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Abstract In this work, we present new insights into the dynamic stability of electricity
markets. We discuss how short forecast horizons, limited coordination, and physical
ramping constraints can give rise to high price volatility. Using concepts of market
efficiency, Lyapunov stability, and predictive control, we construct a framework to
design and evaluate stabilizing market clearing procedures. A numerical case study is
used to illustrate the developments.
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1 Introduction

Stability (volatility) of wholesale electricity markets is associated with strong fluc-
tuations of prices. Extreme price fluctuations reflect periods of scarcity induced by
physical generation and transmission constraints from which a small subset of market
participants benefit [7]. Consequently, controlling price fluctuations can lead to a more
homogenous distribution of the social welfare. In addition, it can reduce speculation
and thus incentivize investment and market participation [2].

There exist several evidences of extreme price volatility in operational markets [27,
1,19]. Broadly speaking, price fluctuations are observed under high demand conditions
where physical capacity becomes constrained. For instance, volatility is particularly
prevailing in spot (real-time) markets where fast ramping is needed to respond to
unexpected demand fluctuations and/or contingencies. The drastic difference in price
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volatility in day-ahead and spot markets at the Illinois hub of the MidwestISO region
for year 2010 can be observed in Figure 1.

Several studies have tried to understand the emergence of market volatility from
static network effects such as transmission congestion [26,12,5]. In these studies, it has
been observed that congestion leads to locational scarcity from which a small subset
of suppliers benefit. This results in an uneven spread of welfare across the network and
gives rise to the notion of locational marginal prices. Limited transmission capacity
introduces high sensitivity of the system to demand changes which ultimately manifests
in large variations of prices [7]. For instance, demand can increase slightly between time
periods and make a transmission line congested, leading to a strong price change. In
addition, the lack of sufficient physical transmission capacity provides opportunities
for market players to raise their bids to high values.
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Fig. 1 Volatility of day-ahead and real-time markets at the Illinois Hub of MidwestISO in 2010.

The transmission congestion viewpoint of market volatility, however, is not suffi-
cient to entirely explain the emergence of price fluctuations. In particular, volatility
can arise from unexpected variations of demand from the forecast that require the use
of ramping units (e.g., peaking units) to respond to the mismatch in real-time. Meyn
and coworkers [8,28] have observed that ramping leads to price volatility because it
introduces market friction. In particular, they show that in the presence of friction,
prices fluctuate with no tendency to convergence to the marginal cost. This indicates
that ramping constraints add a dynamic dimension to the market volatility problem
since, unlike transmission congestion, ramping effects propagate forward in time and
can affect stability in the long-term. Kannan and Zavala [18] observed that ramp-
ing issues can arise from insufficient foresight (e.g., look-ahead) of clearing procedures
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and/or from an insufficient time resolution (i.e., how often the market is cleared). In
particular, short foresight horizons can lead to more frequent ramp saturation and
price volatility. This is important since it implies that the market design itself (i.e.,
clearing formulation) and not only the physical system capacity contribute to market
volatility.

The questions that we address in this paper are: How can we formalize the analysis
of market stability? How can we use such a construct to modify market clearing proce-
dures? To address the market analysis question, we propose a control-theoretic frame-
work based on predictive control. We demonstrate that predictive control provides
a conceptual framework that can capture general mechanistic effects (e.g., physical
constraints), decision-making behavior (e.g., competitive, strategic), and uncertainty
handling (e.g., forecast errors). This framework can be used to understand the impact
of different market clearing procedures and physical constraints on market behavior
that can ultimately lead to more robust market designs capable of sustaining high
demand and supply fluctuations, contingencies, and so on. Unfortunately, existing pre-
dictive control theory is limited to systems with natural steady-state (e.g., equilibrium)
[20] or strong periodicity [14] conditions which do not exist in most economic systems.
To address this issue, we construct a market-specific Lyapunov function that can be
used to anticipate and monitor market stability. This function is constructed using
a clearing efficiency metric that compares the social welfare under constrained and
unconstrained conditions. In other words, it assesses the effect of physical constraints
on price behavior. The efficiency notion used in this work is borrowed from [2,7,23]
and reflects the ability of the ISO to keep prices stable (i.e., closer to a given ref-
erence) and thus more predictable. We use our framework to explain how volatility
arises from short foresight horizons in clearing procedures, from forecast errors, and
from limited coordination between the ISO and the players. In addition, we propose
the incorporation of stabilizing constraints to market clearing procedures to mitigate
volatility.

The paper is structured as follows. In Section 2 we present a simplified market
structure to develop the control concepts. In Section 4 we discuss implementation
issues of market clearing procedures arising from incomplete bidding. In Section 3 we
analyze the numerical stability properties of the market game. In Section 5 we derive a
framework to analyze dynamic stability properties. In Section 6 we present a numerical
case study. Finally, in Section 7 we provide concluding remarks and recommendations
for future extensions.

2 Market Structure

We first define the market structure under consideration and discuss the underlying
modeling assumptions. We highlight that the market structure has been simplified in
order to illustrate the control concepts. To avoid confusion, we discuss extensions to
more general market models in Section 7.
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2.1 Suppliers

We consider a supply-function equilibrium market structure under a competitive set-
ting similar to those proposed in [15,18]. Here, the supplier decisions are the parameters
ay, by of the affine supply function:

¢ (pe, by, ai) = by - (pe — af). (1)

Here, ¢i > 0 is the production quantity of supplier i € S := {1..S} at time ¢; p, > 0 is
the price at time ¢, and a’, b} are the bidding coefficients at time ¢ for supplier i. We
assume that the supply function is non-decreasing in p;. Consequently, we impose the
requirement that b > 0. We will restrict the intercept parameter a! to be zero. This is
necessary in order to avoid multiplicity of solutions. The supply function can also be
expressed in inverse form as

i i L
pe(q;; bp) = pi e (2)
t
The consumer demands will be assumed to be inelastic d}, j € C := {1..C} at time

t. In addition, we ignore forward contracts as those arising in two-settlement markets
[17].

The supplier decision-making problem can be posed as follows. Starting at current
time k, and given the price signals p; over the future horizon 7, = {k..k + T}, where
T is the horizon length and (j,i€7 IB}C are the current states at time k for the supplier,
find the bidding parameters trajectories by, ¢t € T, that maximize the future profit
(revenue minus production cost). The suppliers i € S solve the following problem:

mex S = (p-ai —cia) (3a)
teTk te€Tk

st.qi=bl-p, t €T (3b)

¢ <q <7, teT (3c)

i >0, teTy (3d)

ai, = i, b, = b, (3¢)

where gi,ﬁi > 0 are the lower and upper production limits, respectively. The accumu-

lated future profit is denoted by ZteTk ¢i. The marginal cost function is assumed to
have the form

cilad) = g + 501 - (g} ()
We make the common assumption that g¢ > 0 so the production cost is strongly convex
in ¢! [25]. Consequently, we have that the supplier problem is strongly convex in the
space of gi. We also note that the case where p; = 0 has a feasible solution only if
bi = ¢! = 0 is admissible (i.e., the minimum capacity must be ¢* = 0). We summarize
the problem properties in the following statement. a
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Property 1 1f gi > 0, problem (3) is strongly convex. If p; > 0, the problem has a
feasible solution for any ¢*,q" > 0. If p; = 0, the problem admits a solution only if
¢ =0.

We can pose this problem entirely in terms of the prices p; and the supply function
parameters b by substituting (3b) into (3a) and (3c). In addition, we interpret the
bidding parameters b} as the suppliers states. These modifications lead to the following
equivalent formulation in state-space form:

oy 2 bebep—a (e (52)
st bl = by + Abj, t € T~ (5b)
¢ <b-p <7, teT; (5¢)

bi >0, teT; (5d)

= b (5e)

where 7, := T; \ {k + T}. The bidding increments Ab; are interpreted as the control
actions of the supplier. Note that these are unconstrained. A direct consequence of this
is that the feasible set of the problem is invariant to the initial states l;}c In addition,
the feasible set is invariant to the price signals p; since it is always possible to find
bi > 0 mapping any p; to a feasible quantity ¢!. Consequently, we denote the feasible
set of this problem as (2.

