, the covariance model may play an even more
profound role in co-kriging [7, 17]. This argument applies when the covariance structure is inferred from data, as is
typically the case. Studies such as [7, 17] have been replicated, although no connection was made at that time, and
channeled toward constructing compact kernels by [18–20]. For example, in [16] poor results were obtained when an
isotropic model was used instead of a more appropriate anisotropic one. We expect the situation to be even more crit-
ical thus for systems with outputs that have “different” physical meanings. In this case the auto- and cross-covariance
models [7] determine the efficiency of the kriging process.
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The aim of this work is to obtain covariance functions for multivariate processes by using information about the
physics of the process. The regime of interest here is the one where there exists information about the physics of the
process, not enough to use the mathematical equations directly (for example, boundary or initial conditions may be
unknown, but observations of the process are available), but enough to generate suitable covariance functions.

In statistics, physics intuition is often employed directly or indirectly in solving inference problems. A typical
strategy to include ab initio knowledge about a real system governed by known (in part) physical laws is hierarchical
Bayesian modeling [21, 22]. Specific examples include atmospheric modeling [23–26] and environmental sciences
[24, 27–30]. The physical component of the problem is typically simplistic, represented in order to allow tractable
computations. Relevant studies for this work include [18, 25, 26, 31–33], in which the authors include certain levels
of particular physical properties in the covariance structure. In [34] correlation functions are inferred from specific
linear PDEs. Apanasovich et al. [35] propose cross-covariance functions for multivariate random fields obtained by
a multidimensional extension of existing univariate models. Gneiting et al. [36] introduce multivariate Matérn cross-
covariance functions that allow each process component to maintain different smoothness properties. Constructing
covariance functions that preserve liquid incompressibility via the divergence operator is discussed in [37]. In this
study, we extend and generalize previous results by providing a general framework for assembling consistent auto-
and cross-covariance models.

The setup comprises of multiple observed outputs, with underlying processes that constrain the data but are not
necessarily directly observed. We term the latter as a hidden process model, which is a parallel to hidden (latent)
Markov chain models. We determine consistent auto- and cross-covariance models that are asymptotically consistent
with functional constraints that may depend both on the covariates and on observations.

In addition to deriving a systematic approach for describing the construction of covariance models governed by
linear processes, we ask what happens if the process is not linear. In this case. We find that high-order closures are
necessary to correctly specify the resulting covariance models. Moreover, the strategy that we introduce in this study
provides a physically consistent approach to introduce nonstationarity in the structure of the covariance matrix.

Framework. Here, we focus on Bayesian linear regression with normally distributed forcings, where the response
(vector) variables yi are functions of covariates x, which in our case and without the loss of generality are considered
locations in space. In addition, we consider that there is a relationship among the output fields that is driven by an
underlying physical process:

0nm = f([y1 y2 . . . ym]T ) +ψ , (1)

where yi ∈ Rni , f ∈ Rnm → Rnm, n =
∑

i ni, is a physical deterministic model that connects the different physical
quantities yi and whenψ is a stochastic forcing that accounts for the difference between our knowledge of the physical
process and the real one. One example is steady-state calculations for fluid dynamics problems. Another example is
given by imposing a divergence-free constraint on a multidimensional field, such as liquid incompressibility discussed
in [37]. We call a physical model (1) separable if we can write it as

y1 = f1([y1 y2 . . . ym]T ) +ψ1

y2 = f2([y1 y2 . . . ym]T ) +ψ2

. . . = . . .
ym = fm([y1 y2 . . . ym]T ) +ψm

. (2)

This is not to be confused with separable covariance models. These situations occur for instance in implicit temporal
discretization of PDEs, where the subscript represents the time index. A separable model (2) is explicit if we can write
it as yi = fi(yj1 , yj2 , . . . , yjd), where jk ∈ J \{i} is an index set that does not contain i. In other words we can write
(2) as

yi = gi({y1 . . . ym}/{yi}) +ψ ,

where g is a known physical process that governs some of yi variables. One example is the geostrophic wind ap-
proximation u = k × 1

ρc∇p [38], y1 ← u, y2 ← p, which will be used later in this study; see also a relevant use of
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gradients in kriging in [39]. In this study we shall focus on two types of models: an implicit separable one, which for
exposition brevity will generally be defined on two random fields,

[y1 y2]
T = f([y1 y2]

T ) +ψ =

[
f1(y1 y2) +ψ1

f2(y1 y2) +ψ2

]
, (3)

and on an explicit one defined by

y1 = g(y2) + η , (4)

where we assume that y1 and y2 are n-dimensional random fields, g and f are continuous (non)linear mappings
sufficiently regular, and ψ,η ∼ N (m{ψ,η},K{ψ,η}).

Covariances modeling for GP regression with multiple outputs can be roughly classified in three situations, de-
pending on the amount of information one has about the data source or process. In the first case, the variables (outputs)
are known or assumed to be mutually independent, and thus the system can be decoupled and solved separately as
two or more unrelated problems. In the second case, we assume that the processes are correlated, but we have no
information about the correlation function. In this case a model can be proposed or nonparametric inferences can
be carried out. In the third situation, we assume that the outputs have a known relationship among them; then the
question is how to include this information in the covariance model. The last point forms the scope of this study.

The rest of this paper is organized as follows. We next introduce covariance models and functions that are based
on differentiable functions. In Sec. 2.2 we discuss the implications of using nonlinear relationships and provide high-
order closures for the nonlinear models. Analytic auto- and cross-covariance functions are introduced in Sec. 2.3.
Extensive numerical and validation experiments are described in Sec. 3. We conclude with some final remarks.

2. MULTIDIMENSIONAL COVARIANCE MODELS AND FUNCTIONS

In the next section we present models for multidimensional covariance matrices with different closure assumptions.
We also introduce analytic forms for covariance functions that fall into the scope of this study.

2.1 Multidimensional Covariance Models

Let us denote the mathematical expectation E {y} by y and small perturbations around the expected value by δy =
y − y. The following lemma introduces a covariance model for a process with two distinct types of outputs that are
related through such a function as described in (4), y1 = g(y2) + η.

Lemma 2.1. [Covariance models for explicit processes]
If two processes y1 and y2 satisfy a physical constraint given by (4) with g(◦) ∈ C2, and Cov(y2, y2) = K22, then
the covariance matrix formed by the elements of the two vectors satisfies

Cov
(
[y1, y2]

T
)
= (5)[

LK22L
T + LCov(y2,η) + Cov(η, y2)L

T +Cov(η,η) LK22 +Cov(η, y2)
K22L

T +Cov(y2,η) K22

]
+O

(
δy32

)
,

where L is the Jacobian matrix that corresponds to g evaluated at E {y2}.
Proof. The Taylor expansion of g(y2) about E {y2} gives

g(y2) = g(y2) + Lδy2 +
1

2
δyT2 Hy2 +O

(
δy32

)
,

where H = ∂2g
∂y2

∣∣∣
y=y

. Take the expectation of (4):

y1 = g(y2) + η = g(y2) +
1

2
δyT2 Hδy2 +O (δy32) + η , (6)

= g(y2) +
1

2
tr(HCov(y2, y2)) +O (δy32) + η .
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Equation (6) represents an estimator for the mean process. Subtract (4) from (6), expand g(y2), post multiply by δyT2 ,
and take the expectation on both sides:

δy1δyT2 = Lδy2δyT2 +

(
1

2
δyT2 Hδy2 −

1

2
δyT2 Hδy2

)
δyT2 +

(
O (δy32)−O (δy32)

)
δyT2 + δη δyT2 .

We close the system by ignoring quadratic and higher terms in the expansion:

Cov(y1, y2) = LCov(y2, y2) + Cov(η, y2) ,

or in short K12 = LK22 +Kη2. To compute K11, we apply a similar procedure and obtain (5).
Next we have to show that covariance model (5) is an admissible covariance matrix, that is, Cov

(
[y1, y2]

T
)

is
symmetric positive definite. A symmetric matrix is positive definite if and only if a sub-block and its Schur com-
plement are both positive definite. This can be shown by using minimization of quadratic forms [40] or exploiting
properties of determinants [41]. If we pick K22 and its Schur complement S = (LK22L

T + LK2,η + Kη,2L
T +

Kηη)− (LK22 +Kη,2)K
−1
22 (LK22 +Kη,2)

T , we have that:

S = Kηη −Kη,2K
−1
22 KT

η,2 , (7)

which is positive definite because the expression of S in (7) is also the Schur complement of K22 from

Cov
(
[η, y2]

T
)
=

[
Kη,η Kη,2
K2,η K22

]
, (8)

which is by construction an admissible covariance matrix. This also results from the marginalization property of
Gaussian processes.

Note that if g is nonlinear in y, L may depend on the mean (value process).
The procedure outlined above can also be used to derive analytic closed forms for covariance and cross-covariance

functions driven by linear and nonlinear operators (physics). A few examples for squared exponential and the more
general Matérn functions [5] are discussed in Sec. 2.3 and shown in Figure 1 for two linear operators (g(y) = ∂/∂x y
and g(y) = ∂2/∂x2 y) and a quadratic one g(y) = y2.

In the next proposition generalize the result in Lemma 2.1 to implicit separable systems.

Proposition 2.2. [Covariance models for implicit processes]
Consider a process driven by the implicit separable systems (2). Then under the second-order closure assumptions the
block covariance matrix elements satisfy the following simultaneous algebraic equations:

K = LKLT + LKyψ +KψyLT +Kψψ , (K)ij = Kij = Cov(yi, yj) , (L)ij = Lij =
∂fi
∂yj

. (9)

In addition, given K22 and if (I − L11) is invertible, then for the reduced system (3), the following hold:

K11 = L11K11L
T
11 + L12

(
(I − L11)

−1(L12K22 +Kη1,2)
)T

LT
11+ (10)

L11

(
(I − L11)

−1(L12K22 +Kη1,2)
)
LT
12 + L12K22L

T
12+

Kη1,1L
T
11 +Kη1,2L

T
12 + L11K1,η1 + L12K2,η1 +Kη1η1 ,

K12 = (I − L11)
−1(L12K22 +Kη1,2) . (11)

Proof. We use Lemma 2.1 and the chain rule on (2). We illustrate the calculations on the system with two vector
components (3). The following relations are obtained:

fi(y1, y2) = fi(y1, y2) + Li1δy1 + Li2δy2 +O
(
δy2

)
,

yi = f(y1, y2) +O
(
δy2

)
+ ηi ,

δyi = Li1δy1 + Li2δy2 + δηi ,
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where we ignore all quadratic and higher-order terms. By using the same procedure in Lemma 2.1, one obtains

K12 = δy1δyT2 = L11K12 + L12K22 +Kη1,2 .

If (I − L11) is invertible, then one obtains (11). The equation for K11 results by taking the outer product of δy1 with
itself and then the expectation of the resulting expression:

δy1δyT1 = L11K11L
T
11 + L12K21L

T
11 + L11K12L

T
12 + L12K22L

T
12+

Kη1,1L
T
11 +Kη1,2L

T
12 + L11K1,η1 + L12K2,η1 +Kη1η1 .

Then the substitution of K12 in (11) yields (10). The terms can be collected and expressed as in (9). Relation (10) is
obtained by eliminating K12 from (9).

We remark that, in general, cross-covariances involving y2 and the forcing η are difficult to specify. Nevertheless,
we consider it important to preserve such terms in order to have a complete representation of the problem. In our
numerical experiments, however, we will treat these terms as zero.

The procedure in Proposition 2.2 can also be interpreted as an extension of the Delta method procedure [42, 43].
We also note the agreement between (9) and the results presented in [18], in which a particular hyperbolic PDE driven
process is explored. Thus far we have assumed that the physics constraint is exactly or well approximated by the
first derivative, implying that the physics is approximately well represented by its liniarization. If this is not the case,
then higher moment closures for a Gaussian processes can be explored [44]. Alternatively, closure for non-Gaussian
distributions are discussed in [45–47].

2.2 High-Order Closures

Closures with higher-order moments can lead to more accurate models for nonlinear processes. We now develop the
covariance model with third-order closure of the error truncation terms for problem (3).

To use high-order expansions, we will use tensor algebra with the following conventions. The Hessian tensor of
g(y) is given by a rank-three tensor Hijk =

∂2g(yj)
∂yi∂yj

. The transpose of a tensor is obtained by permuting the first and
last indices: (Hijk)

T = Hkji. The trace of a rank-three tensor is a tensor contraction to a (rank-one tensor or a) vector
defined as tr(H) = {

∑
ik Hi,j,kδik}j . The product of a rank-three tensor with a matrix is defined in the usual dot

product sense, resulting in a rank-three tensor. By using these conventions we can represent the algebraic relations in
this section just as in the scalar-valued function case.

Proposition 2.3. [Covariance models with high-order closures]
Consider a process driven by (3). Then under the third-order closure assumptions, its covariance matrix takes the
following form:

Cov
(
[y1, y2]

T
)
=

[
K11 LK22 +Cov(η, y2)

K22L
T +Cov(y2,η) K22

]
+O

(
δy32

)
, (12)

where L is the Jacobian matrix, H the Hessian tensor corresponding to g evaluated at E {y2}, and

K11 = KI
11 +

1

4
δyT2 Hδy2δy

T
2 H

T δy2 −
1

4
tr(HK22)tr(HK22)

T +
1

2
δyT2 Hδy2η

T +
1

2
δηδyT2 H

T δy2 , (13)

where KI
11 is the corresponding term using second-order closure assumptions.
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Proof. The Hessian is a symmetric operator in the sense defined above, H = HT because we assume that g is a
smooth function. We therefore have

δy1 =Lδy2 +

(
1

2
δyT2 Hδy2 −

1

2
δyT2 Hδy2

)
+
(
O
(
δy32

)
−O (δy32)

)
+ δη ,

δy1δy
T
2 =Lδy2δy

T
2 +

1

2
δyT2 Hδy2δy

T
2 −

1

2
tr(HK22)δy

T
2 + δηδyT2 ,

K12 =LK22 +
1

2
δyT2 Hδy2δy

T
2 +Kη2 = KI

12 ,

where δyT2 Hδy2δy
T
2 has only third-order central moments and is therefore zero (for Normals), and KI

12 is the second
order approximation of the cross-covariance.