2.2 ISO Market Clearing

The independent system operator (ISO) receives the bidding parameters b:, i € S,t €
Tr and physical information about the generators (ramps and capacity limits) and
clears the market by determining the generation quantities and prices that balance
total supply and demand. The interaction between the ISO and the suppliers results
in a game whose solution is a dynamic equilibrium denoted as ¢}, pt,, bi,, i € S,t € Tg.
The main objectives of the ISO include, among others, to maximize social wel-
fare and to keep clearing prices well-behaved [23]. This can be done, for instance, by
ensuring that spot and day-ahead prices converge or by keeping prices close to the
marginal costs which are more stable. In this work, market stability will be measured
as the distance of the clearing prices from a more stable reference in the presence of
dynamic fluctuations of demands and renewable supply and physical constraints. In
other words, we will not seek to keep prices constant since this is impossible (even in
the absence of constraints) because of the inherent dynamic variations of the inelastic
demand. To define our reference, we propose to use a basic concept of efficiency which
will measure the effect of physical constraints on social welfare and price behavior.
To establish our efficiency metric, we first define an ideal unconstrained market
clearing problem that does not account for ramp constraints. This problem can be
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stated as follows. Given supply function states b, solve [4]:

D SEESD 9 oy AR @)

9 teTh teTh i€S

s.t.
S =Y ieT (6b)
€S jec
<S¢ <T i€SteT (Gc)

where

/0 Y (@b = (i) (7)

Since the demands are fixed, the objective function is the negative social welfare [15],
denoted as ), . ;- We have that @; > 0 since gf,b; > 0. The multipliers for the
constraint (6b) are the prices p; > 0. Note that the feasible set of this problem is not
affected by the bidding parameters, since they enter only in the objective function. In
addition, in this ideal unconstrained formulation, we assume that the generators can
move infinitely fast between production levels. This assumption decouples the problem
in time. Hence, the feasible set of this problem is invariant to the current state of the
generators ¢i. Consequently, in the absence of ramp constraints, the effect of physical
constraints on prices is only instantaneous and does not propagate forward in time.

The unconstrained market clearing problem is strongly convex for fixed bi > 0. The
case where bi = 0 only has a feasible solution if ¢{ = 0 is admissible (i.e., ¢° = 0). This
can be seen from the optimality condition (34a) in the Appendix. In this case, it is
possible to eliminate ¢i from the formulation by fixing its value to zero. The problem
always has a feasible solution as long as the demand is reachable. This can be achieved
if the demand satisfies Y, 5 ¢" < djecdt < i q', t € Ty. We summarize these

properties in the following statement.

Property 2 1f bt > 0, problem (6) is strongly convex. The problem has a feasiblelsolu—
tionif Y-, c5¢° <D jecdl < 3ies @ holds. If b > 0, feasibility holds for any ¢, 7" > 0.
If bi = 0, the problem admits a solution only if gi =0.

For our analysis, we note that having infinitely fast dynamics in the generators is
equivalent to assume that their ramp capacities are equal to the distance between the
maximum and minimum generation capacities " and ¢‘, respectively. Thus, we can
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pose (6) in the following equivalent state-space form:

min. Z P = Z Z/Oqt p(g,b})dg (8a)

a;,Aq; teTh teTe i€S
s.t.
Giy1=qi+Aq, i€S, teT, (8b)
dgi=> dl teT, (8¢)
€S jec
(@ -¢)<AG <@ —¢"),ieSteT, (8d)
¢ <g<q,ieSteTh (8e)
=g, i€d. (8f)

The variables Ag! are the generation ramp increments that are bounded by i(@i —q),
the maximum generation ramp that is physically possible. We will see in the following
proposition that it is possible to drop the dynamic constraints (8b). Hence, the feasible
set is invariant to the initial state of the suppliers c},i. Accordingly, the feasible set will
be denoted as 2[5, (4%) or 2555

Proposition 1 Problems (6) and (8) are equivalent.

Proof: The unconstrained problem (6) generates optimal trajectories {qi}, i € S.
Since ¢ < ¢ <G, t € T, we have —(¢" — ¢*) < ¢,y — ¢} < @ — ¢'),t € T, .
Moreover, this trajectory is invariant to the initial states qA,iC since ¢* < qA,’; < §'. For
problem (8), since the ramp increments Ag! are bounded by +(g' — ¢'), the optimal
trajectories of (6) can be reached from any initial condition ¢¥. This is equivalent to
removing the variables Ag{, dynamic constraints (8b), and initial conditions (8f). OJ

The prices resulting from the ideal clearing problem are the multipliers of the
clearing condition (8c) and will be denoted as p;. Since these ideal price signals are
not affected by volatility effects introduced by ramping constraints, they can be used
as a reference in assessing the volatility of the actual physically constrained market.
We also note that, in the absence of the capacity constraints (8e), the prices balance
the suppliers marginal costs. In this case, the optimality conditions for the ISO (34)
reduce to,

1 .
pt:ﬁqz,te']},ies (9a)
t
0<p L) gi—) di>0,teT (9b)
ieS jec

If supply matches demand, the price is given by,

Zjec dz
==, teT. 10
Pt ZiG b; k ( )
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From (9a) we can see that the price balances the marginal costs for the suppliers. In
the presence of capacity constraints, however, the bound multipliers v, 7! in (34a) can
become non-zero, leading to non-smooth changes in the price away from the marginal
costs.

The solution of the ideal ISO clearing problem with no ramp or capacity constraints
represents the mazimum possible performance of the system and leads to the most stable
price signals given by those balancing the marginal costs. As can be seen, physical
constraints induce market friction and volatility into the price signals that make prices
drift away from the suppliers marginal costs [7,8]. Also note that, even in the absence
of physical constraints, prices exhibit dynamics induced by the demand dynamics.
Consequently, there is no steady-state equilibrium for the prices.

We now consider the constrained market clearing problem:

win Y= 3 [M ety (11a)

A% (o7 teTy i€S
st.qi=q +Aq, i€S,teT, (11b)
Na=Yd teT (11c)
i€S jec
—r<AG <T, ieSteT, (11d)
¢ <¢<7,ieSteT (1le)
4. =q, i €S. (11f)

The multipliers for the constraint (11c) are the prices p; > 0. In this formulation, the
ramps are bounded by r%,7 < (g' — ¢'), respectively. This constrains the dynamic
response of the generators. As before, we note that the bidding parameters b¢ enter
only the cost function and thus do not affect the feasible set. In this case, however,
the dynamic constraints introduce time coupling because the ramp constraints might
become active. Consequently, the feasible set does depend on the initial conditions §j.
Accordingly, the feasible set of this problem will be denoted as 27 So(q,ic).

The constrained social welfare is denoted as ZteTk ¢ with ¢, > 0 since bi, ¢! > 0.
It is easy to prove that >, ¢ > >, ¢ since 01508y € 2I59.(). In other
words, the performance of the constrained clearing problem is bounded by that of the
unconstrained counterpart. It is not obvious, however, that ¢; > @; holds point wise
since the constrained problem (11) exhibits time coupling. We prove this in a different
way in the following proposition.

Proposition 2 For fived bi > 0, the point social welfare p, evaluated at a solution of
problem (11) and @; evaluated at a solution of (6) satisfy pr > @4, t € T.. Moreover,
equality holds only if the ramp constraints are non binding.