Block K11 follows as

K11 =KI
11 +

1

2
Lδy2δyT2 H

T δy2 +
1

2
δyT2 Hδy2δy

T
2 L

T +
1

4
δyT2 Hδy2δy

T
2 H

T δy2

− 1

4
tr(HK22)tr(HK22)

T +
1

2
δyT2 Hδy2η

T − 1

4
tr(HK22)tr(HK22)

T

+
1

4
tr(HK22)tr(HK22)

T +
1

2
δηδyT2 H

T δy2 ,

where KI
11 is given by (5). Then K11 reduces to:

K11 =KI
11 +

1

4
δyT2 Hδy2δy

T
2 H

T δy2 −
1

4
tr(HK22)tr(HK22)

T (14)

+
1

2
δyT2 Hδy2η

T +
1

2
δηδyT2 H

T δy2 .

We see that relaxing the closure assumptions does not complicate the structure of entire covariance matrix; how-
ever, block K11 appears to present computational difficulties. Nonetheless, by using the relation among moments in
Normal distributions, we observe that the quartic term in (14), which is potentially the most difficult term, can be
factorized in terms of entries in K22 [48]:

(δy2(i))4 = 3K2
22(i, i)

(δy2(i))2(δy2(j))2 = K22(i, i) ∗K22(j, j) + 2K2
22(i, j) .

Such models are exact for quadratic processes such as the derivatives occurring in Burgers equations; that is, ∂u2/∂x
or u ∂u/∂x. For more complicated problems, truncated model (12) represents an approximation of the covariance
matrix by accounting for a one-way action of high-order moments. In Section 3.2 we provide a simple but illustrative
example in which the high-order closure assumptions lead to a more robust matrix structure.

2.3 Auto- and Cross-Covariance Functions

We now focus on the analytic forms of the covariance functions that are used to generate the covariance matrices
discussed above. The analytical covariance functions provide distinct theoretical and practical advantages by allowing
the design of grid-independent covariance structures and facilitating a rigorous asymptotic analysis. By using the same
calculation procedures we arrive at several covariance models. However, because the analytic forms depend on the
covariance function of the independent process (i.e., K22, y2) and the expression that relates it to the dependent one
(i.e., g), we limit our results to a few processes. In Figure 1 we present the auto- and cross-covariance functions
for processes driven by the following: y1 = ∂

∂xy2, y1 = ∂2

∂x2 y2, and y1 = y22 ; these functions may correspond to
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processes such as pressure-wind, diffusion, or force-acceleration, respectively. In every case y2 is modeled either by
squared exponential or by Matérn covariance functions. These results can be obtained by using the intermediate steps
in the proof of Lemma 2.1 or can be derived from their characteristic functions by differentiating the kernels in the
Fourier space; see [5].

We assume that the y2 process is weakly stationary and sufficiently mean-square differentiable (in the Matérn case)
and all metrics and multiplicative factors are positive [5]. With the standard kriging notation, we recover the results
presented in [5] for the mean square differentiable process Z(x1, x2) and for which one obtains the auto-covariance
function of the differentiated process as kŻ(d) = −k′′(d), where d = |x1 − x2| and k(d) = Cov(Z,Z). A similar
strategy, but in a different coordinate system, is described in [7, 17, 26].

The linear processes lead to simple auto- and cross-covariance functions. In the nonlinear case the kernel takes a
parametric form that depends on the mean value process, which comes at no surprise. In the top part of the table we
illustrate the square exponential covariance function and the generated auto- and cross-covariances. We also present
a graphical illustration of the kernels for scalar variables with some fixed coefficients, and a 3-dimensional (matrix)
representation of K22, with variance equal to two. The auto-covariance functions need to be positive definite, and
for reference in the “Gaussian” kernel case we also give their respective Fourier transform, f(ω). The lower part
of Figure 1 presents the same results for the Matérn functions. A numerical validation of the covariance functions
described in Figure 1 is given in Section 3.2.
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3. NUMERICAL EXPERIMENTS AND VALIDATION

In this section we provide a numerical illustration of the theoretical considerations introduced in the preceding sec-
tions. We begin with a simple one-dimensional process. Here we show both the auto- and cross-covariance models
and perform several Gaussian process linear regression experiments under a controlled setting. Next we investigate
linear regression using the covariance models on a two-dimensional problem that is based on a realistic data set.

In all the regression experiments we compare the inference process carried with the covariance models introduced
in this study and with an independent fit of the different quantities. This is intended to expose the efficiency gains
when the covariance structure is properly specified.

3.1 One-Dimensional Model Process

We first introduce a problem inspired by the geostrophic balance (atmosphere in equilibrium) [38], which relates wind
speed and pressure after a series of approximations: wind ∝ ∂/∂x pressure, and therefore g(◦) = ∂

∂x◦. To give more
physical intuition, we use u for wind and p for pressure. For this model we evaluate the following example:

p ∼ N (0, Cse) , x ∈ [−1, 1] , ∆x = 2/100 ,

u =
∂p

∂x
, g(p) =

∂

∂x
p ,

(15)

where Cse(i, j) = σ2 exp
(
−1

2
(x(i)−x(j))2

ℓ2

)
. For our synthetic example we take ℓ = ℓ2 = 7∆x/

√
2. We also

consider diffusion, g(◦) = ∂2

∂x2 ◦, as well as a nonlinear operator, g(◦) = ◦2.
For regression problems we consider the following bivariate one-dimensional model:

y =

[
y1
y2

]
=

[
u(x)
p(x)

]
, x ∈ [−1, 1] , xi = 2∆x · i− 1 , i = 1, . . . , 100 , ∆x = 2/100 , (16)

y1 = u(x) = g(p(x)) = α
∂

∂x
p(x) + η , η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])) , Cov(y2,η) ≡ 0 , (17)

y2 = p(x) ∼ N (0, Cse([ℓ2,σ
2
2])) , (18)

where u represents the wind field, p takes the place of the pressure, and Cmat,ν=5/2 is the Matérn covariance function
with the corresponding smoothness. This process is observed at various grid points fi with an additive Normal noise
ε: [

f1
f2

]
= Hy

[
y1
y2

]
+

[
ε1
ε2

]
, εi = N (0,σ2n,iI) , (19)

where Hy represents an observation operator that picks values corresponding to selected grid-points. In this case the
Jacobian matrix corresponds to a differential operator, L = α ∂

∂x .
We note that the particular form of processes described by (15) and (16)-(19) is rather general and quite common in

practice, where one may find observations that represent the state and their derivatives (in space) also called tendencies
in the atmospheric sciences [17, 25, 26, 38].

3.2 Validation: Some Examples of Covariance Models

We first consider the set of governing equations presented in Figure 1 and calculate the cross- and auto-covariance
functions for each case for the two-dimensional kernel K22 represented therein. The analytical results are contrasted
with sample-based covariance estimation.

In Figure 2 we show the auto-covariance (K11) and cross-covariance (K12) obtained from 10,000 samples as
well as the analytical model that corresponds to (16)-(19). Observe the almost perfect resemblance as well as the
equivalence among these realizations and the analytic kernels described in the upper segment of Figure 1. In Figure
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FIG. 2: Auto-covariance and cross-covariance matrices obtained by (a, c) using Lemma 2.1, and model (15) and
(b, d) sample approximation based on 10,000 simulations; the physics-model-based approach, that is y1 = u(x) =
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FIG. 3: Auto-covariance and cross-covariance matrices obtained by (a, c) using Lemma 2.1, and a second-order
derivative (Laplace operator) model: y1 = u(x) = g(p(x)) = α ∂2

∂x2 p+ η, and (b, d) sample approximation based on
10,000 simulations.

3 we illustrate the sample-based and analytic covariance matrices for the diffusion process. The same number of
samples was used as before. The relatively small difference between the two approximations can be attributed to
sampling noise; that is, increasing the number of samples reduced the size of the difference. Of course, because the
model is linear, we expect the formula to be exact. The L operator is obtained from a finite difference approximation
of g; the two approximations considered here and throughout this study are: y′(x) ≈ (y(xi+1) − y(xi)/∆x) and
y′′(x) ≈ (y(xi+1) − 2y(xi) + y(xi−1))/∆x2). We note that in this case samples from the exact distribution can be
drawn and it is not necessary to use a finite difference approximation; however, we attempt to replicate a setting in
which the samples resulting from other processes are not as easily obtained.

We next discuss results obtained by using the covariance matrix model with high-order closure assumptions as
given by Proposition 2.2 and the one based on the second-order closure as described in Lemma 2.1 that correspond to
the quadratic process y1 = y22 +η. In this case (as explained by (13)) K11 differs between the two covariance models;
however, K12 is practically unchanged. We therefore focus on K11, and in Figure 4 we illustrate the absolute errors
in the covariance matrix entries between the quadratic and cubic covariance matrix models and two sample-based
approximations using 10,000 and 50,000 samples. The error levels estimated by using 10,000 samples are relatively
similar between the two matrix models; however, we note that when increasing the number of samples used for the
error estimate, the quadratic model shows significantly less errors. The latter indicates that the high-order closure
provides a more robust covariance matrix approximation in this case.

This set of three experiments correspond to the particular setting described in Figure 1 and illustrate the theoretical
statements presented in Propositions 2.2 and 2.3.

3.3 Physics-Induced Nonstationarity

We now briefly discuss nonstationary models induced in the covariance structure through procedures introduced in this
study. For brevity we present a one-dimensional case with one variable; nonetheless, this strategy can be extended to
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and η ∼ N (0, Cmat,ν=5/2([ℓη,σ
2
η])), by using (a, b) 10,000 samples and (c, d) 50,000 samples. We show the error

estimates for two covariance models that correspond to (a, c) a quadratic closure assumption (5) and (b, d) a cubic
closure assumption (9) of the physical process. We note that improving the accuracy of the sample error estimate
yields a significantly reduced error in the covariance matrix entries for the cubicly truncated model.
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show ten samples from K11 obtained with a(x) = 1 and with (20), respectively.

multiple variables and dimensions and is applicable on all the proceeding examples. A situation in which no stationary
models are suitable is when the domain geometry (or topology) is not uniform, such as, shallow-water approximations
and subsurface flows.

We consider the first-order differential model in space y1 = a(x)y2(x)
′, where a(x), for instance, represents a

constraint or a mapping from an irregular grid to a regular one. From Lemma 2.1 it follows that K11 = LK22L
T

there L is the spatial differential operator discretized as y(xi) = a(xi) ∗ (y(xi) − y(xi−1))/∆x; alternatively a(x),
can take the place of a fixed ∆x.

In Figure 5.a we illustrate samples drawn from distributions induced from the differential operator with spatial
variability. In one case we consider a(x) to be a fixed value; in the other we choose in an ad hoc manner a(x) to be:

a(x) =
3

2
+ sin

(
1 +

xπ

N

)2

+

(
1

2
+
( x

N

)3
)
cos

(
1 +

15xπ

N

)
, (20)

where N is the number of grid points. The induced covariance, K11 is shown in 5.b, and ten samples drawn from K11

with a(x) = 1 and with a(x) defined by (20) are contrasted in Figs. 5.c and 5.d, respectively. We can also interpret
a(x) to be the reciprocal of the fixed grid spacing ∆x. The samples in Fig. 5.c have a noticeable spatial structure
induced in terms of length-scale and variance through the use of a(x). In particular, note the sample “clamping” that
takes place around grid-point 90 and the relative wavy structure of the weighting function that can be seen in the
sample behavior.

Note that the nonstationarity is introduced directly in the discretization of the physical process and therefore
provides a more consistent structure than treating the physics and coordinate transformations separately.
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3.4 GP Regression Using Physics-based Covariance Models

We compute the joint distribution and posterior applied in a GP regression problem with multiple outputs. The central
example is the geostrophic wind (16)-(19); nonetheless, we also illustrate GP regression results for systems governed
by other processes. Henceforth, quantities subscript ◦∗ represent predictions.

3.4.1 Gaussian Process Regression for the Wind-Pressure Problem

In this section we consider Cov(y2,η) = 0 and make predictions for y1(x∗) = y∗1 and y2(x∗) = y∗2. The joint
distribution corresponding to problem (16)-(19) is given by Lemma 2.1:

y1
y2
y∗1
y∗2

 ∼ N



g(y2) +
1
2 tr(HK22)
y2

g(y∗2) +
1
2 tr(HK∗2,∗2)
y∗2

 ,


LK22L

T +Kηη +Kε1ε1 LK22 LK2,∗2L
T +Kη,∗η LK∗2,∗2

K22L
T K22 +Kε2ε2 K2,∗2L

T K2,∗2
LK∗2,2L

T +K∗η,η LK∗2,2 LK∗2,∗2L
T +K∗η,∗η LK∗2,∗2

K∗2,∗2L
T KT

2,∗2 K∗2,∗2L
T K∗2,∗2


 ,

The predictive distribution is then obtained as a normal distribution with expectation and covariance matrix given
by [3]:

y∗|X,X∗,y = m(X∗) +K21 (K11 +Σ)
−1

(y −m(X)) ,

Cov(y∗|X,X∗,y) = K22 −K21 (K11 +Σ)
−1

K12 , Σ =

[
σ2n,1I 0
0 σ2n,2I

]
.

To fit the hyperparameters in the covariance model, we use the marginal log-likelihood expression (or evidence):

log(P (y|X)) = −1

2
(y −m(X))

T
(K11 +Σ)

−1
(y −m(X))− 1

2
log |K11 +Σ| − n2

2
log(2π) ,

and its gradient given by

∂

∂θj
logP (y|X, θ) =

1

2
(y −m(X))

T
K−1 ∂K

∂θj
K−1 (y −m(X))− 1

2
tr

(
K−1 ∂K

∂θj

)
, (21)

=
1

2
tr

(
(ααT −K−1)

∂K

∂θj

)
; α = K−1 (y −m(X)) .