Proof: At t = k we have that ¢, = @, since the initial conditions g are fixed. The
unconstrained cost @11 is invariant to the state of the current time step since there
are no ramp constraints. Consequently, there does not exist a feasible combination of
increments Agl that can reach a feasible state ¢, 41 satisfying ¢r11 < Ppy1. Using
induction over t = k, ...,k + T, we have that ¢; > ¢; point wise with equality if and
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only if the ramp constraints are non-binding. [J
We now formally define the point efficiency n; as

e Lk L (12)
Pt Pt

By definition and from Proposition 2, we have that 7; € [0,1]. The case where
nt = 1 is achieved if and only if ¢, = @;. The case where 1, = 0 occurs if and only
if the constrained social welfare diverges to infinity. This case can occur, for instance,
when the demands cannot be met given the current states the generators and the
ramping constraints. This implies that the constrained prices p; diverge (i.e., a small
change in demand leads to large changes in price). Based on the definition of efficiency,
we can see that maximizing efficiency is equivalent to minimizing the negative social
welfare. While this is an obvious result from a modeling point of view, we will see that
adding the efficiency definition in the market clearing problem (11) is advantageous if
one seeks to stabilize prices.

In the following, by market stability we will imply price stability which we measure
in terms of the distance between the prices of the constrained and unconstrained market
clearing problems |p; — p¢|. In other words, our hope is that, by keeping 7; stable or
bounded by keeping the costs close to the costs of the unconstrained problem, we can
keep the distance |p; — pt| stable as well. This strategy is motivated from the fact that
the prices of the problems defining ¢; and ¢; coincide when the ramp constraints are
non-binding. In the following section we will also see that, if the solution of the game is
stable, then the price difference can be bounded above by the cost difference. Note that
it is also possible to define the reference price p; as that given by the clearing problem
with no ramping and capacity constraints (the price that balances the marginal costs).
While this can significantly affect the actual magnitude of efficiency (because capacity
constraints are often active), it does not affect the generality of our results.

We highlight the relevance of using the proposed efficiency metric as an indirect
way to stabilize prices since prices are derived quantities (dual variables) of the clear-
ing procedure problem. Formulating clearing procedures to shape dual variables is in
general extremely difficult so we prefer to do this implicitly. We also highlight that
maximizing the proposed efficiency metric seeks to stabilize the prices by keeping the
social welfare close to that of the unconstrained counterpart (i.e., it serves as a measure
of the effect of physical constraints) and does not necessarily have a direct connection
with other efficiency metrics used in economic studies such as allocative and productive
efficiencies [16,3]. The proposed efficiency metric was derived based on the observation
that physical constraints (capacity, ramping, congestion) introduce market friction and
thus lead to volatility [8]. Our metric implicitly tries to quantify the effect of physical
constraints. In this sense, our efficiency notion is related to that used in [23,2] in which
efficiency implies that prices stay close to a given reference trajectory and predictable.
In actual markets, for instance, ISOs use the deviation of spot markets from day-ahead
markets as an efficiency metric [23]. The idea is that, if the deviation is high, spec-
ulation can arise leading to low market participation and other undesired effects. In
addition, large price deviations might point toward manipulation practices [7].
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Our analysis does not considered network constraints in order to simplify the pre-
sentation. However, the definition of efficiency can account for other physical con-
straints limiting performance with respect to the unconstrained clearing problem (6).

3 Game Numerical Stability

In this section, we provide conditions guaranteeing that the distance in performance
between the constrained and unconstrained games can be bounded by the magnitude
of the ramp limits. In addition, we establish an upper bound on the distance of the
prices as a function of the distance in cost. The analysis also allows us to bound
the equilibrium solution of the game under parametric perturbations of exogenous
factors such as demands or renewable generation. This will be necessary in our dynamic
stability results of Section 5.

Using the equivalence between (8) and (6), we have that the only difference between
problems (8) and (11) are the ramp lower and upper bounds. Consequently, problem
(11) results from parameter embedding of (8) with perturbations on the ramp limits
of the form 7 — (¢ — ¢*) and 1’ — (¢ — ¢'), i € S. Using this observation we can analyze
stability for the solution of the unconstrained game under perturbations of the ramp
limits and other parameters such as demands.

A way to establish numerical stability of the game equilibrium solution is to ensure
that the mapping matrix of the variational inequality resulting from coupling the
optimality conditions of the ISO (11) and suppliers (3) problems is nonsingular at a
given solution [24]. By coupling the block KKT systems (32) and (37) derived in the
Appendix at a given solution of the game ¢, v?, b,, ¢!, p., !, we obtain

(G4 00 Ay 0 g rY
A0 0 0 0 0 ||, 4
I 0 P 0 BH 0 b .

T T — |
0 0 —B2B AT AL | gl | T | 4!
00 o A" 0o o ||p ™
00 o a" o o [LV] Lm

Lemma 1 Consider the following block matriz,

(G A3 0 0 A3 0]
A0 0 0 0 0
I 0 P 0 BH 0
T=10 o -B2pal’al’
00 o A" 0 o0
o0 o A" 0 o0

If the following assumptions hold,

[A1 ] The matrices G, P, B are square and diagonal and have the same dimensions.

[A2 ] The matrix [AZI) AII,] has full row rank.

[A3 ] Mnin(G)Amin(P), and A\yin(B) are bounded away from zero.
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Then, the matrix J is nonsingular.

Proof: From assumption [Al] we have that G and P are invertible. We define

G 0 inO
cpl= A 0 0
I 0P
with C' = [I 0] and
~ G A3
a5 7)

We have the following algebraic relationship,

Gol™' [ &' 0
CcP | -PlcGTt P
We construct the Schur complement of the upper 2 x 2 block of blocks, which we
denote by S

(-1 AIT 4177 _B-2 _
s— % 0 P | [LpGe ] [0

= - _p-lp/A-1 p—1
o o] oo PlCG=* P~1| |0 BH 0
(Bt A" AI"] [0 [B2P~'CGT'A; - BT'PT'H] 0

=l Al o0 o |—10 0 0
a0 o] o 0 0
(Bt (AT~ B2PiCGT A+ BRI ALT

=| Az 0 0
Al 0 0

From the properties of Schur complements (and of determinants) it follows that J
is invertible if and only if S is invertible. Using the Schur complement argument again,
we obtain that since B (Assumption [Al]) is invertible, then S is invertible if and only
if the Schur complement

T= Aé B Aé : + Aé [(-=B7'P7!CG™A; + P7'H) 0]

A, A, A, P
is invertible. From [A1] and [A2] it follows that the first matrix has eigenvalues bounded
away from 0. Since the matrices Afj, Al G=1, A H are fixed it follows that since
P~1B~! and P! are sufficiently small from [A3], then the matrix T is positive definite

(even if not symmetric) and thus invertible. The conclusion follows. 0.

We now establish conditions for numerical stability of the game equilibrium solution
created by the coupled solution of (3) and (11).
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Theorem 1 Let J be the KKT matriz of the game (3) and (11), reduced after the
elimination of the inactive variables, at a given solution. Then, if at solution of the
game each of the optimization problems satisfies the linear independence constraint
qualification (LICQ) and the prices p;,, t € T and the production ¢, t € T, i € S
values are bounded away from zero, then J is invertible.

Proof: We show that the assumptions of Lemma 1 are satisfied. G is nonsingular
from the assumption that LICQ holds for (3) and the fact that its objective function
is strongly convex which makes Ay (G) > 0 hold. Assumption [A1] follows from the
problem structure. Assumption [A2] follows from the fact that the ISO problem (11)
satisfies LICQ. Finally, [A3] follows as long as p;, - b:, and p,, are sufficiently bounded
away from zero. From (3b) the first is equivalent with ¢}, being sufficiently bounded
away from zero. The result follows. [J

We note that our stability condition is necessary but not sufficient for the stability
of the solution of the resulting variational inequality [11,24], at least not in the general
case. The typical result for stability involves a P-property, which is a more general
case and more difficult to prove. Nevertheless, in the case where strict complementarity
holds, the variational inequality defining the optimality conditions is locally equivalent
with a nonlinear equation (after the elimination of the inactive constraints), and the
nonsingularity of the reduced Jacobian as stated in Theorem 1 is sufficient for local
stability of the solution [11].