We consider a more general framework that includes observational operators. We define two mappings from
the observation space to the prediction space: H1,∗1 : Rn∗1 → Rn1 and H2,∗2 : Rn∗2 → Rn2 as well as their
linearizations H1,∗1 and H2,∗2, respectively. Let us also consider n∗1 ≫ n1 and n∗2 ≫ n2, which corresponds to
having sparse observations relative to predictions. For instance, if x1 = [1, 2, 3]T and x∗1 = [2, 3]T , then H1,∗1 =[

0 1 0
0 0 1

]T
. We also consider L = L∗1,∗2 to be a well-defined mapping L : Rn∗2×n∗1 and L1,∗2 = H1,∗1L∗1,∗2,

where L is the Jacobian matrix introduced in Lemma 2.1. The elements in the joint distribution can be computed as
follows:

K11 =

[
L1,∗2K∗2,∗2L

T
1,∗2 +Kηη L1,∗2K∗2,∗2H

T
2,∗2

H2,∗2K∗2,∗2L
T
1,∗2 K2,2

]
,

K12 =

[
L1,∗2K∗2,∗2L

T +Kη,∗η L1,∗2K∗2,∗2
H2,∗2K∗2,∗2L

T K2,∗2

]
, K21 = KT

12 ,

K22 =

[
LTK∗2,∗2L+K∗η,∗η LTK∗2,∗2

(LK∗2,∗2)
T

K∗2,∗2

]
.
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(a) simple linear model (b) differential model

FIG. 6: Independent fit of two Gaussian processes (grey) and dependent fit for two models: (a) for a simple linear
model: y1 = y2 + η, y2 ∼ N (0, Cse([ℓ2,σ

2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])) and (b) a differential model

(first order approximation): y1 = u(x) = g(p(x)) = α ∂
∂xp + η. The dashed line represents the “truth” with noisy

observations denoted by circles. The solid dark line represents the independent fit and the grey shade the point
variance. The blue solid line with blue shade represents the dependent fit.

We consider the following hyperparameters for problem (16)-(19): θ = {ℓ2, ℓη, σ22, σ2η, σ2n,1, σ2n,2}.

Simple Linear Process. In Figure 6.a we present the independent and joint fit of two Gaussian processes for the
linear problem y1 = y2 + η, y2 ∼ N (0, Cse([ℓ2,σ

2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])). This means that y1

is a noisy representation of y2. The two processes are on the same grid (“x”). The GP model with the joint fit
collects observational information from both covariates when computing the posterior and therefore gives a better
prediction. This is not surprising because the regression on the joint process is identical with a regression performed
single variable with the complete set of observations.

First-Order Differential and Laplace Operators. In Figure 6.b we present the same experiment but replace the
physics process with a first-order differential operator in space, which is approximated by finite differences. We again
see the more accurate agreement between prediction and the “true” value when using the joint model. In Figure 7.a we
present the results for a Laplace operator with the same conclusions. In both cases we note the near-perfect fit on the
left boundary of process y2 that has no observations. This is a direct result of information transfer from observations
in y1 present at that location.

Quadratic Process. In Figure 7.b we present the results for a quadratic “physics” process: y1 = y22 + η, y2 ∼
N (6, Cse([ℓ2,σ

2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η])). The mean process is set to six in order to limit the observ-

ability issues. For this case we use the high-order closure covariance model introduced in Section 2.2. To illustrate
quantitatively the difference between using a second-order closure as assumed in Lemma 2.1 and the high-order clo-
sures assumed in Proposition 2.3, we compare the RMS of the error in the prediction obtained using these two models.
When using a linear covariance model the RMS of y1 is 3.40, whereas the high-order model used in prediction yields
an RMS of 2.83. Of course y2 has less improvement, 0.31 from 0.29, because the auto-covariance model is exact;
furthermore, an independent fit gives 11.10 for y1 and 1.12 for y2. We argue that these results are reasonable given
the nature of this experiment, that is, the fact that the Normality assumptions are not optimal anymore; however, we
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FIG. 7: Independent fit of two Gaussian processes (grey) and dependent fit for (a) a differential model - Laplace
operator: y1 = u(x) = g(p(x)) = α ∂2

∂x2 p + η, y2 = p ∼ N (0, Cse([ℓ2,σ
2
2])) and η ∼ N (0, Cmat,ν=5/2([ℓη,σ

2
η]))

and (b) a quadratic model: y1 = y22 + η. The high-order closure is used in the latter experiment. The dashed line
represents the “truth” with noisy observations denoted by circles. The solid dark line represents the independent fit
and the grey shade the point variance. The blue solid line with blue shade represents the dependent fit.

note that they are in agreement with our theoretical expectations through an overestimation of the auto-covariance in
the quadratic closure model as indicated in Fig. 4.

3.5 Large-Scale Numerical Experiment

We next apply the covariance models described in this manuscript to an inference problem for geostrophic winds
based on data resulting from real regional numerical weather prediction systems. In this case we have two-dimensional
fields. A similar experimental setting was presented in [17, 26], and due to its relevancy we choose the same type
of problem. Nonetheless, by taking a consistent and systematic approach at constructing our models we argue that
the positive results obtained in this study extend to other linear and, when using high-order closures, even nonlinear
processes. We first generate a synthetic data set in order to validate our covariance models and approach. We then use
a realistic data set from the output of a weather prediction model.

3.5.1 Geostrophic Wind

The geostrophic wind is the atmospheric wind field that results from the balance between the Coriolis effect and the
pressure gradient force [38]. This is a widely used model for describing the wind fields in the upper troposphere. On
a constant pressure surface and on a Cartesian grid, the geostrophic wind follows as

ug = −αu
∂ϕp(x, y)

∂y
, vg = αv

∂ϕp(x, y)

∂x
, (22)

where ug and vg are the geostrophic west-east and south-north wind vector components, respectively; ϕp(x, y) is the
geopotential surface (ϕ = p/ρ, where ρ is the air density) at a given pressure level p and αu,v is the reciprocal of
the Coriolis force. In Fig. 8 we illustrate the wind speed and geostrophic wind approximation in the top panel at a
pressure level of 500 mb. In the lower panel we zoom-in over central California to illustrate the relative resemblance
between the two fields, but also some discrepancy. We note that to obtain the geostrophic wind field in Fig. 8, the
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FIG. 8: Wind speed, vector, and geostrophic approximation at a pressure level of 500mb.

scaling αu,v was manually fitted to a constant for the entire domain, whereas in reality this factor varies in the north-
south direction. This approach illustrates two aspects: the differential model is appropriate, and additional forcing is
necessary to account for such discrepancies as represented by the apparent vortex disruption.

3.5.2 Stochastic Model for Geostrophic Winds

The state vector considered for inference is y = [ug, vg,ϕ]
T . The physics-induced relationship becomes

[
u
v

]
=

[
ug

vg

]
+Σ , Σ = N (muv,Ku,v) , Ku,v =

[
Kuu Kuv

Kvu Kvv

]
(23)

y1 =

[
ug

vg

]
=

[
(−Ly ⊗ Ix)ϕ
(Iy ⊗ Lx)ϕ

]
=

[
(−Ly ⊗ Ix)
(Iy ⊗ Lx)

]
(I2 ⊗ ϕ) =

[
Luϕ

Lvϕ

]
= g(y2) = g(ϕ) , (24)

where Lx,y is the one-dimensional differential operator given in (22) with respect to the x (west-east) and y (south-
north) directions, respectively, I{x,y} are identity matrices with dimensions given by the horizontal x and y grid points,
and ⊗ denotes the Kronecker product.
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We propose the following stochastic model to describe the geostrophic process:

ϕ ∼mϕ +Mνϕ
(ℓϕ,σ

2
ϕ) , (25)

U = Luϕ+ η , mu = Lumϕ +mη , η ∼Mνη
(ℓη,σ

2
η) , (26)

V = Lvϕ+ ν , mv = Lvmϕ +mν , ν ∼Mνν
(ℓν,σ

2
ν) , (27)

where M is a process generated by using Matérn covariance functions. We consider sparse observations obtained
from a synthetically generated data set or the numerical weather model with prescribed additive observational noise
described by Kεuεu = σ2uI , Kεvεv = σ2vI , and Kεϕεϕ = σ2ϕI , which correspond to wind and geopotential retrievals.
A good approximation of these variances may come from the radar and satellite instrumental errors. We will attempt
to interpolate the wind and geopotential surfaces using observations with different spatial configurations and densities
by using several covariance model structures.

We consider that the predicted quantities (i.e., subscript star) form the “larger” space, and therefore with the
test-train mappings and notation from previous sections we have: L∗u = Hu,∗uLu, L∗v = Hv,∗vLv, and Kϕ,ϕ ≡
Hϕ,∗ϕK∗ϕ,∗ϕH

T
ϕ,∗ϕ. Then joint distribution of the model proposed for the geostrophic winds takes the following

form:

M3 = K11 =

 L∗uK∗ϕ,∗ϕL
T
∗u +Kηη +Kεuεu Kuv L∗uK∗ϕ,∗ϕH

T
ϕ,∗ϕ

Kvu L∗vK∗ϕ,∗ϕL
T
∗v +Kνν +Kεvεv L∗vK∗ϕ,∗ϕH

T
ϕ,∗ϕ

Hϕ,∗ϕK∗ϕ,∗ϕL
T
∗u Hϕ,∗ϕK∗ϕ,∗ϕL

T
∗v Kϕ,ϕ +Kεϕεϕ

 ,

(28)

K12 =

 L∗uK∗ϕ,∗ϕL
T
u +Kη,∗η Ku,∗v L∗uK∗ϕ,∗ϕ

Kv,∗u L∗vK∗ϕ,∗ϕL
T
v +Kν,∗ν L∗vK∗ϕ,∗ϕ

Hϕ,∗ϕK∗ϕ,∗ϕL
T
u Hϕ,∗ϕK∗ϕ,∗ϕL

T
v Kϕ,∗ϕ

 , K21 = KT
12 , (29)

K22 =

 LuK∗ϕ,∗ϕL
T
u +K∗η,∗η K∗u,∗v LuK∗ϕ,∗ϕ

K∗v,∗u LvK∗ϕ,∗ϕL
T
v +K∗ν,∗ν LvK∗ϕ,∗ϕ

(LuK∗ϕ,∗ϕ)
T

(LvK∗ϕ,∗ϕ)
T

K∗ϕ,∗ϕ

 , (30)

where Kuv = L∗uK∗ϕ,∗ϕL∗v with the rest of the mixed blocks obtained by applying mappings Hu,∗u and Hv,∗v
accordingly. In this example for simplicity we ignore the other terms that would otherwise occur in the expansion of
Kuv, such as Kϕ,η or Kη,ν. We argue that with sufficient data, one would be able to fit such models; however, this is
not the case or scope in our present numerical experiment.

3.5.3 Proposed Covariance Models

We distinguish three cases that correspond to: (i) an independent fit, (ii) a fit using a latent process, where we consider
only wind observations (y1), and (iii) a fit using data from both types of variables. The latent process strategy is similar
to the approach discussed in [25] with a slight error in the geostrophic model; however, in our case we consider kernels
that couple all observables. The third strategy was used in [17, 26]. In this case the authors provide a particularly
specific derivation of the model starting from statistics, whereas our approach starting from the physics constraints
arguably carries more generality.

Independent fit. In this setting we consider that we observe U and V as separate processes and try to fit a surface
through these observations using Gaussian process regression. To this end we consider the following covariance
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model:

M2 = K11 =

[
K∗u,∗u +Kεuεu 0

0 K∗v,∗v +Kεϕεϕ

]
,

K12 =

[
K∗u,u 0
0 K∗v,v

]
, K21 = KT

12 ,

K22 =

[
Ku,u 0
0 Kv,v

]
.

We also consider an independent fit of all three quantities. In this case the model is denoted byM4 and is similar
withM2, but with an extra block on the diagonal that accounts for the ϕ field.

Latent process fit. In this setting we acknowledge that the two components U and V are bound together by the
geostrophic approximation (22), and therefore U and V are components of a joint probability distribution (3.5.2)-
(27). To this end we obtain the following augmented model:

M1 = K11 =

[
L∗uK∗ϕ,∗ϕL

T
∗u +Kηη +Kεuεu Kuv

Kvu L∗vK∗ϕ,∗ϕL
T
∗v +Kνν +Kεvεv

]
,

K12 =

[
L∗uK∗ϕ,∗ϕL

T
u +Kη,∗η Ku,∗v

Kv,∗u L∗vK∗ϕ,∗ϕL
T
v +Kν,∗ν

]
, K21 = KT

12 ,

K22 =

[
LuK∗ϕ,∗ϕL

T
u +K∗η,∗η K∗u,∗v

K∗v,∗u LvK∗ϕ,∗ϕL
T
v +K∗ν,∗ν

]
.

The fit of the joint process. This case employs modelM3, which corresponds to a regression of the entire data set
(28)-(30).

3.5.4 Synthetic Example

We first consider a synthetic example with the following hyperparameters:

mϕ = 0 , νϕ = 5/2 , ℓϕ = 10 , σ2ϕ = 302 , Kεϕ,εϕ = 4I , (31)

mη = 0 , νη = 5/2 , ℓη = 1 , σ2η = 2 , Kεu,εu = I , (32)

mν = 0 , νν = 5/2 , ℓν = 1 , σ2ν = 2 , Kεv,εv = I , (33)
αu = 1.4 , αv = 1.2 . (34)

The distribution of the complete modelM3 with hyperparameters defined above (31)-(34) is considered the refer-
ence distribution and denoted byM∗. We extract two samples fromM∗: the first is used for fitting the hyperparame-
ters of modelsM{1...4}, termed calibration sample, and the second sample, termed validation sample, is used later in
a cross-validation experiment. The latter sample is not used in the training phase.