The stability result gives us an interesting insight, which is that among the cases for
which we can guarantee numerical stability of the game are the cases where the prices
and production levels are sufficiently high. We highlight that degeneracies might occur,
for instance, if ramp down and lower capacity constraints lead to excess supply and thus
drive the price to zero. In this case, the solution of the game will be highly sensitive
to parametric perturbations. Assuming stability of the solution of the underlying
variational inequality given by the game, we can establish the following result that
bounds the distance between the solution of the unconstrained and constrained games.
To simplify notation, we define . = 3,1 ¥1 ., pL = [PrseDirr )T, and nT =
[k %, s Mk+T,+) as the solution of the constrained game over horizon ¢ € Tj. Similarly,
we define the solution for the unconstrained game as @., p., and 7, = 1.

Theorem 2 Assume that a solution of the unconstrained game @.,p. given by (5)
and (6) is stable. Then, there there exist Lipschitz constants L, L, > 0 such that the
solution of the constrained game ., p. given by (5) and (11) satisfies,

o =@l S L Y (7 = (@ ~ ) + 1’ = @ — )
€S
e = pull < Lp > (7' = @ = a) + ' = (@ —q)) -
=
Proof: The result is immediate from stability of the equilibrium solution which leads

to local invertibility [24] and from the fact that the constrained game is a parametric
embedding of the unconstrained counterpart. [J
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Since the cost difference is bounded so is the efficiency difference. The above result
is of relevance since it establishes an upper bound for the price difference ||p. — p«|| as
a function of the ramp limits. In addition, it gives the asymptotic result p, — p, and
Y« — @« as the ramps are relaxed. To relate the price difference to the cost difference
and efficiency we note that, if the solution of the game is stable, then we have that
there exists constant Cj, > 0 such that,

Hp* _]5*” S Cp”y* - g*||7 (13)

where y., 9, are the primal solutions of the constrained and unconstrained games,
respectively. This bound can be obtained by perturbing the feasible region of the
unconstrained problem by a factor O(||y. — @||) corresponding to the solution y. and
then exploit the Lipschitz continuity property of the primal and dual variables with
respect to the perturbation resulting from stability. Also, if stability holds, we have
that the following quadratic growth condition [6] holds,

1= = Gell < Co v/l — @ (14)

and,
[P« = Pull < CpCoo /|4 — sl (15)

Thus as, can be seen, as the cost difference decreases the efficiency increases and the
price difference decreases. Consequently, maximizing efficiency is a consistent way of
stabilizing the price difference.

4 Market Implementation Issues

To represent the game given by (3) and (11) in abstract form, we define the market
states zy, as the set of quantities ¢!, and prices py and define the aggregated vector over
the set Ty as x7;, := {zk,...,xx+7}. The controls uy are defined as the set of ramps
for all suppliers Agl,i € S with uy, = {ug,...,up+7—1}. The bidding increments
Ab}‘€ are interpreted as the supplier controls and are denoted as w,i, and we define
wy = {w}g, ,wf} We define the disaggregated supplier vectors w%—k,i € S, and the
total aggregated vector wr, . The bidding states b}, are interpreted as the supplier states
z, with aggregated vector z7, . We include the problem data over the horizon (e.g., the
demands) in the aggregated vector my,. We define the abstract dynamic system as

(Trt1, 2k41) = (X, 25, U, wi), ¥V k> 0. (16)

We can eliminate the states xy, z; by forward propagation of (16). With this, we can
express the supplier and market clearing problem entirely in terms of the controls and
initial state conditions. We thus have the supplier problem,

min Z oL (wi, ug) (17a)

YTk teTs
s.b. wh, € 2, (17b)
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for i € § and the constrained market clearing problem,

min Z ot (ug, wy) (18a)

“TrpeTh
s.t.ur, € 2159y, mT). (18b)

Since the decisions of the players do not affect each others feasible sets, the resulting
game is a pure Nash equilibrium problem [10].

For implementation, the game given by (17) and (18) can be solved over a receding
horizon: At time k we use the forecast data my, (e.g., demands d7, t € T, = {k..k+T7})
and the current states xy, z;. We solve the game (17) and (18) over the horizon Ty to
obtain u%, ,wZ, . From these sequences, we extract only the first actions uy < uy, wy +
wy. The system will evolve from its current state xy,z; into the states p41, 2k+1
according to the model (16). In the nominal case (no forecast errors in the data m7,),
the state will evolve as predicted. At the next step k + 1, we introduce feedback in
the market by shifting the horizon of the game to obtain T4 < {k+ 1.k +T + 1}
and use the new state xyy1, zx41 as initial conditions. The new data my,_, is forecast
and the game problem is solved to obtain the new decisions w1, wg+1. This approach
generates the feedback law (ug,wg) = h(zk, 2k, mT,).

A key observation that we make in this work is that existing market clearing pro-
cedures solve the game incompletely by iterating once between the suppliers and the
ISO in a distributed manner [23,3]. Here, each supplier guesses the ISO decisions (e.g.,
prices) in coming up with their bids. This guess is denoted by ur, ¢, where £ is an iter-
ation counter. The suppliers compute bidding parameters w;, ¢ by solving (17). These
are sent to the ISO to solve the market clearing problem (18) to compute the clearing
prices ur;, ¢+1. This can be interpreted as a hybrid Jacobi/Gauss-Seidel iteration.

The iterate wr, ¢+1,wT;, ¢ is feasible but not optimal for the game (it is not an equi-
librium solution). In other words, this iteration is a limited coordination or incomplete
gaming solution. Feasibility follows since the suppliers decisions w7, do not enter the
feasible set 2799(.) and since the supplier problems always have a feasible solution
for any decisions of the ISO wy,. A key observation is that the resulting solution error
generated at each step is propagated forward in time through the initial states and
thus introduces additional dynamics into the market that can further destabilize the
market. For instance, the suboptimal solution obtained at time k& might place the gen-
erators at a future state k+ 1 from which the future demands at times k+1...k+1+T
cannot be reached, thus making the game at time k + 1 infeasible.

We highlight that the limited coordination between ISO and suppliers can introduce
high levels of speculation; particularly if the prices are highly volatile and thus cannot
be predicted accurately or if residual demands cannot be anticipated correctly (e.g.,
renewable supply or residual demands are highly uncertain). This can result in spuri-
ous bids from the suppliers that can introduce further price volatility into the market.
Performing extra coordinating iterations can help to ameliorate this problem; particu-
larly in periods of high uncertainty. Effectively, this is a way of mitigating uncertainty.
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5 Dynamic Stability Analysis

In this section, we merge the previous results and create a framework to design clear-
ing strategies capable of ensuring market stability. Traditional control-theoretic sta-
bility analysis concepts, however, are not directly applicable in our context because
the market is inherently dynamic and does not exhibit a natural steady-state. While
it is possible to design market clearing procedures (these can be viewed as market
controllers) that artificially introduce equilibria (i.e., by enforcing periodicity in some
form), this strategy can constrain and degrade market performance and participation.
New stability analysis concepts are thus needed to enable a systematic design, analysis,
and implementation of robust market clearing procedures that can sustain intentional
or unintentional market manipulation and strong dynamic variations of demands and
renewable supply. In this section, we take a first step toward this goal by making use
of a Lyapunov stability framework.

We can express efficiency as an implicit function of the states of the form ny (z, zx)
or 7, for short-hand notation. Here, we use the following definition of market stability.

Definition 1 The market system defined by the game (17) and (18) is said to be
stable if, given ng € 2"(e) := {n|n > €} with € € [0, 1], there exist feasible sequences
ug, wy, over k = 0..00 such that n, € £27(e).

Here, € is an efficiency threshold value that is selected to keep the price distance
|p+ — pt| bounded. In other words, to ensure market stability, we want the efficiency
to stay within the domain [e, 1]. This will guarantee that the price distances to the
reference trajectories of the ideal market will remain bounded. We note that efficiency
is a state derived from the system physical states.

To construct a Lyapunov function in terms of the efficiency, we now define the
summarizing market state:

Ok+1:= (1= (k41 —€)) - Ok, k = 0..00, (19)

with initial conditions dg > « > 0. If nx(-,-) > €, k = 0..00, then for any a > 0
such that g > « there exists x > 0 such that §, — & for all k = 0..00. In other
words, the summarizing market state has a stable origin. Stability of this origin implies
market stability in the sense of Definition 1. On the other hand, if at any step we have
Mk(+, ) < €, the summarizing market state will increase. Subsequent violations of the
efficiency threshold will make the summarizing state diverge from the origin. Using this
construct, we are able to use traditional Lyapunov analysis techniques for predictive
control.

We note that efficiency can be detected through the summarizing states g1, Ok.
Consequently, the states xy, zx are detectable. This implies that the summarizing state
0 is controllable. For clarity, we summarize the sequence of dependencies as follows.

The states x, 2, and the data my; up to time k, define ng(zy, 21) and .
— The control actions can be computed to give the (ug, wr) = h(xg, 2k, m7,) = h(dx).
The states evolve as (16)

(Trt1s 2r41) = (T, 2, My 21, M73,))

= Tz(l‘lw Zkamn)'
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This defines n11(¥(x, 2k, mT1,)).
— The summarizing state evolves as

Opy1 = (1 - (77k+1(lf~1($k»2k»mﬁ)) - 6)) - O,
= f (0, h(0r)) == F(0n).

Using this basic set of definitions, we now illustrate how to establish sufficient
stability conditions for a given market design (market clearing procedure). In addition,
we demonstrate that the current market design given by the incomplete solution of the
game (17) and (18) is not stabilizing.

We extend the market clearing problem (18) by making use of the definition of the
summarizing state as follows.

min Y (641 — 6) (20a)

uTk
teTy

s.t.ug, € 2199 (i) (20D)
Spp1 =1 — (g1 —€) -6, t €T, (20c)
ne =€ teT (20d)
6k = Skv (206)

The detailed formulation of this problem is presented in the Appendix. The objective
function of this market clearing problem will be used as a summarizing market function,
which we define formally as

Vr(0k) == — Y (8e41 — 0) = (0 — O7). (21)
teT —

Here, the subscript T indicates the length of the horizon. The solution of the game (17)
and (20) provides the feedback law (ux,wy) = h(d;). A crucial observation is that the
summarizing market function can be used as a Lyapunov function that use to establish
stability of the origin for the summarizing state Jy.

Definition 2 A function V() is a Lyapunov function for system 8y41 = f (8, h(0x))
if (1) it is positive definite: in a region {2 containing the origin if for d; € {2 we have
Vr(dx) > 0 for §; > 0 for all k, and (2) it is non increasing: AVr(dx) := Vr(0g41) —
Vr(dx) <0, for all k.

We highlight that the proposed Lyapunov framework is a non-traditional extension
of existing techniques. This has been motivated by the fact that the market system
does not have a natural equilibrium which is a common characteristic among economic
systems. The design of alternative Lyapunov analysis tools in non-traditional control
settings is the subject of active research [14,9]. In this work, we have taken a step
backwards and use the Lyapunov framework as a systematic construct to compare
different market designs and to explain and quantify the impact of different parameters
on market stability (constraints, forecast horizons, limited coordination, robustness,
and so on). This is demonstrated in the following results.
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5.1 Infinite Horizon

We now establish market stability using the market clearing cost as a Lyapunov func-
tion.

Theorem 3 If the game given by (17) and (20) has a feasible solution, the summa-
rizing cost function (21) with infinite horizon T = oo is a Lyapunov function and the
market is stable.

Proof: From feasibility of (20d) we have that —(d;4; —d;) > 0, t = 0,...,00 so
Voo (61) = > i s, — (041 — 6¢) > 0. Consequently, positive definiteness follows. To prove
that the function is non increasing, we consider the cost function of two consecutive
problems generating two trajectories 6, ¢t € {k..oo} and 6F ™, t € {k+1..00}, 6F =
and 6,’51% = dp+1. We then have

AV (5k) = Voo((skJrl) - Voo((sk)

oo oo

= Z (55421 - 55“) - 2(654*1 - 55)
t=k+1 t=k

= (Ok41 — k)

=1 — (k1 —€)) - 6 — Ok

= —(M+1 —€) - 0k

<0.

The third equality follows from Bellman’s principle of optimality [20]. The last inequal-
ity follows from feasibility. The proof is complete. (]

With this, we have established that the decay of the proposed summarizing function
is a sufficient condition for market stability in the sense of Definition 1. We note that
if at any point we have that 141 < €, then 011 > dx, and the decay condition will
not hold.

A crucial observation in our analysis is the need of the incorporation of the sta-
bilizing constraint (20d) in the clearing procedure. With this, the feasible set of the
market clearing problem depends on the bidding states of the suppliers. A consequence
is that the ISO and the suppliers might need to iterate several times to obtain a fea-
sible solution to the game. Another consequence of this analysis is the fact that the
existing market design where a single iterate is performed between the ISO and the
suppliers cannot be guaranteed to be stable in the sense of Definition 1 since not every
set of bidding parameters can be guaranteed to lead to a market clearing solution
satisfying the stabilizing constraint. In other words, the stabilizing constraint acts as
a filter that can be effectively used to avoid spurious bids or to determine appropriate
clearing procedures (e.g., forecast horizons). Note that the current market design does
not enable the ISO to correct the bidding quantities to stabilize the market. Hence,
the market is more prone to be manipulated and destabilized by the suppliers if they
do not have appropriate means to anticipate the ISO clearing prices (e.g., by price
forecasting). For instance, if demands deviate significantly from expected conditions,
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bidding parameters can be inaccurate and can lead to strong price fluctuations. Find-
ing a feasible solution to the game (17) and (20) with the stabilizing constraint avoids
these problems. As can be seen, the proposed construct provides a mechanism to design
and analyze market designs with stability guarantees.

5.2 Finite Horizon

An issue arising in actual market implementations is the fact that the market clearing
problem is normally solved over a finite receding horizon 7, = {k..k + T}. Hence,
even if the infinite horizon game is feasible, the solution of the receding horizon game
cannot be guaranteed to be feasible. Guaranteeing stability in this case requires the
existence of a stable terminal controller able to stabilize the summarizing state beyond
the current terminal time k + 7' [20]. Constructing such a controller in a systematic
manner remains in the proposed framework an open research question. It is possible,
however, to establish sufficient stability conditions for finite horizon controllers. We
consider the perturbation term,

Zh = Ve (Ors1,m7y,) — Vo1 (Okg1, mr,)| (22)

and we make explicit the dependence of the cost function on the data. We make the
following assumption

Assumption 4 The horizon T is sufficiently long such that there exists a finite ar > 0
satisfying 5} < arp, Vk.

Note that =} — 0 as T — oo since the cost function Vi (-,-) is positive definite.

Theorem 5 Assume that the game defined (17) and (20) has a feasible solution ¥ k
under the horizon T. If,
Zp < Ok = Ok41), Y k, (23)

and Assumption 4 holds, then the market is stable.

Proof: From feasibility, the cost function is positive definite. To prove that it is
nonincreasing under (23) we establish the following:

VT(6k+17 m7-k+1) - VT((sk’ mTk)
= 7(6]6 — 5k+1) + VT((sk—‘rla m7-k+1) - VT—l((skJ"l’mTk)
<0.

From feasibility, we have that the lower bound 0 < (d; — dx+1). An upper bound is
given as follows. The difference between two terms in the right-hand side is bounded by
the positive quantity ap given in Assumption 4. In addition, since Vi (-,-) is positive
definite and nonincreasing the term in the left-hand side is negative. Rearranging terms
in the above inequality, we have

(6 = Ok41) < Vr(dk,m7) — Vr (k1. m7yy) + ar.
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The term (0 — 0r4+1) is bounded above by a positive quantity. This implies that
Ok+1 < 0. Consequently, the sequence {dy} is bounded, and the conclusion follows. (]

Current ISO operations have started to deploy look-ahead dispatch solution in
trying to mitigate ramp effects and market volatility [29]. As can be seen, our analysis
provides a framework to assess the effect of the look-ahead horizon on price stability. In
particular, Theorem 5 provides a framework to compute estimates of =} as a function
of T to satisfy the decay of the Lyapunov function.