We consider a comprehensive experimental setting that includes two sets randomly distributed observations in
space: a relatively sparse set and a dense set. Furthermore, we consider a secondary experiment in which we set
observations of y1 on the east side with probability 0.8 and on the west side for y2 with the same probability. This last
setting increases the amount of information transfer between y1 and y2 processes and therefore is expected to increase
the discrepancy between models that considers the physics-induced covariance structure and models that treat the two
outputs independently.

In all experiments we show the RMS of the error between predictions and the real value, excluding observed
locations. We also show the log-likelihood of the predictions; however, because the covariance models are different
and the hyperparameters have different significances across models, the log-likelihood value has little significance.
One exception is when modelsM∗ andM3 are compared, because they have the same model structure. In Table 1 we
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TABLE 1: Predictive marginal log-likelihood values and RMS (excluding observed locations). This experiment
corresponds to the synthetic test case with sparse observations. Observations are random in space for the first two top
sets of results.M∗ [y1y2] represents the fit with the exact model.M2 [y1 ind] andM4 [y1y2 ind] are models that
treat the fields independently, the former observes only the wind field.M1 [y1] andM3 [y1y2] represent the correct
model structure and fitted using wind for the former and all fields for the latter.

Sparse Random Observations 0.05% of U , V , and 0.15% of ϕ
Calibration sample Validation sample

Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7798 2.07 1.87 2.47 -7818 2.10 1.94 2.65
M2 [y1 ind] -5865 3.31 2.73 - -5847 2.69 2.60 -
M4 [y1y2 ind] -9561 3.34 2.76 3.02 -9527 2.64 2.59 2.91
M1 [y1] -5606 2.49 2.41 - -5662 2.56 2.41 -
M3 [y1y2] -7988 2.33 2.00 2.86 -8026 2.36 2.14 2.96

Dense Random Observations 0.15% of U , V , and 0.25% of ϕ
Calibration sample Validation sample

Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7041 1.78 1.63 1.98 -7051 1.81 1.66 1.97
M2 [y1 ind] -5220 2.36 2.16 - -5209 1.99 2.12 -
M4 [y1y2 ind] -8295 2.34 2.16 2.43 -8242 1.98 2.12 2.39
M1 [y1] -4840 1.92 1.77 - -4880 1.84 1.80 -
M3 [y1y2] -7125 1.85 1.68 2.05 -7166 1.88 1.70 2.03

show the results from randomly-spaced observations. We note that the RMS of the error are larger for the independent
fit settingsM2 andM4. ModelM∗ gives the best fit, which is to be expected since this is the true distribution. The
complete modelM3 performs slightly better than the latent process modelM1 because of the additional information
conveyed by y2 observations.

We now consider a more extreme case in which the observations are relatively split: y1 observations are biased
toward the eastern side and y2 observations more towards the western side. The results are shown in Table 2. As
expected, we observe a far better performance of the complete modelM3. We note a larger discrepancy betweenM3

and the latent process modelM1 because the latter does not observe y2 and therefore has relatively few observations
on the western side.

3.5.5 Real-Data Test Case

We now consider the output of a real numerical weather prediction simulation over North America. We choose a
region which is 54 × 30 grid points with a horizontal of resolution of 25 km. In Table 3 we show the fit with the
four models for the predicted fields from the sample that was used for calibrating the process as well as a validation
sample for different noise levels. The validation sample corresponds to the same fields advanced six hours ahead.
Because in this case we do not have a reference distribution, we focus more on the RMS of the error between the
sample that is used for fitting the hyperparameters (on the left) and the performance on the new sample. A particularly
good improvement can be noted in the prediction of ϕ∗.

Although the results for the large observational noise do not mirror precisely the ones obtained in the synthetic-
data case, we note that reducing the noise level (results in the lower part of the table) lead to the same conclusions
that were drawn in the previous section. We adopted several levels of simplifications in the covariance models and
calibration strategies employed in the realistic data case. For instance, αu and αv are constant across the entire
domain, and all the processes are Matérn with a fixed smoothness level of ν = 5/2. We argue that significantly more
accurate results can be obtained by adding more flexibility to the inference process; however, this is the scope of a
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TABLE 2: Predictive marginal log-likelihood values and RMS (excluding observed locations). Observations are
random in space but for y1 they are predominantly on the east side of the plane with probability 0.8 and on the west
side for y2 with the same probability. M∗ [y1y2] represents the fit with the exact model. M2 [y1 ind] and M4

[y1y2 ind] are models that treat the fields independently; the former observes only the wind field. M1 [y1] andM3

[y1y2] represent the correct model structure and fitted using wind for the former and all fields for the latter.

Sparse Random Observations 0.05% of East U , V , and 0.15% of West ϕ
Calibration sample Validation sample

Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -8146 2.80 2.29 4.89 -8133 2.49 2.38 4.62
M2 [y1 ind] -7010 5.56 3.61 - -6917 3.90 3.84 -
M4 [y1y2 ind] -10627 5.58 3.83 9.15 -10478 4.02 4.66 15.18
M1 [y1] -5980 4.70 3.18 - -5973 3.72 3.28 -
M3 [y1y2] -8349 2.93 2.44 5.09 -8373 2.88 2.67 6.06
Dense Random Observations 0.15% of East U , V , and 0.25% of West ϕ

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M∗ [y1y2] -7772 2.20 1.85 3.23 -7767 2.20 2.00 2.98
M2 [y1 ind] -5620 4.08 3.37 - -5644 2.94 3.09 -
M4 [y1y2 ind] -9487 4.08 3.28 5.77 -9399 2.91 2.89 4.45
M1 [y1] -5224 2.98 2.57 - -5277 2.39 2.42 -
M3 [y1y2] -7947 2.33 1.97 3.85 -7987 2.32 2.18 3.74

TABLE 3: Predictive marginal log-likelihood values and RMS (excluding observed locations) for the real-data test
case with large and small observation noise. The observation density is 0.05% of U , V and 0.15% of ϕ.M2 [y1 ind]
andM4 [y1y2 ind] are models that treat the fields independently; the former observes only the wind field. M1 [y1]
and M3 [y1y2] represent the correct model structure and are fitted using wind for the former and all fields for the
latter.

Observation Noise: σ2ϕ = 132, σ2{U,V } = 2

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M2 [y1 ind] -5475.19 1.49 1.44 0.00 -5625.26 1.68 1.46 -
M4 [y1y2 ind] -15734.91 1.49 1.44 40.75 -16154.14 1.68 1.46 47.75
M1 [y1] -4938.89 1.44 1.49 0.00 -5016.47 1.66 1.34 -
M3 [y1y2] -16359.38 1.44 1.59 37.37 -17131.86 1.66 1.31 28.72

Observation Noise: σ2ϕ = 82, σ2{U,V } = 2

Calibration sample Validation sample
Model log-lik u∗ v∗ ϕ∗ log-lik u∗ v∗ ϕ∗

M2 [y1 ind] -5475 1.49 1.44 - -5625 1.68 1.46 -
M4 [y1y2 ind] -14200 1.46 1.39 33.55 -14363 1.65 1.40 44.74
M1 [y1] -5289 1.43 1.38 - -5384 1.62 1.28 -
M3 [y1y2] -13129 1.43 1.38 22.02 -13713 1.63 1.28 29.48
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FIG. 9: Geopotential error surface [m2s−2] corresponding to predictions made on the validation sample in the real-
data experiment (see Table 3 for the independent fit M4 [y1y2 ind] and M3 [y1y2] in the case where σ2ϕ = 82,
σ2{U,V } = 2).

different study.
To give a slightly more qualitative representation of the results, we illustrate in Figure 9 the geopotential error sur-

face corresponding to predictions made on the validation sample in Table 3 using the independent fitM4 [y1y2 ind]
andM3 [y1y2] models with σ2ϕ = 82, σ2{U,V } = 2. A general and significant reduction in the prediction error can be
noticed when using the physics-based model with a significant level on the western boundary.

3.5.6 Validation of Covariance Models

We propose two approaches to validate the calibrated models. The first approach is based on a cross-validation
strategy, where we draw a second sample from the same distribution or process and perform the regression by using
the models calibrated on the initial sample. In the synthetic data case we use a different seed, and in the real-data
experiment we use a different time snapshot of the geopotential and wind fields.

In a second validation approach we take advantage of the fact that in the synthetic data experiment we already
know the true distribution, and therefore we can construct the true Gaussian process accordingly (28)-(30) and with
hyperparameters given by (31)-(34). We then compute the Kullback-Leibler (KL) divergence between the distributions
resulting from the different models calibrated with the data and the true distribution. This gives us a “measure” of
the distance between the experimentally calibrated distributions and the true one. The KL divergence between two
probability densities that are Normally distributed, p = N (µp,Σp) and q = N (µq,Σq) is given by:

DKL(p||q) =
∫

p(x) log
p(x)

q(x)
dx = (35)

1

2

(
tr(ΣpΣ

−1
q ) + (µq − µp)TΣq(µq − µp)− ln

(
|Σp|
|Σq|

)
−N

)
,

where N is the dimension of the problem.

First Approach: One-Way Cross-Validation. The results for the first approach have already been discussed to a
certain extent. In Tables 1–3 we illustrate in the right set of columns the validation sample results, which corresponds
to a new sample from the same distribution in the synthetic-data case or to a different time snapshot in the real data
case. This validation sample was not used in fitting the hyperparameters. In all cases when using the appropriate
covariance structure M1 and M3 maintains an advantage over independent fit, which indicates their robustness.
Note the columns that correspond to the validation sample in Table 2 and the fit of ϕ in Table 3. Also, there is no
significant change in the RMS of the error between the calibration sample and the predicted one, which may discard
the possibility of overfitting the models.
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TABLE 4: Kullback-Leibler divergence between the four models M{1···4} and the true distribution M∗. By
DKL(Mk||M∗), k = 1, . . . 4 we indicate the KL divergence of each model with respect to the true distribution
and by DKL(

∫
Mk dϕ||

∫
M∗ dϕ) we indicate the marginal with respect to ϕ. The later is used to compare models

that include ϕ with the ones that do not. The results are based on the K22 block.

Sparse observations Dense observation
Model DKL(Mk||M∗) DKL(

∫
Mk dϕ||

∫
M∗ dϕ) DKL(Mk||M∗) DKL(

∫
Mk dϕ||

∫
M∗ dϕ)

M2 [y1 ind] - 4662 - 4197
M4 [y1y2 ind] 50564 4320 34541 4016
M1 [y1] - 746 - 127
M3 [y1y2] 3217 798 778 215

Second Approach: KL Divergence Experiment. Now we compute the KL divergence (35) for the synthetic data
case, where q takes the place of the known distribution with hyperparameters (31)-(34) and p takes the place of
distributions generated byM{1···4} and inferred parameters. In Table 4 we show the KL divergence between the four
models M{1···4} and the true distribution denoted by M∗. By DKL(Mk||M∗), k = 1, . . . 4, we indicate the KL
divergence of each model with respect to the true distribution, and by DKL(

∫
Mk dϕ||

∫
M∗ dϕ) we indicate the

marginal with respect to ϕ. The latter is used to compare models that include ϕ with the ones that do not; for instance
this allows us to compare directlyM1 andM3. These results correspond to the models presented in Table 1; similar
results are obtained for the models obtained in Table 2. We note the relative closeness betweenM1 andM3, a fact
expected from the forecast fit result.

4. DISCUSSION

The covariance structure has a large impact on the uncertainty quantification and forecast efficiency. Auto-covariance
and cross-covariance models are needed to represent joint distributions of random fields that may be generated from
physical fields that have different meanings or interpretations, but are constrained by physical laws. In particular,
having a consistent covariance structure is known to be important for prediction when performing inferences on
multidimensional processs with partially known relationships among different variables.

In this study we propose covariance models that are consistent with the underlying physical process that generated
the data. The convariance model describes how the outputs co-vary and may have nontrivial forms when relating
different physical quantities. This study is geared toward covariance models that describe data obtained from pro-
cesses that obey at least a partially known underlying physical process. With such a suitable covariance structure one
can make predictions using Gaussian process regession strategies or can be used in other circumstances to describe
uncertainties in models, modeling, and data sets.

We develop analytical covariance functions that are consistent with several physics processes. In particular, we
focus on modeling the geostrophic wind in the atmosphere, and to that end we employ a differential process that
corresponds to the known physical constraint. We consider Gaussian process regression experiments with a covariance
model that has the correct physically consistent structure, which demonstrates significant improvments in the forecast
efficiency. This strategy is validated on various synthetic and realistic data sets. The analytic covariance functions are
validated by comparing results obtained with the models introduced in this study and covariance structres obtained
through sampling strategies.

We introduce new nonstationary covariance models that are generated directly through the physical process. For
instance, we use a differential model on a nonuniform grid to generate nonstationary covariance kernels. These
models have properties that are appropriate for processes that take place on adaptive grids or have various degrees of
anisotropy.

We have augmented our analysis to include covariance models that are able to effectively describe nonlinear
processes by including high-order corrrection terms, which can be regarded as high-order moment closure terms. We
have demostrated that such a strategy, albeit not an optimal one for our particulr experiment, can be very important for
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nonlinear models by comparing the fine approximation of the covariance structure resulting from a nonlinear process
with low- and high-order closure assumptions. The latter proves to be significantly more accurate.

Gaussian processes are known to be practical as long as one can perform the Cholesky decomposition of the
covariance matrix, but for very-large scale data sets this approach may become a problem limiting their applicability.
In this study we do not fully address the computational aspects that are involved in the Gaussian process regression;
however, recent results [49] demonstrate that Gaussian process analysis can be carried out in a matrix free fashion in
a way that scales very well and, therefore, can be applied to large-scale problems.
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