We note that the term (dx —dg+1) introduces some inherent robustness to the market
design. This enables the market to sustain a certain level of errors introduced by finite
horizons, suboptimal solutions, forecast errors, and so on. The effect of forecast errors
and suboptimal solutions is analyzed in the following section.

5.3 Robust Stability

To analyze robustness properties, we consider the case in which the game data (e.g.,
demand, wind) cannot be forecast perfectly. To account for this case, the true value of
the data at time k will be denoted as my, and the true data trajectory over the horizon
T as m7;,. The forecast error trajectory over k...k + T generated at time k will be
denoted as e7, := {eg(k),...,ex+7(k)} with ex(k) = 0 since the data at the current
time k is assumed to be known. The symbol (k) is used to reflect the fact that the
error trajectory is generated at time k using the most recent information. The forecast
trajectory can be expressed as my, = m7g, +e7;,.

The forecast errors at time k, €7, , generate control actions that drive the summariz-
ing state from d to dg+1 = f(Jk, hy (0r,m7,)). This last state differs from the error-free
state Op1 = f(Ok, hi(0k, mT.)). The objective is to establish conditions under which
the summarizing cost function with forecast errors still represents an improvement
over the current cost. We follow the approach proposed in [21]. We define the following
error terms:

=1

Ep o= Vo1 (Oks1,mr) — Ve (Ops1, my,,)] (24a)
El% = ‘VT(gk-Fl?mTkJrl) - VT(5k+1?mTk+1)" (24b)

Under numerical stability of the game, we have that

ER < Ly|0k+1 — Oks1]
< Ly |f(0k, hr(0k, m7,)) — f Ok hie (S, m;,))]
< Ly LsLy|ler |- (25)

Theorem 6 Assume that the game defined (17) and (20) has a feasible solution ¥ k
under the horizon T and that there exists a finite 8 > 0 such that the error sequence
remains bounded e, < 3, Vk. If,

EE+ 5} < (0 — Opt1), Y K, (26)

then the market is stable.
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Proof: From feasibility, the cost function Vr (041, m7,,,) is positive definite. To prove
that it is nonincreasing under (26), we establish the following.

Vr(Sg+1, mr ) — Vr (oK, m,)
= (0k — Ok+1)
+ Vr—1(ks1,m7.) — Vo (Oks1, m7i,y)
+ Ve (Orgr, mriy,) = Ve (Oken, mi,,)
< —(6k — Oky1) + S + =1

The last inequality follows from the stability condition (26). The function is nonin-
creasing. We note the appearance of the extra term d;; 1. To account for this, we
compute the summation of the above inequality over j =0, ..., J to obtain

VT(6k+1+J7 m77c+1+J) - VT(6k7 mTk)

J J J J
N =1 =2
S =D Ok T O T Sy T iy
j=0 §=0 j=0 =0
<0.

Since & > 0, we have that 0 < Z}]:o 0k+;. The second term in the right-hand side is
bounded and positive since, from feasibility, we have 5k+1+j < Ok44, Vj,k. The last
two terms are positive and bounded as well by ar and [, respectively. The function
Vr(-,-) is positive definite and nonincreasing, so the difference in the left-hand side is
negative. Consequently, the sum Z}]:o 0k+; remains bounded. If we extend J — oo,
the conclusion follows. [J

Using the same construct, we can establish stability conditions for the case in which
there is incomplete gaming at each step. This will introduce an additional error €j to
the control action (g, M7, ) that will move the state from &y, to 1. In this case, we
have that

—
—

Ly |0k+1 — k1]
Ly |f(0r, hi(0r, M) — f(Ok, hae (O, m7y,) + €
Ly Ls (LulleT | + [1€xl)) -

2
k

IA A IA

Since this bound is larger, the robust stability threshold (26) is narrower.

We note that the stability conditions (23) and (26) are only sufficient conditions
for the market to remain stable. We also note that, because of forecast errors, the
solution given by the game at k can be guaranteed only to satisfy the current demand
but not the demands beyond k + 1. Consequently, the cost function of the game given
by Vr(6x+1,m7,,,) cannot be used as a Lyapunov function. We therefore use the
cost function of the game with no forecast errors Vp(dx41,m7,,,) whose solution does
satisfies the demands, and we deal with the forecast errors implicitly through the
initial state dp41. Finally, we note that the use of stochastic clearing formulations
can potentially improve robustness and mitigate market volatility. In particular, the
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anticipatory properties of multi-stage stochastic formulations can be exploited to better
manage ramping constraints.

For the finite horizon case with perfect forecast, we note that the term =} is still
present and depends on the data mp, := {my, ..., mgr}. Consequently, even if the
forecast is perfect, a strong change in the data my,r to miyr11 can break the stability
condition (23) if the horizon is not long enough. This situation can arise, for instance,
from a steep change in wind supply. This explains why the horizon should be sufficiently
long so that the bound a7 is as small as possible and the market is more robust.

Consider now the limiting case in which the ramps do not constrain performance.
We can show that the stability threshold is the same as that of the infinite horizon
problem.

Theorem 7 Assume that the ramp limits are given by r*,7 = (g* — gi). Then, the
market given by the game (17) and (20) is stable with =} = =} =0, Vk.

Proof: In the absence of ramping constraints, the game problem is decoupled in
time. Consequently, the optimal controls wug,wy are invariant to the forecast errors
at the future times £ + 1,....,k + T and to the length of the horizon T. If we solve
the game at k with my, we have that 041 = x4 since e,(k) = 0, Vk. With this
we have =% = 0, Vk. If we solve the game over a sequence of steps i = 0,...,7 — 1
and collect the first terms in Vr(dpyi,m7,.,) given by (dp4i — dx4144), we have that
Z?:O(ék_H — Okt14i) = Vr (0, mT,), Yk. We also have that we can extend the horizon
and sequence as J =T — oo so that E,i = 0, Vk. Consequently, the sequence {dx} is
bounded, and the market is stable. The proof is complete. [

This implies that the stability bounds of the market clearing problem are the same
as those of the infinite horizon problem with perfect forecast information. In other
words, as the generators become faster, market robustness increases, as expected. This
result also implies that as the ramping capacity increases, the forecast horizon can be
made shorter.

6 Numerical Case Study

In this section, we illustrate the effect of ramping constraints, foresight horizon, and
limited coordination on market stability and price dynamics. We consider a market
system with three suppliers and one demand. One of the suppliers has fast dynamics
(high ramping capacity) but high cost such as natural gas generators, the second one
has slow dynamics but also low cost such as a coal generator, and the third one is used
as a slack generator with infinite ramp limits (equal to generation capacity) and a large
cost. This last supplier acts as a slack to avoid infeasibility. The nominal parameters
used are ¢ = [0,0,0], g = [50,70,120], r = —[5,10,120], 7 = [5,10,120], h = [4,2,5],
and g = [2,1, 5]. We used gy = [0, 40, 40] as initial conditions. We consider the demand
profile presented in Figure 2, which is obtained from a periodic signal perturbed with
Gaussian noise. We set the market stability threshold to e = 0.65.

To illustrate the main developments of the paper, we consider three market imple-
mentations. The first one uses a foresight horizon of six hours and performs a single
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Fig. 2 Demand profile used for numerical case study.

Jacobi-like iteration at each clearing time (incomplete gaming). This implementation
is labeled as (T = 6Jac) and represents current practice. The second implementation
uses the same horizon length, but the game is converged to optimality (T = 60pt)
satisfying the stabilizing constraint. The third implementation uses an horizon of 24
hours, and the game is converged to optimality (7' = 24Opt). To compute the reference
social welfare used in the definition of efficiency, we also implemented an unconstrained
market clearing procedure.

In Figure 3 we present the profiles of the summarizing state d; for the three market
implementations, in Figure 4 we present efficiency profiles 7;, and in Figure 5 we present
the resulting clearing price signals p;. From Figure 3 it is clear that the summarizing
state obtained from the suboptimal implementation 7' = 6.Jac is not strictly decreasing
during days 1 and 3 and thus its market clearing cost cannot be used as a Lyapunov
function. This indicates that the efficiency is crossing the threshold at certain times,
as can be observed in Figure 4. This clearly illustrates that incomplete gaming can
introduce market instability. The other two control implementations remain stable,
but, as expected, a longer foresight horizon improves performance. This is observed
from the faster decay of the summarizing state for T' = 24Opt when compared with
T = 60pt and from the efficiency profiles. The efficiencies of T' = 240pt remain farther
away from the threshold. This illustrates that the length of the foresight horizon can
have important effects on market stability. This is mainly because longer foresights can
anticipate and manage ramping constraints more efficiently.

In Figure 5 we observe the spikes in the prices for T = 6Jac during the first
hours of the simulation and during the third day. In particular, note the strong price
fluctuations when compared with the optimal unconstrained prices. These prices were
obtained from the solution of the unconstrained market clearing problem. Note that
in the absence of ramping constraints, the prices remain stable and nearly periodic.
On the other hand, when the ramp constraints are active, strong price variations are
observed. In particular, during the third day, the prices for T = 6.Jac reach levels of
1508/MW . The prices of T = 240pt stay well below 100$/MW and much closer to
the optimal unconstrained prices. These levels are a consequence of having a longer
foresight horizon and converging the game to optimality to ensure that the efficiency is
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above the stability threshold. As a quantitative result, we computed the sum of squared
errors SSE = >, |pr — Pt|? over the entire simulation horizon of 7 days. Here, p; are
the constrained price signals, and p; are the unconstrained price signals. For T' = 6Jac
we obtained SSE=2.16 x 10° while for 7' = 240pt we have SSE=4.19 x 10*. This is an
improvement of nearly an order of magnitude. We have also observed that performing
an extra Jacobi-like iteration for T" = 6.Jac stabilizes the prices. In addition, we have
observed that extending the horizon of T' = 240pt does not improve its performance
significantly.

In Figure 6 we present price profiles for T = 6Jac and T = 240pt with relaxed
ramp constraints. In this case, we increased the ramp limits from their nominal values
to r = —[10, 20, 120], 7 = [10, 20, 120]. As can be seen, the price signals for both im-
plementations are close to those of the unconstrained clearing problem. The signals of
T = 240pt get closer to the unconstrained reference faster because of a combined effect
of complete gaming and forecast horizon. In particular, we observe that T' = 6.Jac per-
forms well in this case. The reason is that when the ramp limits are relaxed, subsequent
gaming solutions become closer to each other. This case illustrates how ramping con-
straints can have strong effects on efficiency and stability and how alternative market
designs can help mitigate those effects.

I
— T=6Jac
— - T=60pt
— T =24 Opt

Time [days]

Fig. 3 Summarizing state for market implementations.

7 Conclusions and Future Work

We have established a framework to analyze and design stabilizing market designs.
The framework incorporates physical constraints, efficiency concepts, and Lyapunov
analysis tools. We explain how market stability issues can arise in current market
designs as a result of limited coordination between the ISO and the suppliers and
short foresight horizons. The framework is general and can be extended to consider
other operational scenarios such as network constraints, forward and real-time markets,
strategic behavior, stochastic formulations, and piece-wise supply functions. The key
contribution of our work is the notion of incorporating market stability metrics and
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Fig. 5 Clearing prices for market implementations.
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Fig. 6 Clearing prices for market implementations under relaxed ramp constraints.

constraints in clearing procedures. In particular, the proposed framework proposed to
quantify the effect of different physical constraints and clearing practices on market
stability.

We highlight that predictive control is a general framework that can capture sta-
bility issues under strategic behaviors and other types of physical constraints and
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decision-making objectives. For instance, strategic behavior under uncertainty can
lead to more conservative or aggressive bids that affect pricing signals. Our stabil-
ity framework can be extended to design clearing procedures that remain robust under
different levels of risk aversion or anticipatory behavior. Another issue is the strategic
manipulation of physical parameters such as ramp rates [22]. The analysis of this more
complicated behaviors leads to theoretically and computationally more challenging for-
mulations such as deterministic and stochastic equilibrium problems with equilibrium
constraints (EPECs) [13].

The issue of limited coordination opens the door to several questions regarding
appropriate distributed approaches to implement the bidding-clearing procedure in
real-time. In particular, distributed iterations cannot be guaranteed to converge [10].
In any of these developments, we believe it is critical to establish a consistent framework
as the one presented in this work to design and compare different market designs by
characterizing their stabilizing and robustness properties. Finally, it seems necessary
to establish formal connections between different market efficiency notions such as
price stability as well as allocative and productive efficiencies [3] and to incorporate
these metrics in clearing formulations. This can be done, for instance, by considering
emission or fuel consumption constraints in the clearing formulation. In particular, we
highlight that existing market design studies propose different efficiency metrics but
no coherent framework exists to trade-off among them.
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A Problem Formulations and Optimality Conditions

A.1 Suppliers

For the supplier problem (3) we have the following. Given the prices p¢, t € T solve

min > (cj(a}) — pe - qf) (27a)

b ieT

st.qi=bf p, teT (27b)
¢ < <q, teT (27¢)
bi>0,i€8,teT. (27d)

Since this problem is decoupled in time, we can derive its optimality conditions by looking at the
Lagrange function at a time instant ¢:

Li(pe) = cy(ap) — pe - ai + A% - (af — b - pr)
— 9 (gf— )~ 7 (@ —qf) Y0, i€ S teT. (28)
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The optimality conditions are

VgiLi(pe) = hi+gi-af —pe + A% — v +79, =0, i€ S;teT. (29a)
Vi Lipe) = AT p— =0, i€S,teT (29b)
0< iJ_(qt—q)>0 ieSteT (29¢)
0<pL L (g —¢q})>0,ie8,teT (29d)
0<vP Lbi>0,ieS,teT. (29¢)
and, , ‘
gi=0bl-pr=0,i€S,teT. (30)
We note that we can also pose the supplier problem in terms of the quantities qg and use the supply
function q; = b} - pt to recover the supply function parameters b; exogenously. This leads to the

following system of equations,

quﬁi(pt) =gl ¢t —p— v 4T = —hl €S, teT. 3la)

(
(

vwﬁi(pt):q;'—bglptzo, ieS,teT 31b)
0<v% L(qi—q")>0,i€SteT (31c)
0<7 1L (@ —¢H)>0,ieS,teT. (31d)

We group the decision variables by defining the vectors

T = [qé’...7q§’....’q%7q%}T
T =6}, ..., b5, ..., b, b3 T,

and p = [po,...,pr|. We group all the multipliers into a single vector v*. Finally, we linearize the
system around a given solution g3, v}, b«, p« and redefine the increments around the solution as g <
Aq,v < Av, b + Ab, and p + Ap. Using these modifications, we can pose the above system in
condensed form as,

G-q° = Ay p+ A} v =1 (32a)
AL gt =18 (32b)
¢¢+P-b+B-H-p=ryp. (32¢)

Where G is a diagonal matrix with entries gt, B is a diagonal matrix with entries bt*, A? is the
Jacobian matrix for the multipliers corresponding to active constraints, A; is the Jacobian matrix
for the prices (exogenous to the suppliers), H is a mapping matrix satisfying q°, = B - H - ps«, and
P is a diagonal matrix with entries p¢, and satisfying P = (Is ® I7) p«. Finally, rg, Ty and rp, are

right-hand side vectors.

A.2 Unconstrained ISO

For the unconstrained ISO market clearing problem (6) we have that the optimality conditions are
decoupled in time as well. The Lagrange function at a time instant ¢ is given by

Eult) = 3 gy a7 | Sai -

€S i€ES jec

> vl (g —d) =D v (@ —aq)), teT. (33)

i€ES i€S
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The optimality conditions are
o 1 ) )
Vi Le(by) = qut pe—v 40 =0,teT (34a)
0<pe L (D qi—> dj|>0teT (34b)
i€ES jec
0§Z§L(qt7q)>0 ieS,teT (34¢)
0<7I L (¢ —q})>0,ieS,teT. (34d)
A.3 Constrained ISO
For the ISO problem (11) the Lagrange function is given by
EEEID 9 DESTILED o O3 B o
teT €S teT i€S j€ec
+ Z Z)\i+1(qz+1*qz*4% Z ZV AQt*TZ)* Z ZVAZ (7 — Aq))
teT— i€S teT— i€S teT— €S
= > via - ) = DD PN@ - a) + Y Milak — di)- (35)
teT ieS teT ieS €S
The optimality conditions are
V., L= L A -4 =0, i€ S (36a)
at, _bqu pr Ty TV =000 a
quf:bz —pe AN AL, 4T =0,i€S,teTT (36b)
Vagl= A —v +7% =0, ieSteT™ (36¢)
Vi, =01~ —Aq =0,i€S, €T\ {k} (36d)
v%:qg—q;:o,z‘es (36e)
0<pe L (D qgi—> di|>0,teT (36f)
i€S jec
0<v tu« —A¢>0,i€S,teT (36g)
0<v?, LAg—r,>0,i€S,teT™ (36h)
0<v% LG —q >0,i€SteT (36i)
0<% Lgi—¢">0,i€S,teT. (36j)

We can pose the above system in block form and couple to the suppliers system by using the following

modifications. We eliminate variables Aq%, we define variable ¢! and multiplier vectors v

and note

the coupling with the suppliers problems through the variables p and b. Finally, by linearizing around

a given solution g, v!, p., bs, we obtain the following system,
—2 -1 I I I I
B™*-b+B" q + A, pt+A, vi=r,
I _ I
Apra=rp
I
v

A{,~q:7’.

(37a)
(37b)
(87¢)
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Here, B is a diagonal matrix with entries b? AIIJ is the Jacobian with respect to the prices, AZI, is the

tx)
Jacobian with respect to the ISO multipliers, corresponding to the active constraints, and ré, r{, and
rl are right-hand side vectors.
A 4 Stabilizing ISO
The stabilizing ISO formulation (20) can be written as
min  dp (38a)
a;,Aqy
1 2
s.t. g = Z o (@) teTw (38b)
i€ES
ot-me =P, LETy (38¢c)
ne>e t€Tk (38d)
Sep1 = (L= (M1 —€)) -6, t €Ty (38e)
Doaiz) dj teT (386)
i€S jec
Q1 =qi + Agp, i €St €T, (38g)
r' <A <F,i€S,teT (38h)
¢'<¢G<T,ieSteTk (380)
qi:qi76k:3k’ i€ S. (38j)

References

1. F.L. Alvarado and R. Rajaraman. Understanding price volatility in electricity markets. In System
Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on, page 5 pp.,
jan. 2000.

2. Ismael Arciniegas, Chris Barrett, and Achla Marathe. Assessing the efficiency of us electricity
markets. Utilities Policy, 11(2):75 — 86, 2003.

3. R. Baldick, U. Helman, B.F. Hobbs, and R.P. O’Neill. Design of efficient generation markets.
Proceedings of the IEEE, 93(11):1998 —2012, nov. 2005.

4. R. Baldick and W. Hogan. Capacity constrained supply function equilibrium models of electricity
markets: Stability, nondecreasing constraints, and function space iterations. In University of
California Energy Institute, 2002.

5. E. Bompard, E. Carpaneto, G. Chicco, and G. Gross. The role of load demand elasticity in
congestion management and pricing. In Power Engineering Society Summer Meeting, 2000.
IEEE, volume 4, pages 2229 —2234 vol. 4, 2000.

6. J. F. Bonnans and A. Ioffe. Second-order sufficiency and quadratic growth for nonisolated minima.
Mathematics of Operations Research, 20(4):pp. 801-817, 1995.

7. S. Borenstein. Electricity markets: Understanding Californias restructuring disaster. Journal of
Economic Perspectives, 16(1):191-211, 2002.

8. I.-K. Cho and S. P. Meyn. Efficiency and marginal cost pricing in dynamic competitive markets
with friction. Theoretical Economics, 5(2):215-239, 2010.

9. M. Diehl, R. Amrit, and J.B. Rawlings. A lyapunov function for economic optimizing model
predictive control. Automatic Control, IEEE Transactions on, 56(3):703 —=707, march 2011.

10. F. Facchinei and C. Kanzow. Generalized Nash equilibrium problems. JOR, 5:1859-1867, 2007.

11. F. Facchinei and J-S. Pang. Finite Dimensional Variational Inequalities and Complementarity
Problems: Vols I and II. Springer-Verlag, New York., 2003.

12. Lester Hadsell and Hany A. Shawky. Electricity price volatility and the marginal cost of con-
gestion: An empirical study of peak hours on the nyiso market, 2001-2004. The Energy Journal,
27(2):157-180, 2006.



On the Dynamic Stability of Electricity Markets 29

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Renvo Henrion and Werner Roemisch. On M-stationary points for a stochastic equilibrium prob-
lem under equilibrium constraints in electricity spot market modeling. Applications of Mathe-
matics, 52:473-494, 2007.

Rui Huang, Eranda Harinath, and Lorenz T. Biegler. Lyapunov stability of economically oriented
nmpc for cyclic processes. Journal of Process Control, 21(4):501 — 509, 2011.

N. Hui, R. Baldick, and Z. Guidong. Supply function equilibrium bidding strategies with fixed
forward contracts. IEEE Transactions on Power Systems, 20(4):1859-1867, 2005.

Ramesh Johari and John N. Tsitsiklis. Efficiency of scalar-parameterized mechanisms. Oper.
Res., 57:823-839, July 2009.

Rajnish Kamat and Shmuel Oren. Two-settlement systems for electricity markets under network
uncertainty and market power. Journal of Regulatory Economics, 25:5-37, 2004.

A. Kannan and V. M. Zavala. A game theoretical dynamic model for electricity markets. Argonne
National Laboratory, Preprint ANL/MCS P1792-1010, 2010.

Francis A. Longstaff and Ashley W. Wang. Electricity forward prices: A high-frequency empirical
analysis. The Journal of Finance, 59(4):1877-1900, 2004.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36:789-814, 2000.

K. R. Muske, E. S. Meadows, and J. B. Rawlings. The stability of constrained receding horizon
control with state estimation. Proceedings of American Control Conference, 1994.

Shmuel S. Oren and Andrew M. Ross. Can we prevent the gaming of ramp constraints? De-
cision Support Systems, 40(3-4):461 — 471, 2005. jce:title; Challenges of restructuring the power
industryj/ce:title;.

A. Ott. Development of enhanced generation/demand response control algorithm. In Increasing
Market and Planning Efficiency Through Improved Software and Hardware - Enhanced Optimal
Power Flow Models, 2010.

S. M. Robinson. Strongly regular generalized equations. Mathematics of Operations Research,
5:43-61, 1980.

A. Rudkevich. On the supply function equilibrium and its applications in electricity markets.
Decis. Support Syst., 40(3):409-425, 2005.

G.B. Shrestha and P.A.J. Fonseka. Congestion-driven transmission expansion in competitive
power markets. Power Systems, IEEE Transactions on, 19(3):1658 — 1665, aug. 2004.

G. Wang, M. Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn, and U. Shanbhag. Dynamic
competitive equilibria in electricity markets. In A. Chakrabortty and M. Illic, editors, Control
and Optimization Theory for Electric Smart Grids. Springer, 2011.

G. Wang, M. Negrete-Pincetic, A. Kowli, E. Shafieepoorfard, S. Meyn, and U. V. Shanbhag.
Real-time prices in an entropic grid. Submitted to 2011 IEEE CDC, 2011.

V. M. Zavala, A. Botterud, E. M. Constantinescu, and J. Wang. Computational and economic
limitations of dispatch operations in the next-generation power grid. IEEE Conference on Inno-
vative Technologies for and Efficient and Reliable Power Supply, 2010.

The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory (“Argonne”)
under Contract No. DE-AC02-06CH11357 with the U.S. Depart-
ment of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.




